具有可焊接的电接触部的芯片嵌入封装体的制作方法

文档序号:11388133阅读:282来源:国知局
具有可焊接的电接触部的芯片嵌入封装体的制造方法与工艺

本发明涉及封装体、一种布置结构、一种多个封装体的预成型件、和一种制造封装体的方法。



背景技术:

封装体可被表示为具有延伸出包封材料的并且安装到外围电子装置(例如安装在印刷电路板上)的电连接部的包封的电子芯片。封装体可通过焊接连接至印刷电路板。为此目的,可在封装体的外表面处提供将要连接至印刷电路板的焊接凸起。

封装成本是对于行业来说重要的驱动因素。与此相关的是性能、尺寸和可靠性。不同的封装解决方案是多种多样的,并且必须满足应用的需求。有些应用需要高性能,有些其它应用,可靠性是最重要的,但都需要最低的可能成本。



技术实现要素:

可能需要制造具有与外围电子装置的简单且可靠的焊接连接的封装体。

根据一个示例性实施例,提供一种封装体,其包括电子芯片、至少部分地包封电子芯片的层合型包封材料、从电子芯片向上延伸到接触焊盘的布线结构、和完全地电镀形成的可焊接的外部电接触部,所述可焊接的外部电接触部通过布置(优选地,但不一定直接地)在接触焊盘之上与电子芯片电耦接。

根据另一示例性实施例,提供了一种封装体,其包括电子芯片、至少部分地包封电子芯片的层合型包封材料、和与电子芯片电耦接的可焊接的外部电接触部,所述可焊接的外部电接触部包括直接地在第二电镀形成层之上的第一电镀形成层,并且具有大致平坦的外表面。

根据另一示例性实施例,提供一种布置结构,其包括:具有上述特征的封装体和包括焊接焊盘的安装基底(例如印刷电路板,pcb),其中,所述封装体通过在可焊接的外部电接触部与焊接焊盘之间的焊接连接而安装在安装基底之上。

根据又一示例性实施例,提供多个封装体的整体式预成型件,其包括具有上述特征的多个整体连接的封装体和电连接结构,所述电连接结构电连接封装体中的至少两个(特别是所有)的电接触部,并且被布置成使得当将预成型件单个化成多个单独的封装体时,所述电连接结构被分成不同的断开部分。

根据另一示例性实施例,提供一种制造封装体的方法,其中该方法包括通过包封材料(特别地且优选地层合型包封材料或模制型包封材料)至少部分地包封电子芯片,形成从电子芯片延伸到接触焊盘的布线结构,并且电镀形成作为可焊接的外部电接触部的层(例如单层或双层,即包括或由两个堆叠的电镀形成的层组成),所述可焊接的外部电接触部通过被布置成与接触焊盘接触而与电子芯片电耦接。

根据本发明的示例性实施例,通过电镀沉积,特别是仅通过电镀沉积,而形成具有层合型包封材料的封装体的可焊接的外部电接触部。与常规方法(其中,常规的焊接凸起的再熔化可形成不受控制的金属间层)相比,通过电镀沉积形成电接触部使得能够形成具有不同金属之间的一个或一个以上不同边界的多层电接触部。因此可抑制不确定阶段的不受控制的形成。这产生了通过电镀沉积形成的电接触部的高的重复性。可通常出现在层合型封装体的表面部分中(例如在阻焊结构表面中)的腔因此可用电镀沉积的金属材料或合金材料填充,使得可可靠地防止封装体的表面部分中的不期望的明显的形貌或表面轮廓或外形,而同时以低制造成本形成可焊接的外部电接触部。这种通常出现的表面形貌可引起可靠性问题。根据本发明的示例性实施例,通过防止这种表面形貌,可提高所制造的封装体的可控性和可靠性。

此外,已经证实有利的是提供一种电连接结构,所述电连接结构电连接一批待同时制造的仍然整体连接的封装体的几个或优选所有的上述电接触部。在存在这种电连接的情况下,可非常高效地执行用于形成至少一部分的电接触部的电镀沉积过程,这是因为然后对所述几个或优选所有的电接触部施加单个公共电势足够用来在电镀池等中生长电镀形成的电接触部。

形成为以下的可焊接的外部电接触部:即两个平行平坦的直接连接的电镀形成的层的双层,允许以少量工作和低成本制造电接触部。因此可避免电接触部的昂贵且化学上易损的材料。形成具有平坦的、基本上非弯曲的外表面的可焊接的外部电接触部提供了具有足够厚度的层形状的平坦可焊接的外部电接触部,这可用少量的所需材料生产,并且可用可合适获得且便宜的材料来制造。此外,具有平坦外表面的电接触部允许正确地监视和检查与安装基底的焊接连接的质量。

另外的示例性实施例的描述

下文中,将解释封装体、布置结构、预成型件和制造封装体的方法的另外的示例性实施例。

在本申请的上下文中,术语“封装体”可特别地表示具有至少一个外部电接触部的至少一个至少部分地被包封的电子芯片。电子芯片可以是在其表面部分中具有至少一个集成电路元件(例如二极管或晶体管)的半导体芯片。电子芯片可以是裸芯片,或者可以是已经被封装或包封。

在本申请的上下文中,术语“层合型包封材料”可特别地表示至少部分地包围(优选地密封地包围)半导体芯片等的基本上电绝缘且优选地导热的材料,以便提供机械保护、电气安装、以及可选地在运行期间有助于排热。这种层合型包封材料可由通过在升高的温度下施加压力而彼此连接的几个层组成。从而,所述层彼此互连,使得形成层合型包封材料。例如,层合型包封材料可包括特别是与纤维(例如fr4或预浸料)结合起来的树脂。

在本申请的上下文中,术语“电镀形成”或“电镀沉积”或“电镀”可特别地表示沉积在至少部分导电的表面上(特别是在铜上)的导电材料(例如金属)的表面覆盖或涂层。电镀可特别地表示为使用电流以减少溶解的金属阳离子,使得它们在导电体上形成金属涂层的工艺。在电镀中使用的工艺是电镀沉积。对于金属的电镀,可使用含有将作为离子(即溶解的金属盐)沉积的金属的水基溶液(电解质)。阳极与作为阴极的工件之间的电场迫使带正电荷的金属离子移动到阴极,在所述阴极处它们放弃它们的电荷并且将其自身作为金属沉积在工件的表面上。根据将要沉积的材料,可使用不同的电解池溶液。

在本申请的上下文中,术语“大致平坦的上表面”可特别地表示电接触部不显示出突显的轮廓或弯曲(例如常规的半球形凸起)。尽管上表面不一定需要完全平坦或均匀,但是其凸出或凹入的趋势显着低于半球形凸起的程度。在一个实施例中,电接触部的大致平坦的上表面可以是非弯曲的平坦的上表面。

在一个实施例中,电镀形成电接触部的至少一部分、优选整个电接触部,包括电镀过程。因此,电接触部可部分地或完全地通过电镀形成。这使得得到可简单制造的并且可靠的封装体。

在一个实施例中,电接触部包括(特别是仅包括)镍和锡。特别地,可焊接的外部电接触部可包括在镍层(例如具有1μm到8μm之间的范围内的厚度,例如5μm)上的锡层(例如具有在2μm到20μm之间的范围内的厚度,例如10μm)。特别地,锡层的厚度可大于镍层的厚度,使得双层足够薄,而同时又提供足够的可焊接材料的存储。锡具有非常有利的焊接性能,便宜且容易获得,并且可以足够的厚度电镀沉积。此外,镍可通过电镀沉积镀覆,镍廉价且容易获得,并且在化学上与锡和与铜(其是用于作为布线结构的端部的接触焊盘的优选材料,所述布线结构从嵌入的电子芯片朝封装体的表面延伸)均能适当地相容。因此,镍在化学上非常适合于在层合型包封材料的可焊接材料(例如锡)与接触焊盘材料(例如铜)之间的桥接。

替代地,电接触部包括镍和铅锡合金的组合、或镍和金、镍和磷、锡和银的组合、仅锡、或仅镍。在所有的这一系列中,优选的是镍形成用于接触接触焊盘的掩埋结构(特别是层),并且各其它材料形成电接触部的表面焊接结构(特别是层)。

在一个实施例中,电接触部形成为由至少(特别是由)内部层或内层(优选地包括或由镍组成)和外部层或外层(优选地包括或由锡组成)组成的叠层。外层在焊接期间可以是可焊接的,因此优选地由适当地可焊接材料制成。内层可用作朝向封装体内的界面,特别是朝向导电铜结构的界面。

在一个实施例中,外层包括或由锡、锡和铅、以及锡和银中的一种组成。在一个实施例中,内层包括或由镍、镍和磷中的一种组成。

在一个实施例中,电接触部具有在1μm到30μm之间的范围内,特别是在5μm到25μm之间的范围内的总的层厚。这种可通过电镀沉积过程或电镀来制造的高厚度是非常优选的,以确保存在足够的可焊接材料。

在一个实施例中,在上的第一电镀形成层被配置为焊料存储库。换言之,第一电镀形成层的材料可被特别地配置为可焊接,从而与安装基底建立焊接连接。这可通过将第一电镀形成层配置为电镀形成的锡层以高质量和具有可靠性地实现。

在一个实施例中,第二电镀形成层被配置为连接促进界面层。换言之,第二电镀形成层的材料可被特别地配置成用于提供与在一个主表面上的第一电镀形成层(特别是锡)的材料的可靠连接和化学相容性,并且用于提供与在另一个主表面上的接触焊盘(特别是铜)的材料的可靠连接和化学相容性。这可通过将第二电镀层形配置为电镀形成的镍层以高质量和具有可靠性地实现。第二电流形成层的另外的功能可以是间隔件的功能,防止接触焊盘(例如由铜制成)与可焊接的第一电镀形成层(例如由锡制成)之间的直接接触。

在一个实施例中,封装体还包括在包封的电子芯片与电接触部之间的再分布层。所述再分布层可包括具有接触焊盘的上述布线结构的至少一部分。嵌入电介质中的图案化导电结构因此可用作再分布层,并且可在电子芯片的微小尺寸的一个或一个以上的焊盘与pcb等的较大尺寸的外部焊接焊盘之间转换信号。换句话说,小尺寸的芯片世界通过再分布层转移到更大尺寸的例如印刷电路板(在所述印刷电路板上可安装电子部件或封装体)的安装基底的世界中。

在一个实施例中,再分布层的铜材料(特别是接触焊盘的铜材料)与电接触部的镍材料直接接触。因此,该方法可包括直接地在铜结构上电镀形成外部电接触部(特别是其镍结构)。这对材料在化学上高度相容并且制造简单。

在一个实施例中,电接触部的锡层是电镀形成的锡层。相应地,电接触部的镍层可以是电镀形成的镍层。因此,该方法可包括通过电镀形成镍结构,然后通过电镀形成锡结构来电镀形成外部电接触部。优选地,镍层具有面向封装体内的平坦外表面。还优选地,锡层具有面向封装体外的平坦外表面。这种材料组合可防止不期望的明显的形貌,可能在制造中简单且便宜并且提供适当的可焊性。

在一个实施例中,封装体还包括在封装体的外表面处的阻焊结构(特别地被构造为图案化层),其中,电接触部与外表面处的阻焊结构齐平或者在竖直方向上延伸超过外表面处的阻焊结构。这防止了可焊接电接触部的不期望的可引起焊接连接的质量问题的负错位(standoff)。这种阻焊结构可以是在封装体的表面处的图案化电绝缘结构(特别是层),所述图案化电绝缘结构在一个或一个以上电接触部的位置处具有一个或一个以上凹部。阻焊结构可由具有电绝缘性质的并且对焊接材料显示出不良润湿性的材料制成。例如,阻焊结构可包括促进上述性质的具有填料颗粒的环氧树脂材料。

在一个实施例中,预成型件的电连接结构由分配给一些或全部仍然整体连接的封装体的公共芯片载体(特别是公共引线框架)提供,或者通过(优选地掩埋的)牺牲电连接结构(所述牺牲电连接结构在将预成型件单个化成单个的封装体时将被至少部分地去除或至少部分地分离)提供。因此,该方法可包括在电镀形成期间,特别是通过电连接结构将多个电接触部彼此电连接。该方法还可包括在电镀形成之后,特别是在封装体和至少一个另外的封装体的单个化期间,将电连接结构分离成至少两个不同的部分。因此,几个或优选地所有封装体可通过导电结构(例如互连封装体的金属层或金属引线)短路,使得可利用单个电信号源进行电镀,待形成的所有焊盘或电接触部电连接至所述单个电信号源。由于在预期镀覆时间的工艺流程,所有要被镀覆的接触焊盘因此可电连接。优选地,这种电连接结构可位于预成型件内或封装体内(例如在阻焊结构紧邻下方),以便防止在电镀期间导电材料在牺牲电连接结构上的不期望的沉积。这种不期望的导电材料的沉积可对所制造的封装体的可控性和可靠性具有负面影响。然而,在这种寄生沉积不是问题或在电镀沉积之后(例如通过蚀刻)去除牺牲电连接结构的情境下,牺牲电连接结构也可位于预成型件的外表面之上,并因此位于将被制造的封装体的外表面之上。在任何情况下,可在电镀之后通过单个化来断开封装体,所述单个化自动致使牺牲电连接结构的与封装体相关的部分的断开。替代地,可通过单独的光刻步骤来执行断开。

因此,在一个优选实施例中,多个封装体的公共引线框架(在单个化之前)可实现为各个封装体之间的电连接结构。当将这种公共引线框架与制造中的各种电接触部(或其预成型件)电连接时,仅将一个电信号施加到该引线框架就足够用来促进所有封装体的电接触部在电镀池中的电镀沉积。

例如,如果不存在这种公共芯片载体,则可形成牺牲电连接结构以电连接各个电接触部(或其预成型件),从而再次使得在电镀形成电接触部期间仅施加单个公共电信号就足够。通过将牺牲电连接结构布置在预成型件内,即掩埋于其中,可有利地防止导电材非料期望地沉积在电连接结构上(这可能导致可靠性问题)。牺牲连接结构可选择性地位于预成型件的这种区域中,在该区域中,所述预成型件在预成型件单个化成单独封装体期间将无论如何被分离(例如切割)。因此,可防止在单个封装体的运行期间,牺牲电连接结构的任何非期望的影响。

在一个实施例中,选取外部电接触部的电镀沉积材料的量,以便填充封装体的表面中(特别是阻焊结构中)的腔,使得电接触部的平坦外表面与封装体的(特别是阻焊结构的)平坦外表面齐平(即处于相同的高度水平)或在竖直方向上延伸超过封装体的平坦外表面(即处于较高的高度水平)。因此,可防止电接触部的可能在随后的焊接期间引起问题的任何负错位。因此,镀覆也可用于填充例如(非焊盘限定的)焊接掩模开口中的负错位。因此,可镀覆特别是锡(sn)以至少几乎填充腔。替代地,焊接凸起代替物可以是具有可调节厚度的sn层(特别是在镍(ni)层之上)以填充腔(例如阻焊结构腔)。

优选地,该方法还包括同时电镀形成封装体的至少一个另外的可焊接的外部电接触部。换言之,一个封装体的多个电接触部可同时形成,至少部分地通过电镀沉积形成。这种制造过程是高效且快速的。

在一个实施例中,该方法还包括同时电镀形成至少一个另外的封装体的至少一个另外的可焊接的外部电接触部。换言之,不同封装体的电接触部可同时形成,至少部分地通过电镀沉积形成。因此,所描述的电镀沉积结构与同时多个封装体的批量制造兼容,从而使得所描述的对电接触部的制造特别适合于高产量应用。

在一个实施例中,封装体的包封材料包括层合体(而不是通过压缩模制或传递模制形成的模制化合物),特别是印刷电路板层合体。在本申请的上下文中,术语“层合结构”可特别地表示由电绝缘结构形成的整体式平坦构件,可通过施加压力将所述电绝缘结构彼此连接。通过按压的连接可选地伴有热能的供应。因此,层合可表示为由多个互连层制造复合材料的技术。层合体可通过热和/或压力和/或焊接和/或粘合剂被永久地组装。

在一个实施例中,封装体的一个或一个以上电子芯片是功率半导体芯片。特别是对于功率半导体芯片,电可靠性和散热能力是所描述的制造过程可遇到的重要问题。可单片集成在这种半导体功率芯片中的可能的集成电路元件是场效应晶体管(例如绝缘栅双极型晶体管或金属氧化物半导体场效应晶体管)二极管等。利用这样的组件,可以提供用于汽车应用、高频应用等的封装体。可由这种和其它功率半导体电路和封装体构成的电路的示例是半桥、全桥等。

可使用半导体衬底、优选硅衬底作为用于半导体芯片的衬底或晶片。替代地,可提供氧化硅或另一种绝缘体衬底。还可以实现锗衬底或iii-v半导体材料。例如,示例性实施例可用gan或sic技术实现。

从下文结合附图的描述和所附权利要求中,本发明的上述和其它目的、特征和优点将变得显而易见,在所述附图中,相似的部分或元件由相似的附图标记表示。

附图说明

附图被包括以提供对本发明的示例性实施例的进一步理解并且构成本说明书的一部分,示出了本发明的示例性实施例。

附图中:

图1示出根据一个示例性实施例的布置结构的剖视图,所述布置结构由具有嵌入的电子芯片的封装体和通过焊接电连接并机械连接到封装体的安装基底组成。

图2示出根据一个优选实施例的封装体的一部分的剖视图。

图3示出常规封装体的一部分的剖视图。

图4示出根据一个示例性实施例的封装体预成型件的俯视图。

图5示出根据另一个示例性实施例的封装体预成型件的俯视图。

图6示出根据另一个示例性实施例的封装体预成型件的剖视图。

具体实施方式

附图中的图示是示意性的并且未按照比例绘制。

在将参照附图更加详细地描述示例性实施例之前,将总结一些基于其开发出示例性实施例的总体考虑。

根据本发明的一个示例性实施例,电镀nisn结构提供为用层合技术制造的芯片嵌入封装体的最终表面。特别地,封装体的常规焊接凸起可由电镀的层结构代替。

为将封装体安装在诸如印刷电路板的安装基底之上,用于芯片嵌入封装体的铜层之上的可焊接表面将是需要的。对于具有阻焊结构的装置,阻焊结构腔将填充有可焊接材料以避免可能导致二级焊接困难的负错位。

对于没有阻焊结构的封装体,按照惯例地施加昂贵的非电解niau镀覆。此工艺是难以控制的,可牵涉产量损失,并可需要昂贵的化学制品和金。

对于具有阻焊结构的常规装置,阻焊结构开口镀覆有非电解niau,然后通过融化印刷的焊膏存储库来产生焊接凸起,这引起正错位。然而,凸起的形状可导致电测试中的接触不良。此外,在昂贵的凸起高度工艺控制下,印刷工艺的波动可导致产量损失。

根据本发明的一个示例性实施例,可成本有效地用电镀nisn表面替代常规的昂贵的非电解niau表面。

根据本发明的另一个示例性实施例,有可能的是用可调节sn-层厚度(在ni-层之上)代替焊接凸起来填充阻焊结构腔。

根据本发明的又一个示例性实施例,芯片嵌入封装体设置有优选ni/sn的电镀覆。这可在本发明的不同示例性实施例中不同地实现,比如:

a)在一个实施例中,所有的必须镀覆的焊盘由于在预期镀覆时间的工艺流程而电连接,可无需附加工作地完成镀覆。

b)在一个实施例中,施加附加的连接以简化电镀沉积,其中,可在之后封装体的分离期间去除所述附加的连接。

c)在一个实施例中,也有可能的是提供可通过附加的光刻步骤去除的电连接。

d)在一个实施例中,镀覆也可起到填充负错位的作用,例如焊接掩模开口(非焊盘限定的)中的负错位。因此,可镀覆sn以至少几乎填充腔。

图1示出根据本发明的一个示例性实施例的布置结构150的剖视图,所述布置结构150由具有嵌入的电子芯片102(其中,其它实施例可嵌入多个电子芯片102)的封装体100和由通过焊接电连接并且机械连接到封装体100的安装基底108组成。

更具体地,所述布置结构150包括此处实施为半导体功率封装体的封装体100。因此,电子芯片102可以是功率半导体芯片(例如具有嵌入在其中的一个或一个以上二极管、一个或一个以上诸如igbt的晶体管等等)。在所示出的实施例中,安装基底108可实施为包括焊接焊盘158的印刷电路板(pcb)。如示出的那样,通过在封装体100的可焊接的外部电接触部106与安装基底108的焊接焊盘158之间建立焊接连接部来将封装体100安装在安装基底108之上。

图1示出电接触部106与焊接焊盘158之间的可选择的可焊接结构152(诸如焊膏)作为附加的焊料存储库。然而,在其它实施例中还可省略所述可焊接结构152,在所述其它实施例中,在电接触部106与焊接焊盘158之间形成直接的焊接连接。

可例如通过将封装体100放置在安装基底108之上,使得电接触部106与焊接焊盘158对准,并通过随后供给热能(例如在焊炉中),来实现在封装体100与安装基底108之间形成焊接连接。

封装体100将电子芯片102嵌入或包封在层合型包封材料104中。所述层合型包封材料104可由可通过层合(例如通过在升高的温度下施加压力)互连的多个电绝缘层(例如由预浸料或fr4制成)组成。上文提到的在封装体100的外表面处电镀形成的可焊接的外部电接触部106通过再分布层110与电子芯片102电耦接。更具体地,可提供从电子芯片102延伸至布线结构160的接触焊盘156的布线结构160(例如由几个互连的特别是由铜制成的导电元件组成)。图1中示出的各种接触焊盘156可以是诸如平坦铜区域的平坦金属结构。再分布层110可由具有布线结构160的集成导电迹线(例如由铜材料制成)的一个或一个以上电绝缘层154组成,用于在小尺寸的芯片焊盘与安装基底108的大尺寸的焊接焊盘158之间转化。作为由铜制成的布线结构160的外端部分的接触焊盘156直接接触电接触部106的封装体内的表面。为在接触焊盘156之上形成电接触部106,可执行一个或几个电镀覆过程(每个电镀覆过程与层型电接触部106的指定材料相关)。

优选地,如参照图2进一步详细描述的,电接触部106包括电镀制造的双层,该双层由以下组成:封装体内部镍层在一个主表面之上与接触焊盘156中的相应的一个直接接触,并且直接在镍层的相反的另外的主表面之上与封装体外部锡层直接接触。这种电接触部106可与层合型封装体100的相邻表面部分齐平,从而防止明显的表面形貌。这使得形成可靠的封装体100。另外,这种平坦几何形状简化了检查所制造的电接触部106和它与安装基底108的适当焊接。这增加了封装体100的重复性并因此提高了封装体100的可靠性。同时,电镀形成电接触部106的可靠可用的构件使得能够简单、快速并且便宜地制造电子接触部106。此外,电镀制造步骤确保电接触部106的足够大的厚度(特别是它的锡层的足够大的厚度),使得电接触部106的可焊接材料的量(用于焊料存储)足够高,因此确保与安装基底108的可靠焊接连接。

图2示出根据本发明的一个优选实施例的封装体100的部分的剖视图,其中,电接触部106作为用层合技术制造的芯片嵌入封装体100的最终表面。图2中,附图标记250示意性地示出封装体100的可根据期望的封装技术或应用来配置的核心部分。例如,核心部分250可包括根据图1的附图标记102、104、110、160中的至少一个的至少一部分。特别地,也可根据图2设置布线结构160,所述布线结构160从电子芯片102穿过包封材料104延伸至图2中示出的接触焊盘156。

图2中示出的封装体100还包括在封装体100的外表面处的电绝缘阻焊结构206,其中,选取可选的阻焊结构206的材料以便基本上不可被焊接材料润湿。例如,填充的环氧树脂材料可用作阻焊结构206。如可从图2中看出的,阻焊结构206的外平坦表面208大致与电接触部106的外平坦表面204齐平(没有形成台阶或另一个表面外形或轮廓)。这抑制了非期望的明显的表面形貌的形成。因此,阻焊结构206的腔可电镀地填充有可焊接材料。虽然应该防止负错位并因此防止阻焊结构206与电接触部106之间的剩余腔,以避免二级焊接的问题,但是可以替代图2的是电接触部106的外平坦表面204在竖直方向上突出超过阻焊结构206的外平坦表面208。

根据图2的电接触部106由外部电镀形成的锡层202(根据图2例如具有垂直方向上10μm的厚度)组成,所述锡层202具有平坦上表面,直接布置在电镀形成的内部镍层200(根据图2例如具有垂直方向上5μm的厚度)之上。镍层200进而直接布置在再分布层110的布线结构160的导电迹线的接触焊盘156的外部铜表面之上。再分布层110的布线结构160的导电迹线的铜材料因此与电接触部106的镍材料直接接触,从而防止锡层202与接触焊盘156的铜材料之间的直接接触。可焊接锡层202可实现与安装基底108的焊接连接。有利的是,锡层202具有平坦外表面204。电镀镍层200在制造上简单且便宜,可以可再现方式制造,适当地可焊接并且在制造过程期间以及在封装体100的寿命期间是化学上稳定的。

图3示出常规的层合嵌入封装体300的一部分的剖视图。封装体300的核心部分312可由铜焊盘310覆盖,所述铜焊盘310由突出的阻焊结构308包围。在铜焊盘310的顶部之上,可形成非电解镀覆镍层306,非电解镀覆金层304和阻焊结构302用于建立与pcb(未示出)的焊接连接。必须付出很多努力再融化焊接凸起302用于制造。凸起302的几何形状使其难以检查它的几何形状。此外,此结构产生了显著的表面形貌,这可涉及封装体300的可靠性问题。将促进可焊接材料的润湿性的所涉及的金材料,增加了制造复杂性和成本。此外,非电解镍金沉积化学引入了工艺不稳定性,这是因为它与阻焊结构308的材料没有适当地相容。

可通过本发明的示例性实施例,特别是通过图2中示出的封装体100来克服常规的封装体300的至少一些提到的和其它缺点。

图4示出根据本发明的一个示例性实施例的封装体预成型件400的俯视图。

根据图4的整体式预成型件400,其是批量制造多个封装体100期间获得的中间结构,所述整体式预成型件400由多个仍然连接的封装体100组成,其中的两个封装体100在图4中示出。尽管未示出,但根据图4,封装体100的每个均包括三个电子芯片102。尽管未示出,但是整体式预成型件400的所有封装体100的所有焊盘和电接触部106都通过诸如铜的导电材料的掩埋的公共芯片载体彼此电连接。引线框架可基本平行地位于图4的图面下方。因为当预成型件400浸入电镀池时,可将公共电流施加至掩埋的公共引线框架,用于使电接触部106短路,所以这简化了通过电镀沉积来同时形成整体式预成型件400的所有封装体100的电接触部106。因此,当制造根据图4的预成型件400时,该方法同时电镀形成封装体100中的相应一个的多个可焊接的外部电接触部106,以及各个封装体100的多个可焊接的外部电接触部106。因此,电镀沉积步骤是高度并行的,因此快速且高效。

图5示出根据另一个示例性实施例的封装体预成型件400的俯视图。

根据图5,各个封装体100的各个电接触部106没有通过公共引线框架彼此电连接。因此,根据图5通过掩埋的电连接结构500(其在图5中可见为使电接触部106互连的许多网)来提供,根据图4的在电镀形成步骤期间,使所有电接触部106短路的公共引线框架的功能。附加的牺牲电连接结构500可在单个化封装体100的切割工艺期间被切割,并因此电和机械上断开。

图6示出根据另一个示例性实施例的封装体预成型件400的剖视图。

根据图6,通过此处实施为公共引线框架的,可稍后在单个化时分离的公共芯片载体600,来提供电连接结构,所述电连接结构用于通过将单独的电势施加到所有电接触部106来实现电镀形成电接触部106。为在完成在接触焊盘156之上电镀形成电接触部106之后,简化单个化,公共芯片载体600已经在与稍后的分离线606(为单个化封装体100,预成型件400可被锯切之处)对齐的变薄的区域608中局部地变薄。多个导电的垂直互连部602(实施为通孔,特别是铜通孔)垂直地延伸穿过构成层合型包封材料104的各个介电层(由预浸料或fr4制成),并将电接触部106与公共芯片载体600电耦接。附加的金属焊盘604,例如图案化的金属箔(诸如铜箔)中的部分也在图6中示出。

根据图6,电接触部106可形成为镍和锡的双层200、202(如图2中示出的那样),其中,这两层200、202可在布线结构160的导电迹线之上,更精确地,在所述布线结构160的导电接触焊盘156(例如铜焊盘)的暴露的表面部分之上,一个在另一个之后地电镀沉积。

应该注意的是术语“包括”不排除其它元件或特征,并且“一”或“一个”不排除多数。还可将与不同实施例结合描述的元件结合起来。还应该注意的是附图标记不应被解释为限制权利要求的范围。此外,本申请的范围不旨在受限于本说明书中描述的工艺、机器、制造、物质组成、装置、方法和步骤的特定实施例。相应地,所附权利要求旨在包括在其范围内的这些工艺、机器、制造、物质组成、装置、方法或步骤。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1