半导体功率模块及电力变换装置的制作方法

文档序号:15452028发布日期:2018-09-15 00:12阅读:128来源:国知局

本发明涉及半导体功率模块及电力变换装置。



背景技术:

半导体功率模块在高电压下,长期间连续地进行电流的接通、断开,因此要求高可靠性。为了使相对于耐压的可靠性提高,通过由绝缘树脂覆盖基板电极而抑制了电流泄露。例如,在陶瓷绝缘基板之上的基板电极表面,较薄地涂敷聚酰亚胺类或聚酰胺酰亚胺类的绝缘树脂而使其硬化,使相对于耐压的可靠性提高(例如,参照专利文献1)。

专利文献1:日本特开2006-32617号公报

使用浇注法涂敷厚度为5μm~100μm的绝缘树脂,但由于涂敷后的树脂的表面张力或使树脂硬化时的体积收缩,所以基板电极的上端部不由绝缘树脂覆盖。因此,存在下述问题,即,在基板电极间电流泄露而在基板电极的上端部发生异常放电,基板电极被破坏。



技术实现要素:

本发明就是为了解决上述课题而提出的,其目的在于,得到能够使相对于耐压的可靠性提高的半导体功率模块及电力变换装置。

本发明涉及的半导体功率模块的特征在于,具有:绝缘基板,其在上表面形成有凹部;基板电极,其埋入至所述凹部;半导体元件,其接合于所述基板电极之上;以及绝缘树脂,其覆盖所述基板电极的上端部。

发明的效果

在本发明中,基板电极埋入至绝缘基板的凹部。由此,在绝缘基板与基板电极之间不形成台阶,因此能够在基板电极的表面均匀地形成绝缘树脂而通过绝缘树脂可靠地覆盖基板电极的上端部。因此,能够使相对于耐压的可靠性提高。

附图说明

图1是表示本发明的实施方式1涉及的半导体功率模块的剖视图。

图2是将本发明的实施方式1涉及的绝缘基板和基板电极放大的剖视图。

图3是表示本发明的实施方式1涉及的半导体功率模块的制造方法的剖视图。

图4是表示本发明的实施方式1涉及的半导体功率模块的制造方法的剖视图。

图5是表示本发明的实施方式1涉及的半导体功率模块的制造方法的剖视图。

图6是表示本发明的实施方式1涉及的半导体功率模块的制造方法的剖视图。

图7是表示本发明的实施方式1涉及的半导体功率模块的制造方法的剖视图。

图8是表示对比例涉及的半导体功率模块的剖视图。

图9是将图8的被虚线包围的部分放大的剖视图。

图10是表示本发明的实施方式2涉及的半导体功率模块的剖视图。

图11是将本发明的实施方式2涉及的绝缘基板和基板电极放大的剖视图。

图12是表示本发明的实施方式2涉及的半导体功率模块的制造方法的剖视图。

图13是表示本发明的实施方式2涉及的半导体功率模块的制造方法的剖视图。

图14是表示本发明的实施方式2涉及的半导体功率模块的制造方法的剖视图。

图15是表示应用了本发明的实施方式3涉及的电力变换装置而成的电力变换系统的结构的框图。

标号的说明

1绝缘基板、2凹部、3基板电极、5半导体元件、7绝缘树脂、100电源、200电力变换装置、201主变换电路、202半导体功率模块、203控制电路、300负载

具体实施方式

参照附图,对本发明的实施方式涉及的半导体功率模块及电力变换装置进行说明。对相同或对应的结构要素标注相同的标号,有时省略重复的说明。

实施方式1.

图1是表示本发明的实施方式1涉及的半导体功率模块的剖视图。在陶瓷等的绝缘基板1的上表面形成有凹部2。基板电极3隔着焊料4埋入至凹部2。图2是将本发明的实施方式1涉及的绝缘基板和基板电极放大的剖视图。基板电极3的厚度h是200μm~800μm,小于或等于凹部2的深度d。

半导体元件5经由焊料6接合于基板电极3之上。厚度为5μm~100μm的聚酰亚胺类或聚酰胺酰亚胺类的绝缘树脂7覆盖基板电极3的上端部。在半导体元件5的上表面连接有用于施加电压的导线配线8。硅凝胶9覆盖基板电极3及半导体元件5。

接下来,对本实施方式涉及的半导体功率模块的制造方法进行说明。图3~7是表示本发明的实施方式1涉及的半导体功率模块的制造方法的剖视图。首先,如图3所示,在绝缘基板1的上表面形成凹部2。接下来,如图4所示,在凹部2的底面形成焊料4。

接下来,如图5所示,使用焊料4将铝箔板、铜箔板或这些金属的膏状物等导电性的金属与凹部2高温接合,形成基板电极3。此外,也可以取代焊料4而使用钎料,也可以通过溅射形成基板电极3。

接下来,如图6所示,以覆盖基板电极3的上端部的方式通过浇注法较薄地涂敷绝缘树脂7而使其硬化。接下来,如图7所示,在基板电极3的上表面经由焊料6将半导体元件5接合。之后,实施向半导体元件5的导线连接等。

接下来,与对比例进行比较而对本实施方式的效果进行说明。图8是表示对比例涉及的半导体功率模块的剖视图。图9是将图8的被虚线包围的部分放大的剖视图。在对比例中,在绝缘基板1的上表面没有形成凹部2,在平坦的上表面形成有基板电极3。因此,在绝缘基板1与基板电极3之间存在高的台阶。由于涂敷后的绝缘树脂7的表面张力或使绝缘树脂7硬化时的体积收缩,所以基板电极3的上端部不由绝缘树脂7覆盖。因此,在基板电极3间电流泄漏而在基板电极3的上端部发生异常放电,基板电极3被破坏。

与此相对,在本实施方式中,基板电极3埋入至绝缘基板1的凹部2,基板电极3的上表面的高度小于或等于绝缘基板1的上表面的高度。由此,在绝缘基板1与基板电极3之间不形成台阶,因此能够在基板电极3的表面均匀地形成绝缘树脂7而可靠地通过绝缘树脂7覆盖基板电极3的上端部。因此,在基板电极3间电流没有泄露,在基板电极3的上端部不发生异常放电,因此能够使相对于耐压的可靠性提高。另外,绝缘性提高,从而能够将基板电极3间的距离设计得短,因此能够将模块小型化。由于模块的小型化,模块的冷却性能变高,电力损耗变少,性能提高。

实施方式2.

图10是表示本发明的实施方式2涉及的半导体功率模块的剖视图。图11是将本发明的实施方式2涉及的绝缘基板和基板电极放大的剖视图。与实施方式1不同,基板电极3的宽度w2小于凹部2的宽度w1。绝缘树脂7覆盖基板电极3的上端部及侧面。绝缘树脂7的厚度小于(w1-w2)/2。其他的结构与实施方式1相同。

接下来,对本实施方式涉及的半导体功率模块的制造方法进行说明。图12~14是表示本发明的实施方式2涉及的半导体功率模块的制造方法的剖视图。首先,与实施方式1同样地实施图3及图4的工序。接下来,如图12所示,在凹部2内形成宽度比凹部2窄的基板电极3。接下来,如图13所示,以覆盖基板电极3的上端部及侧面的方式通过浇注法较薄地涂敷绝缘树脂7而使其硬化。接下来,如图14所示,在基板电极3的上表面经由焊料6将半导体元件5接合。之后的工序与实施方式1相同。

在本实施方式中,绝缘树脂7不仅覆盖基板电极3的上端部,还覆盖侧面。由此,能够相对于基板电极3的侧面抑制横向的泄漏电流,横向的绝缘耐压提高,因此设备的可靠性进一步提高。

此外,半导体元件5不限定于由硅形成,也可以由与硅相比带隙大的宽带隙半导体形成。宽带隙半导体例如是碳化硅、氮化镓类材料或金刚石。由这样的宽带隙半导体形成的半导体元件的耐电压性和容许电流密度高,因此能够小型化。通过使用该小型化的半导体元件,从而组装有该半导体元件的半导体功率模块也能够小型化、高集成化。另外,半导体元件的耐热性高,因此能够使散热器的散热鳍片小型化,能够使水冷部空冷化,因此能够将半导体功率模块进一步小型化。另外,半导体元件的电力损耗低、效率高,因此能够将半导体功率模块高效率化。

实施方式3.

本实施方式是将上述的实施方式1或2涉及的半导体功率模块应用于电力变换装置。本发明不限定于特定的电力变换装置,下面,作为实施方式3对将本发明应用于三相逆变器的情况进行说明。

图15是表示应用了本发明的实施方式3涉及的电力变换装置而成的电力变换系统的结构的框图。电力变换系统具有电源100、电力变换装置200、负载300。电源100是直流电源,将直流电力供给至电力变换装置200。电源100能够由各种系统构成,例如,能够由直流系统、太阳能电池、蓄电池构成,也可以由与交流系统连接的整流电路、ac/dc转换器构成。另外,也可以通过将从直流系统输出的直流电力变换为规定的电力的dc/dc转换器而构成电源100。

电力变换装置200是连接于电源100与负载300之间的三相逆变器,将从电源100供给的直流电力变换为交流电力,将交流电力供给至负载300。电力变换装置200具有:主变换电路201,其将直流电力变换为交流电力而输出;以及控制电路203,其将对主变换电路201进行控制的控制信号输出至主变换电路201。

负载300是由从电力变换装置200供给的交流电力驱动的三相电动机。此外,负载300不限定于特定的用途,是搭载于各种电气设备的电动机,例如用作混合动力汽车、电动汽车、铁道车辆、电梯或面向空调的电动机。

下面,对电力变换装置200的详情进行说明。主变换电路201具有开关元件和续流二极管(未图示),通过使开关元件进行通断,从而将从电源100供给的直流电力变换为交流电力,供给至负载300。作为主变换电路201的具体的电路结构,具有各种各样的结构,本实施方式涉及的主变换电路201是2电平的三相全桥电路,能够由6个开关元件和与各个开关元件反向并联的6个续流二极管构成。主变换电路201的各开关元件和各续流二极管是通过相当于上述实施方式1或2的半导体功率模块202而构成的。6个开关元件两个两个地串联连接而构成上下桥臂,各上下桥臂构成全桥电路的各相(u相、v相、w相)。并且,各上下桥臂的输出端子即主变换电路201的3个输出端子与负载300连接。

另外,主变换电路201具有对各开关元件进行驱动的驱动电路(未图示),但驱动电路也可以内置于半导体功率模块202,还可以与半导体功率模块202分体地设置驱动电路。驱动电路生成对主变换电路201的开关元件进行驱动的驱动信号,供给至主变换电路201的开关元件的控制电极。具体地说,按照来自后述的控制电路203的控制信号,将使开关元件成为接通状态的驱动信号和使开关元件成为断开状态的驱动信号输出至各开关元件的控制电极。在将开关元件维持为接通状态的情况下,驱动信号是大于或等于开关元件的阈值电压的电压信号(接通信号),在将开关元件维持为断开状态的情况下,驱动信号成为小于或等于开关元件的阈值电压的电压信号(断开信号)。

控制电路203以将所希望的电力供给至负载300的方式对主变换电路201的开关元件进行控制。具体地说,基于应供给至负载300的电力,对主变换电路201的各开关元件应成为接通状态的时间(接通时间)进行计算。例如,能够通过与应输出的电压对应地对开关元件的接通时间进行调制的pwm控制,对主变换电路201进行控制。并且,以在各时刻将接通信号输出至应成为接通状态的开关元件,将断开信号输出至应成为断开状态的开关元件的方式,向主变换电路201具有的驱动电路输出控制指令(控制信号)。驱动电路按照该控制信号,将接通信号或断开信号作为驱动信号而输出至各开关元件的控制电极。

在本实施方式涉及的电力变换装置中,作为主变换电路201的开关元件和续流二极管应用了实施方式1或2涉及的半导体功率模块,因此能够使相对于耐压的可靠性提高。

在本实施方式中,说明了将本发明应用于2电平的三相逆变器的例子,但本发明不限定于此,能够应用于各种电力变换装置。在本实施方式中,设为2电平的电力变换装置,但也可以是3电平或多电平的电力变换装置,在将电力供给至单相负载的情况下,也可以将本发明应用于单相的逆变器。另外,在将电力供给至直流负载等的情况下,也能够将本发明应用于dc/dc转换器或ac/dc转换器。

另外,应用了本发明的电力变换装置不限定于上述的负载是电动机的情况,例如,也能够用作放电加工机、激光加工机、感应加热烹饪器或非接触器供电系统的电源装置,还能够用作太阳能发电系统或蓄电系统等的功率调节器。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1