一种高效率平面异质结钙钛矿薄膜太阳能电池及制备方法与流程

文档序号:14009680阅读:261来源:国知局
一种高效率平面异质结钙钛矿薄膜太阳能电池及制备方法与流程

本发明属于太阳电池技术领域,涉及一种高效率平面异质结钙钛矿薄膜太阳能电池及制备方法,特别是涉及一种室温下一步溶液法处理的钙钛矿薄膜太阳电池(pscs)及其制备方法。



背景技术:

太阳能电池是未来新能源的一个重要发展方向。然而太阳能电池目前仍然存在转化效率低、生产成本高难以满足实际生产的问题。钙钛矿薄膜太阳电池以其结构简单、成本低廉及易生产等优点吸引了众多科研工作者的广泛研究。

平面异质结钙钛矿太阳能电池是目前研究的重点,而钙钛矿薄膜的质量以及与空穴传输层之间的结合状况是影响太阳电池性能的重要因素。研究表明,当采用一步溶液法制备钙钛矿薄膜中,在钙钛矿前驱体溶液旋涂过程中滴加反溶剂(氯苯)可以有效地改善钙钛矿薄膜的质量。以此有效地改善了薄膜质量并提高了电池的性能。但是,“氯苯处理法”等溶剂工程技术仍然没有完全解决钙钛矿薄膜覆盖率和均匀性以及钙钛矿和空穴传输层界面接触的问题。



技术实现要素:

要解决的技术问题

为了避免现有技术的不足之处,本发明提出一种高效率平面异质结钙钛矿薄膜太阳能电池及制备方法。

技术方案

一种高效率平面异质结钙钛矿薄膜太阳能电池,其特征在于包括依次排列的氧化铟锡导电玻璃ito(1)、tio2电子传输层2、钙钛矿薄膜3、空穴传输层4和au电极5;所述钙钛矿薄膜3是经cb/etm处理过的钙钛矿薄膜;所述tio2电子传输层2的膜厚为25~35nm;所述钙钛矿薄膜3厚度为320~330nm;所述空穴传输层4的膜厚为100~110nm;所述au电极5厚度为100~110nm。

所述空穴传输层4采用材料为spiro-ometad、p3ht或ptb7。

一种所述高效率平面异质结钙钛矿薄膜太阳能电池的方法,其特征在于步骤如下:

步骤1、ito玻璃的处理:将ito玻璃清洗后在去离子水、丙酮和无水乙醇中各自超声处理10-15min,最后将玻璃uv处理15-20min;

步骤2、电子传输层的旋涂:将配制好的tio2溶液在步骤1处理过的ito玻璃上以4000转/分钟旋涂60秒,接着在大气中150℃下中退火10-15min,最后冷却至室温,得到致密的tio2层;

步骤3、“cb/htm处理”:将步骤2处理过得ito玻璃放入手套箱,将钙钛矿前驱体溶液滴在tio2层上,3000转/分钟旋涂60秒,在旋涂进行到30秒时添加浓度为0.5~4.0mg/ml的cb/htm混合溶液,接着在是手套箱100℃下加热10-15min,得到表面渗透有空穴传输材料的钙钛矿薄膜;

所述钙钛矿前驱体溶液的制备:将体积比为7∶3的γ-butyrolactone和dmso溶剂混合,再将等摩尔比的ch3nh3i和pbi2加入到混合溶剂中,搅拌后制得钙钛矿前驱体溶液;

所述cb/htm混合溶液的制备:将空穴传输材料加入到氯苯溶剂中配制出htm浓度为0.5~4.0mg/ml的cb/htm混合溶液;

步骤4、空穴传输层的旋涂:将520mg双三氟甲烷磺酰亚胺锂li-tfsi溶于1ml乙腈溶液中,然后取17μl含li-tfsi的乙腈溶液、80mgspiro-ometad、28.5μl4-叔丁基吡啶4-tert-butylpyridine共溶于1ml氯苯中,得到htm溶液,然后将其滴在步骤3制得的钙钛矿薄膜上,5000转/分旋转30秒,然后将器件在空气中静置一夜;

步骤5、蒸镀电极:在空穴传输层上蒸镀一层100nm厚的au金属薄膜作为背电极,得到平面异质结钙钛矿太阳能电池。

以15mgp3ht或10mgptb7取代80mgspiro-ometad。

有益效果

本发明提出的一种高效率平面异质结钙钛矿薄膜太阳能电池及制备方法,以名为“cb/htm处理法”(在反结构pscs中即为“cb/etm处理法”)的方法对钙钛矿薄膜进行处理,该方法在旋涂钙钛矿前驱体溶液的过程中添加含有空穴传输材料(反结构pscs中为电子传输材料)的氯苯溶液,接着加热退火,然后继续旋涂一层空穴传输层(反结构pscs中为电子传输层),从而在钙钛矿与空穴(或电子)传输层之间形成一层钙钛矿与空穴(或电子)传输材料相互渗透的混合层,让钙钛矿层与空穴(或电子)传输层接触更加紧密,从而提高pscs的电学性能。

本发明的有益效果:

与“cb处理法”相比,本发明提供的“cb/htm处理法”将空穴传输材料提前加入到氯苯溶液中,并滴加进正在旋涂中的钙钛矿层,从而在钙钛矿与空穴传输层之间形成一层钙钛矿与空穴传输材料的混合层,这样使得空穴传输材料渗透进了钙钛矿层,让钙钛矿层与空穴传输层界面接触更加紧密。该方法显著地提高了pscs的短路电流密度(jsc)、填充因子(ff)和能量转换效率(pce),其中能量转换效率从“cb处理法”的15.00%提高到了18.39%。

附图说明

图1为“cb/htm处理法”的实施示意图;

图2为该方法制备的钙钛矿薄膜太阳电池结构图;

图3为钙钛矿薄膜的扫描电镜(sem)图像。其中(a)和(c)分别为经“cb处理法”制备的钙钛矿薄膜的俯视图和截面图;(b)和(d)分别为经“cb/spiro-ometad处理法”制备的钙钛矿薄膜的俯视图和截面图;

图4为制备的钙钛矿薄膜太阳电池的j-v特性曲线图。

具体实施方式

现结合实施例、附图对本发明作进一步描述:

一种高效率平面异质结钙钛矿薄膜太阳能电池,其正结构电池由氧化铟锡导电玻璃(ito)玻璃、电子传输层、经cb/htm处理过的钙钛矿薄膜、空穴传输层以及背电极依次叠加组成(反结构电池由ito玻璃、空穴传输层、经cb/etm处理过的钙钛矿薄膜、电子传输层以及背电极相叠加组成)

一种高效率平面异质结钙钛矿薄膜太阳能电池的制备方法,正结构钙钛矿薄膜太阳能电池主要由以下步骤来实现:

1)ito玻璃的处理:首先将ito玻璃用去污粉清洗,接着将其相继在去离子水、丙酮和无水乙醇中各自超声处理10-15min,最后将玻璃uv处理15-20min;

2)电子传输层的旋涂:本发明采用tio2作为电子传输材料,首先将配制好的tio2溶液在经步骤1)处理过的ito玻璃上以4000转/分钟旋涂60秒,接着在大气中150℃下中退火10-15min,最后缓慢冷却至室温,得到致密的tio2层;

3)“cb/htm处理”:把处理过得ito玻璃放入手套箱,取体积比为7:3的γ-butyrolactone和dmso溶剂充分搅拌,再将等摩尔比的ch3nh3i和pbi2加入到上述混合溶剂中,充分搅拌后制得钙钛矿前驱体溶液;将空穴传输材料spiro-ometad、p3ht或ptb7加入到氯苯溶剂中配制出htm浓度为0.5~4.0mg/ml的cb/htm混合溶液。然后将钙钛矿前驱体溶液滴在步骤2)制得的tio2层上,3000转/分钟旋涂60秒,在旋涂进行到30秒时添加浓度为0.5~4.0mg/ml的cb/htm混合溶液,接着在是手套箱100℃下加热10-15min,得到表面渗透有空穴传输材料的钙钛矿薄膜;

4)空穴传输层的旋涂:首先取520mg双三氟甲烷磺酰亚胺锂(li-tfsi)溶于1ml乙腈溶液中,然后取17μl含li-tfsi的乙腈溶液、80mgspiro-ometad(或15mgp3ht或10mgptb7)、28.5μl4-叔丁基吡啶(4-tert-butylpyridine)共溶于1ml氯苯中,得到htm溶液,然后将其滴在步骤3)制得的钙钛矿薄膜上,5000转/分旋转30秒,然后将器件在空气中静置一夜;

5)蒸镀电极:在空穴传输层上蒸镀一层100nm厚的au金属薄膜作为背电极,得到平面异质结钙钛矿太阳能电池。

具体实施例:

对比例一:与实施例相比,对比例采用“cb处理法”制备钙钛矿薄膜,具体操作如下,

1)ito玻璃的处理:首先将大小为15mm×15mm,阻抗为10ωsq-1的ito玻璃用去污粉清洗,接着将其相继在去离子水、丙酮和无水乙醇中各自超声处理10-15min,最后将玻璃uv处理15-20min;

2)电子传输层的旋涂:首先将配制好的tio2溶液在经步骤1)处理过的ito玻璃上以4000转/分钟旋涂60秒,接着在空气中150℃下退火10-15min,最后缓慢冷却至室温,得到致密的tio2层;

3)“cb处理”:把处理过得ito玻璃放入手套箱,取体积比为7:3的γ-butyrolactone和dmso溶剂充分搅拌,再将等摩尔比的ch3nh3i和pbi2加入到上述混合溶剂中,充分搅拌后制得钙钛矿前驱体溶液,然后将钙钛矿前驱体溶液滴在步骤2)制得的tio2层上,3000转/分钟旋涂60秒,在旋涂进行到30秒时滴加氯苯溶液,接着在100℃下加热10-15min,得到表面渗透有空穴传输材料的钙钛矿薄膜;

4)空穴传输层的旋涂:首先取520mg双三氟甲烷磺酰亚胺锂(li-tfsi)溶于1ml乙腈溶液中,然后取17μl含li-tfsi的乙腈溶液、80mgspiro-ometad和28μl4-叔丁基吡啶(4-tert-butylpyridine)共溶于1ml氯苯中,得到htm溶液,然后将其滴在步骤3)制得的钙钛矿薄膜上,5000转/分旋转30秒,然后将器件在空气中静置一夜;

5)蒸镀电极:在空穴传输层上蒸镀一层100nm厚的au金属薄膜作为背电极,得到平面异质结钙钛矿太阳能电池。

该电池的电学性能检测结果为:voc、jsc、ff和pce分别为1.02±0.02v、21.15±0.55macm-2、69.45±0.04、15.00±0.83。

实施例一:

1)ito玻璃的处理:首先将大小为15mm×15mm,阻抗为10ωsq-1的ito玻璃用去污粉清洗,接着将其相继在去离子水、丙酮和无水乙醇中各自超声处理10-15min,最后将玻璃uv处理15-20min;

2)电子传输层的旋涂:首先将配制好的tio2溶液在经步骤1)处理过的ito玻璃上以4000转/分钟旋涂60秒,接着在空气中150℃下退火10-15min,最后缓慢冷却至室温,得到致密的tio2层;

3)“cb/htm处理”:把处理过得ito玻璃放入手套箱,取体积比为7:3的γ-butyrolactone和dmso溶剂充分搅拌,再将等摩尔比的ch3nh3i和pbi2加入到上述混合溶剂中,充分搅拌后制得钙钛矿前驱体溶液;将空穴传输材料spiro-ometad加入到氯苯溶剂中配制出spiro-ometad浓度0.5mg/ml的cb/spiro-ometad混合溶液。然后将钙钛矿前驱体溶液滴在步骤2)制得的tio2层上,3000转/分钟旋涂60秒,在旋涂进行到30秒时添加浓度为0.5mg/ml的cb/spiro-ometad混合溶液,接着在手套箱100℃下加热10-15min,得到表面渗透有空穴传输材料的钙钛矿薄膜;

4)空穴传输层的旋涂:首先取520mg双三氟甲烷磺酰亚胺锂(li-tfsi)溶于1ml乙腈溶液中,然后取17μl含li-tfsi的乙腈溶液、80mgspiro-ometad和28μl4-叔丁基吡啶(4-tert-butylpyridine)共溶于1ml氯苯中,得到htm溶液,然后将其滴在步骤3)制得的钙钛矿薄膜上,5000转/分旋转30秒,然后将器件在空气中静置一夜;

5)蒸镀电极:在空穴传输层上蒸镀一层100nm厚的au金属薄膜作为背电极,得到平面异质结钙钛矿太阳能电池。

该电池的电学性能检测结果为:voc、jsc、ff和pce分别为1.06±0.02v、21.56±0.32macm-2、71.42±0.03、16.32±0.62。

实施例二:

1)ito玻璃的处理:首先将大小为15mm×15mm,阻抗为10ωsq-1的ito玻璃用去污粉清洗,接着将其相继在去离子水、丙酮和无水乙醇中各自超声处理10-15min,最后将玻璃uv处理15-20min;

2)电子传输层的旋涂:把处理过得ito玻璃放入手套箱,首先将配制好的tio2溶液在经步骤1)处理过的ito玻璃上以4000转/分钟旋涂60秒,接着在大气中150℃下退火10-15min,最后缓慢冷却至室温,得到致密的tio2层;

3)“cb/htm处理”:把处理过得ito玻璃放入手套箱,取体积比为7:3的γ-butyrolactone和dmso溶剂充分搅拌,再将等摩尔比的ch3nh3i和pbi2加入到上述混合溶剂中,充分搅拌后制得钙钛矿前驱体溶液;将空穴传输材料spiro-ometad加入到氯苯溶剂中配制出spiro-ometad浓度1.0mg/ml的cb/spiro-ometad混合溶液。然后将钙钛矿前驱体溶液滴在步骤2)制得的tio2层上,3000转/分钟旋涂60秒,在旋涂进行到30秒时添加浓度为1.0mg/ml的cb/spiro-ometad混合溶液,接着在手套箱100℃下加热10-15min,得到表面渗透有空穴传输材料的钙钛矿薄膜;

4)空穴传输层的旋涂:首先取520mg双三氟甲烷磺酰亚胺锂(li-tfsi)溶于1ml乙腈溶液中,然后取17μl含li-tfsi的乙腈溶液、80mgspiro-ometad和28μl4-叔丁基吡啶(4-tert-butylpyridine)共溶于1ml氯苯中,得到htm溶液,然后将其滴在步骤3)制得的钙钛矿薄膜上,5000转/分旋转30秒,然后将器件在空气中静置一夜;

5)蒸镀电极:在空穴传输层上蒸镀一层100nm厚的au金属薄膜作为背电极,得到平面异质结钙钛矿太阳能电池。

该电池的电学性能检测结果为:voc、jsc、ff和pce分别为1.06±0.02v、22.82±0.33macm-2、72.34±0.03、17.51±0.64。

实施例三:

1)ito玻璃的处理:首先将大小为15mm×15mm,阻抗为15ωsq-1的ito玻璃用去污粉清洗,接着将其相继在去离子水、丙酮和无水乙醇中各自超声处理10-15min,最后将玻璃uv处理15-20min;

2)电子传输层的旋涂:首先将配制好的tio2溶液在经步骤1)处理过的ito玻璃上以4000转/分钟旋涂60秒,接着在大气中150℃下退火10-15min,最后缓慢冷却至室温,得到致密的tio2层;

3)“cb/htm处理”:把处理过得ito玻璃放入手套箱,取体积比为7:3的γ-butyrolactone和dmso溶剂充分搅拌,再将等摩尔比的ch3nh3i和pbi2加入到上述混合溶剂中,充分搅拌后制得钙钛矿前驱体溶液;将空穴传输材料spiro-ometad加入到氯苯溶剂中配制出spiro-ometad浓度2.0mg/ml的cb/spiro-ometad混合溶液。然后将钙钛矿前驱体溶液滴在步骤2)制得的tio2层上,3000转/分钟旋涂60秒,在旋涂进行到30秒时添加浓度为2.0mg/ml的cb/spiro-ometad混合溶液,接着在100℃下加热10-15min,得到表面渗透有空穴传输材料的钙钛矿薄膜;

4)空穴传输层的旋涂:首先取520mg双三氟甲烷磺酰亚胺锂(li-tfsi)溶于1ml乙腈溶液中,然后取17μl含li-tfsi的乙腈溶液、80mgspiro-ometad和28μl4-叔丁基吡啶(4-tert-butylpyridine)共溶于1ml氯苯中,得到htm溶液,然后将其滴在步骤3)制得的钙钛矿薄膜上,5000转/分旋转30秒,然后将器件在空气中静置一夜;

5)蒸镀电极:在空穴传输层上蒸镀一层100nm厚的au金属薄膜作为背电极,得到平面异质结钙钛矿太阳能电池。

该电池的电学性能检测结果为:voc、jsc、ff和pce分别为1.06±0.02v、23.14±0.32macm-2、75.02±0.03、18.39±0.72。

实施例四:

1)ito玻璃的处理:首先将大小为15mm×15mm,阻抗为15ωsq-1的ito玻璃用去污粉清洗,接着将其相继在去离子水、丙酮和无水乙醇中各自超声处理10-15min,最后将玻璃uv处理15-20min;

2)电子传输层的旋涂:首先将配制好的tio2溶液在经步骤1)处理过的ito玻璃上以4000转/分钟旋涂60秒,接着在空气中150℃下退火10-15min,最后缓慢冷却至室温,得到致密的tio2层;

3)“cb/htm处理”:把处理过得ito玻璃放入手套箱,取体积比为7:3的γ-butyrolactone和dmso溶剂充分搅拌,再将等摩尔比的ch3nh3i和pbi2加入到上述混合溶剂中,充分搅拌后制得钙钛矿前驱体溶液;将空穴传输材料spiro-ometad加入到氯苯溶剂中配制出spiro-ometad浓度4.0mg/ml的cb/spiro-ometad混合溶液。然后将钙钛矿前驱体溶液滴在步骤2)制得的tio2层上,3000转/分钟旋涂60秒,在旋涂进行到30秒时添加浓度为4.0mg/ml的cb/spiro-ometad混合溶液,接着在100℃下加热10-15min,得到表面渗透有空穴传输材料的钙钛矿薄膜;

4)空穴传输层的旋涂:首先取520mg双三氟甲烷磺酰亚胺锂(li-tfsi)溶于1ml乙腈溶液中,然后取17μl含li-tfsi的乙腈溶液、80mgspiro-ometad和28μl4-叔丁基吡啶(4-tert-butylpyridine)共溶于1ml氯苯中,得到htm溶液,然后将其滴在步骤3)制得的钙钛矿薄膜上,5000转/分旋转30秒,然后将器件在空气中静置一夜;

5)蒸镀电极:在空穴传输层上蒸镀一层100nm厚的au金属薄膜作为背电极,得到平面异质结钙钛矿太阳能电池。

该电池的电学性能检测结果为:voc、jsc、ff和pce分别为1.06±0.03v、19.57±0.38macm-2、66.23±0.04、13.63±1.03。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1