薄膜晶体管结构及其制作方法、显示装置与流程

文档序号:17381586发布日期:2019-04-12 23:53阅读:197来源:国知局
薄膜晶体管结构及其制作方法、显示装置与流程

本申请涉及显示技术领域,特别是涉及一种薄膜晶体管结构及其制作方法、显示装置。



背景技术:

goa(gatedrivenonarray,阵列基板上栅驱动集成)技术,能实现显示面板的逐行扫描驱动功能,利用goa技术将栅极驱动电路集成在显示面板的阵列基板上,从而可以省掉栅极驱动集成电路部分,以从材料成本和制作工艺两方面降低产品成本。

相比集成电路驱动,采用goa驱动技术存在一定的品质和可靠性风险,主要是由于用于控制逐行扫描开关的开关元件,例如tft(thinfilmtransistor,薄膜晶体管)中掺氢非晶硅半导体偏移特性所引起的阈值电压偏移。如何减小tft器件中的阈值电压偏移,进而提高显示器的显示效果是本领域技术人员亟待解决的问题。



技术实现要素:

基于此,有必要针对如何减小tft器件中的阈值电压偏移的问题,提供一种薄膜晶体管结构及其制作方法、显示装置。

一种薄膜晶体管结构的制作方法,包括:

提供一基板,并在所述基板上沉积第一金属层,并对所述第一金属层进行图案化处理,形成栅极;

在所述基板上沉积栅极绝缘层,所述栅极绝缘层覆盖所述栅极;

在所述栅极绝缘层上依次沉积有源层、掺杂层;

对所述有源层、掺杂层进行光刻处理;

在所述掺杂层上沉积第二金属层,对所述第二金属层进行光刻、湿法刻蚀处理,得到一位于所述第二金属层中部、并贯穿所述第二金属层的第一凹槽,所述第二金属层被所述第一凹槽间隔成源极、漏极;

以所述源极、漏极为刻蚀阻挡层,对所述有源层、掺杂层进行干法刻蚀处理,得到与所述第一凹槽对应的第二凹槽,所述第二凹槽贯穿所述掺杂层、并部分贯穿至所述有源层,所述第一凹槽与所述第二凹槽形成沟道区;

将所述沟道区置于预设的气体氛围中进行加热处理;其中,先对所述沟道区加热第一预设时间,然后置于氮气的气氛中加热第二预设时间,最后置于氨气的气氛中加热第三预设时间;或

先对所述沟道区加热第四预设时间,最后置于氨气的气氛中加热第五预设时间。

在其中一个实施例中,沉积所述掺杂层时,采用增加沉积气体总体积的方式进行沉积,其中,总体积的基准范围为41200sccm-43200sccm;当总体积增加100%时,沉积气体中ph3和sih4的气体流量比为1.8-4.5;当总体积增加150%时,沉积气体中ph3和sih4的气体流量比为2-6。

在其中一个实施例中,所述第一预设时间为0s-50s,所述第二预设时间为0s-20s,所述第三预设时间为0s-20s,所述第四预设时间为0s-50s,所述第五预设时间为0s-20s。

在其中一个实施例中,所述沉积栅极绝缘层分为第一速率沉积、第二速率沉积和第三速率沉积;其中,所述第一速率、第二速率及第三速率的数值依次递减。

一种薄膜晶体管结构,使用前述所述的薄膜晶体管结构的制作方法进行制造,所述薄膜晶体管结构包括:

基板;

栅极,形成于所述基板上;

栅极绝缘层,形成所述基板上,其中,所述栅极绝缘层覆盖所述栅极;

有源层,形成于所述栅极绝缘层上;

掺杂层,形成于所述有源层上;及

形成于所述掺杂层上的源极与漏极;

其中,一沟道区位于所述掺杂层的中部,所述沟道区贯穿所述掺杂层、并部分贯穿至所述有源层,所述源极与漏极位于所述沟道区的两侧。

在其中一个实施例中,所述栅极的厚度范围为3000埃-5000埃。

在其中一个实施例中,所述有源层的厚度范围为550埃-700埃。

在其中一个实施例中,所述源极的厚度范围为3500埃-5000埃;所述漏极的厚度范围为3500埃-5000埃。

在其中一个实施例中,所述栅极绝缘层的厚度范围为3500埃-4000埃。

一种显示装置,包括前述所述的薄膜晶体管结构。

上述薄膜晶体管的制作方法,通过将沟道区加热第一预设时间,然后置于氮气的气氛中加热第二预设时间,最后置于氨气的气氛中加热第三预设时间。或者将沟道区加热第四预设时间,最后置于氨气的气氛中加热第五预设时间可修复沟道区的损伤,减少非晶硅中的弱键,增强薄膜晶体管的照光以及照光稳定性,减少阈值电压的漂移,进而可提高显示装置的最终显示效果。

附图说明

图1为一实施例中的薄膜晶体管结构的制作方法流程图;

图2为图1中步骤s100形成的结构示意图;

图3为图1中根据步骤s200形成的结构示意图;

图4为图1中根据步骤s300和s400形成的结构示意图;

图5为图1中根据步骤s500形成的结构示意图;

图6为图1中根据步骤s600形成的结构示意图;

图7为一实施例中的薄膜晶体管结构的结构示意图;

图8为另一实施例中的薄膜晶体管结构的结构示意图。

具体实施方式

为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的较佳实施方式。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本申请的公开内容理解的更加透彻全面。

需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。

除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本申请。

请参阅图1,为一实施例中的复合型薄膜晶体管的制作方法流程示意图。该复合型薄膜晶体管的制作方法可以包括步骤:s100-s700。

步骤s100,提供一基板,并在所述基板上沉积第一金属层,并对所述第一金属层进行图案化处理,形成栅极。

具体地,请辅助参阅图2,基板10可以是玻璃基板或塑料基板,其中,玻璃基板可以为无碱硼硅酸盐超薄玻璃,无碱硼硅酸盐玻璃具有较高的物理特性、较好的耐腐蚀性能、较高的热稳定性以及较低的密度和较高的弹性模量。在基板10上沉积第一金属层(图2未标示)可以是射频磁控溅射、热蒸发、真空电子束蒸发以及等离子增强化学气相沉积工艺。第一金属层(图2未标示)可以是钼、钛、铝和铜中的一种或者多种的堆栈组合。图案化处理可以是通过光刻处理形成所需的图案,也就是栅极20。栅极20的厚度范围可以为3000埃-5000埃,可选地,栅极20的厚度可以为3000埃-4000埃,进一步地,栅极20的厚度可以为4000埃-5000埃。可以理解,栅极20的厚度可以根据实际应用情况以及产品性能进行选择和调整,在此不作进一步的限定。

步骤s200,在所述基板上沉积栅极绝缘层,所述栅极绝缘层覆盖所述栅极。

具体地,请辅助参阅图3,在基板10上沉积栅极绝缘层30,同时,栅极绝缘层30将栅极20覆盖住。沉积工艺可以包括射频磁控溅射、热蒸发、真空电子束蒸发以及等离子增强化学气相沉积工艺。栅极绝缘层30的厚度可以为3500埃-4000埃,可选地,栅极绝缘层30的厚度可以为3500埃-3700埃,进一步地,栅极绝缘层30的厚度可以为3700埃-4000埃。可以理解,栅极绝缘层30的厚度可以根据实际应用情况以及产品性能进行选择和调整,在此不作进一步的限定。栅极绝缘层30的材料可以是氧化硅、氮化硅中的一种或者二者的组合,即栅极绝缘层30可以是氧化硅,也可以是氮化硅,还可以是氧化硅和氮化硅的混合物。

更进一步地,以等离子增强化学气相沉积工艺为例,采用等离子增强化学气相沉积栅极绝缘层30可以分为第一速率沉积、第二速率沉积和第三速率沉积;其中,第一速率、第二速率及第三速率的数值依次递减,换句话说,第一速率的数值大于第二速率的数值,第二速率的数值大于第三速率的数值,可以这样理解,以第一速率为高速为例,第二速率相应为中速,第三速率相应为低速。当然,对于具体的数值本申请没有特殊限制,本领域人员可以实际生产情况和产品性能进行调整和选择。进一步地,第一速率沉积形成的栅极绝缘层的厚度为500埃-1000埃,第二速率沉积形成的栅极绝缘层的厚度为1000埃,第三速率沉积形成的栅极绝缘层的厚度为2000埃。将栅极绝缘层30的沉积形成分为三个沉积阶段,先使用第一速率沉积可以增加沉积速率,提高产能,然后使用第二速率沉积进行速率的过渡,过渡到第三沉积速率进行沉积可以使得后续形成的沟道区有良好的界面特性,同时还可减少非晶硅和栅极绝缘层界面的凹凸特性,提高电子迁移率。

步骤s300,在所述栅极绝缘层上依次沉积有源层、掺杂层。

具体地,可以通过射频磁控溅射、热蒸发、真空电子束蒸发以及等离子增强化学气相沉积工艺来沉积有源层40、掺杂层50。示例性地,以等离子增强化学气相沉积为例。可采用sih4气体来沉积有源层40,采用ph3和sih4气体来沉积掺杂层50。同时,沉积掺杂层50的温度可以为300℃-400℃,可选地,沉积掺杂层50的温度可以为300℃-360℃,沉积掺杂层50的温度可以为340℃-360℃。更进一步地,沉积掺杂层50时,采用增加沉积气体总体积的方式进行沉积,其中,总体积的基准范围为41200sccm-43200sccm;sccm的含义为标准毫升/分钟。当总体积增加100%时,沉积气体中ph3和sih4的气体流量比为1.8-4.5;此处的总体积增加100%是在本领域技术人员熟悉的沉积气体总体积的基准范围上增加的100%。例如,可在总体积为41200sccm的基础上增加100%,在总体积增加100%后,沉积气体中ph3和sih4的气体流量比可以为1.8-4.5,可选地,ph3和sih4的气体流量比还可以为1.8-3;可选地,ph3和sih4的气体流量比还可以为3-4.5。可以理解,沉积气体中还可包括h2、nh3、n2和ar,对于这几种气体的流量比不作进一步限定,本领域技术人员可根据产品的性能和实际情况进行选择和调整。进一步地,当总体积增加150%时,沉积气体中ph3和sih4的气体流量比为2-6;此处的总体积增加150%是在本领域技术人员熟悉的沉积气体总体积的基准范围上增加的150%。例如,可在总体积为43200sccm的基础上增加150%,在总体积增加150%后,ph3和sih4的气体流量比可以为2-6,可选地,ph3和sih4的气体流量比还可以为2-4;可选地,ph3和sih4的气体流量比还可以为4-6。采用增加ph3和sih4的总体积进而增加ph3和sih4的气体流量比的方式可以减小阈值电压漂移,同时获得较好的is(imagesticking,残影)效果。

步骤s400,对所述有源层、掺杂层进行光刻处理。

具体地,请辅助参阅图4,对有源层40、掺杂层50进行光刻处理得到如图4所示的立体图案。光刻是指使用带有某一层设计图形的掩模版,经过曝光和显影,使光敏的光刻胶在衬底上形成三维浮雕图形。

步骤s500,在所述掺杂层上沉积第二金属层,对所述第二金属层进行光刻、湿法刻蚀处理,得到一位于所述第二金属层中部、并贯穿所述第二金属层的第一凹槽,所述第二金属层通过所述第一凹槽间隔成源极、漏极。

具体地,请辅助参阅图5,在掺杂层50上沉积第二金属层(图5未标示),对第二金属层进行光刻、湿法刻蚀处理,得到一位于第二金属层中部、并贯穿所述第二金属层的第一凹槽72,第二金属层被第一凹槽72间隔成源极610、漏极620。进一步地,可以通过在第二金属层上涂布一层光阻层,然后采用一道光罩对光阻层进行曝光、显影。更进一步地,然后以光阻层为遮挡,对第二金属层进行湿法刻蚀,得到一位于第二金属层中部、并贯穿第一金属层的第一凹槽72,得到如图5所示的立体图案。在第一凹槽72的左右两侧分别为源极610和漏极620。

步骤s600,以所述源极、漏极为刻蚀阻挡层,对所述有源层、掺杂层进行干法刻蚀处理,得到与所述第一凹槽对应的第二凹槽,所述第二凹槽贯穿所述掺杂层、并部分贯穿至所述有源层,所述第一凹槽与所述第二凹槽形成沟道区。

具体地,请辅助参阅图6,在形成源极610和漏极620之后,以源极610和漏极620为刻蚀阻挡层,对有源层40、掺杂层50进行干法刻蚀处理,得到与第一凹槽72对应的第二凹槽(图6未标示)。第二凹槽贯穿掺杂层50、并部分贯穿至有源层40。“部分贯穿”即没有全部刻蚀掉位于第二凹槽中的有源层部分,因为有源层作为导电的介质,所以不能被全部刻蚀掉。可以理解,对于“部分”的具体厚度,可以根据实际生产情况和产品性能作出选择和调整。第一凹槽72与第二凹槽形成沟道区70。

步骤s700,将所述沟道区置于预设的气体氛围中进行加热处理;其中,将所述沟道区置于氮气的气氛中加热第一预设时间,在氮气和氨气的混合气氛中加热第二预设时间,在氨气的气氛中加热第三预设时间。或先对所述沟道区加热第四预设时间,最后置于氨气的气氛中加热第五预设时间。

具体地,在对有源层40、掺杂层50进行蚀刻形成沟道区70的时候,会造成沟道区70的损伤,因此,为了修复沟道区的损伤,可以对沟道区70进行气体加热处理。具体的加热环境和加热时间可以为:在加热温度275℃-285℃之下,先对沟道区加热0s-50s,可选地,先加热25s;然后置于氮气的气氛中加热0s-20s,可选地,可将沟道区置于氮气的气氛中加热15s;最后置于氨气的气氛中加热0s-20s,可选地,在氨气的气氛中加热7s。最后置于氨气的气氛中加热0s-20s,可选地,在氨气的气氛中加热7s。或者,在加热温度275℃-285℃之下,先对沟道区加热0s-50s,可选地,先加热25s;最后置于氨气的气氛中加热0s-20s,可选地,在氨气的气氛中加热10s。

上述薄膜晶体管结构的制作方法,通过将沟道区加热第一预设时间,然后置于氮气的气氛中加热第二预设时间,最后置于氨气的气氛中加热第三预设时间。或者将沟道区加热第四预设时间,最后置于氨气的气氛中加热第五预设时间可修复沟道区的损伤,减少非晶硅中的弱键,增强薄膜晶体管的照光以及照光稳定性,减少阈值电压的漂移,进而可提高显示装置的最终显示效果。进一步地,采用增加ph3和sih4的总体积进而增加ph3和sih4的气体流量比的方式可以减小阈值电压漂移,同时获得较好的is(imagesticking,残影)效果,也可以提高显示装置的最终显示效果。

请参阅图7为一实施例中的薄膜晶体管结构的结构示意图,该薄膜晶体管结构使用前述薄膜晶体管结构的制作方法实施例进行制造。该薄膜晶体管结构可以包括:基板10,栅极20,栅极绝缘层30,有源层40,掺杂层50及源极610、漏极620。其中,栅极20形成于基板10上;栅极绝缘层30形成于基板10上,同时栅极绝缘层30覆盖栅极20;有源层40形成于栅极绝缘层30上;掺杂层50形成于有源层40上;源极610、漏极620形成于掺杂层50上。一沟道区70位于掺杂层50的中部,沟道区70贯穿掺杂层50、并部分贯穿至有源层40,源极610与漏极620位于沟道区70的两侧。

上述薄膜晶体管结构通过使用前述薄膜晶体管结构的制作方法实施例进行制造,而前述薄膜晶体管结构的制作方法实施例通过将沟道区加热第一预设时间,然后置于氮气的气氛中加热第二预设时间,最后置于氨气的气氛中加热第三预设时间。或者将沟道区加热第四预设时间,最后置于氨气的气氛中加热第五预设时间可修复沟道区的损伤,减少非晶硅中的弱键,增强薄膜晶体管的照光以及照光稳定性,减少阈值电压的漂移,进而可使得制造出来的薄膜晶体管可提高显示装置的最终显示效果。进一步地,采用增加ph3和sih4的总体积进而增加ph3和sih4的气体流量比的方式可以减小阈值电压漂移,同时获得较好的is(imagesticking,残影)效果,也可以使得制造出来的薄膜晶体管提高显示装置的最终显示效果。

基板10可以是玻璃基板或塑料基板,其中,玻璃基板可以为无碱硼硅酸盐超薄玻璃,无碱硼硅酸盐玻璃具有较高的物理特性、较好的耐腐蚀性能、较高的热稳定性以及较低的密度和较高的弹性模量。

栅极20形成于基板10上,其中,栅极20的形成工艺可以包括射频磁控溅射、热蒸发、真空电子束蒸发以及等离子增强化学气相沉积工艺。可以理解,栅极20的形成工艺可以根据实际应用情况以及产品性能进行选择和调整,在此不作进一步的限定。栅极20的材料可以为钼、钛、铝和铜中的一种或者多种的堆栈组合;选用钼、钛、铝和铜作为栅极20材料可以保证良好的导电性能。可以理解,栅极20的材料可以根据实际应用情况以及产品性能进行选择和调整,在此不作进一步的限定。栅极20的厚度范围可以为3000埃-5000埃,可选地,栅极20的厚度可以为3000埃-4000埃,进一步地,栅极20的厚度可以为4000埃-5000埃。可以理解,栅极20的厚度可以根据实际应用情况以及产品性能进行选择和调整,在此不作进一步的限定。

栅极绝缘层30,形成于基板10上,栅极绝缘层30的形成工艺可以包括射频磁控溅射、热蒸发、真空电子束蒸发以及等离子增强化学气相沉积工艺。可以理解,栅极绝缘层30的形成工艺可以根据实际应用情况以及产品性能进行选择和调整,在此不作进一步的限定。栅极绝缘层30的材料可以是氧化硅、氮化硅中的一种或者二者的组合,即栅极绝缘层30可以是氧化硅,也可以是氮化硅,还可以是氧化硅和氮化硅的混合物。可以理解,栅极绝缘层30的材料可以根据实际应用情况以及产品性能进行选择和调整,在此不作进一步的限定。栅极绝缘层30的厚度可以为3500埃-4000埃,可选地,栅极绝缘层30的厚度可以为3500埃-3700埃,进一步地,栅极绝缘层30的厚度可以为3700埃-4000埃。可以理解,栅极绝缘层30的厚度可以根据实际应用情况以及产品性能进行选择和调整,在此不作进一步的限定。

有源层40形成于栅极绝缘层30上,有源层40的形成工艺可以包括射频磁控溅射、热蒸发、真空电子束蒸发以及等离子增强化学气相沉积工艺。可以理解,有源层40的形成工艺可以根据实际应用情况以及产品性能进行选择和调整,在此不作进一步的限定。有源层40的材料可以为非晶硅,有源层40通常作为导电的介质。有源层40的厚度可以为550埃-700埃,可选地,有源层40的厚度为550埃-600埃,进一步地,有源层40的厚度可以为600埃-700埃。可以理解,有源层40的厚度可以根据实际应用情况以及产品性能进行选择和调整,在此不作进一步的限定。

掺杂层50,形成于有源层40上,掺杂层50的形成工艺可以包括射频磁控溅射、热蒸发、真空电子束蒸发以及等离子增强化学气相沉积工艺。可以理解,掺杂层50的形成工艺可以根据实际应用情况以及产品性能进行选择和调整,在此不作进一步的限定。掺杂层50的厚度可以为400埃,可以理解,掺杂层50的厚度可以根据实际应用情况以及产品性能进行选择和调整,在此不作进一步的限定。掺杂层50可以是在非晶硅层中进行n型掺杂,也可以是非晶硅层中进行p型掺杂,可选地,掺杂层50为在非晶硅层中进行n型掺杂,同时,为n型重掺杂,其中,掺杂方式可以包括高温扩散和离子注入。高温扩散是将杂质原子通过气相源或掺杂过的氧化物扩散或淀积到硅晶片的表面,这些杂质浓度将从表面到体内单调下降,在高温扩散中,杂质的分布主要是由高温与扩散时间来决定。离子注入即将掺杂离子以离子束的形式注入半导体内,杂质浓度在半导体内有峰值分布,在离子注入中,杂质分布主要由离子质量和注入能量决定。n型掺杂主要是在半导体内掺入五价杂质元素,例如:磷、砷。离子注入相对于高温扩散的优点是:1、注入的离子是通过质量分析器选取出来的,被选取的粒子纯度高,能量单一,从而保证了掺杂浓度不受杂质源纯度的影响。另外,注入过程在清洁、干燥的真空条件下进行,各种污染降到最低水平;2、可以精确控制注入到晶片中的掺杂原子数目,注入剂量从用于调整阈值电压的1011/cm2到形成绝缘埋层的1017/cm2,范围较宽。3、离子注入时,衬底一般保持在室温或低于400℃的温度环境下。因此,像二氧化硅、氮化硅、铝和光刻胶等都可以用来作为选择掺杂的掩蔽膜,使器件制造中的自对准掩蔽技术更加灵活。

源极610、漏极620形成于掺杂层50上,源极610、漏极620的形成工艺可以包括射频磁控溅射、热蒸发、真空电子束蒸发以及等离子增强化学气相沉积工艺。可以理解,源极610、漏极620的形成工艺可以根据实际应用情况以及产品性能进行选择和调整,在此不作进一步的限定。源极610、漏极620的材料可以为钼、钛、铝和铜中的一种或者多种的堆栈组合;选用钼、钛、铝和铜作为源极610、漏极620材料可以保证良好的导电性能。可以理解,源极610、漏极620的材料可以根据实际应用情况以及产品性能进行选择和调整,在此不作进一步的限定。源极610、漏极620的厚度可以为3500埃-5000埃,可选地,源极610、漏极620的厚度可以为3500埃-4000埃,更进一步地,源极610、漏极620的厚度可以为4000埃-5000埃。可以理解,源极610、漏极620的材料和厚度可以相同也可以不相同,源极610、漏极620的材料和厚度可以根据实际应用情况以及产品性能进行选择和调整,在此不作进一步的限定。

沟道区70位于掺杂层50的中部,沟道区70贯穿掺杂层50、并部分贯穿有源层40。源极610与漏极620就位于沟道区70的两侧。“贯穿”可以通过光刻或者刻蚀方法实现,具体的,光刻是指使用带有某一层设计图形的掩模版,经过曝光和显影,使光敏的光刻胶在衬底上形成三维浮雕图形。刻蚀是指在光刻胶掩蔽下,根据需要形成微图形的膜层不同,采用不同的刻蚀物质和方法在膜层上进行选择性刻蚀。这样,去掉光刻胶以后,三维设计图形就转移到了衬底的相关膜层上。

请参阅图8,为另一实施例中薄膜晶体管结构的结构示意图。该薄膜晶体管结构可以包括基板10,栅极20,栅极绝缘层30,有源层40,掺杂层50,源极610、漏极620及保护层80。其中,栅极20形成于基板10上;栅极绝缘层30形成于基板10上,同时栅极绝缘层30覆盖栅极20;有源层40形成于栅极绝缘层30上;掺杂层50形成于有源层40上;源极610、漏极620形成于掺杂层50上,保护层80形成于源极610、漏极620上;一沟道区70位于掺杂层50的中部,沟道区70贯穿掺杂层50、并部分贯穿至有源层40,源极610与漏极620位于沟道区70的两侧,同时保护层80覆盖沟道区70。

可以理解,对于基板10、栅极20、栅极绝缘层30、有源层40、掺杂层50、源极610、漏极620的材料、形成工艺、组成、厚度等,可以参照前述薄膜晶体管结构实施例的描述,在此不再进一步进行赘述。

保护层80主要用于保护薄膜晶体管器件免受污染和损伤,具体的,保护层80也称为pv(passivation,钝化)层,保护层80的材料可以是氮化硅、氧化硅或者二者的结合。可以理解,对于保护层80的厚度没有特殊限制,本领域技术人员可根据实际生产情况和产品性能进行选择和调整。

上述薄膜晶体管结构通过使用前述薄膜晶体管结构的制作方法实施例进行制造,而前述薄膜晶体管结构的制作方法实施例通过将沟道区加热第一预设时间,然后置于氮气的气氛中加热第二预设时间,最后置于氨气的气氛中加热第三预设时间。或者将沟道区加热第四预设时间,最后置于氨气的气氛中加热第五预设时间可修复沟道区的损伤,减少非晶硅中的弱键,增强薄膜晶体管的照光以及照光稳定性,减少阈值电压的漂移,进而可使得制造出来的薄膜晶体管可提高显示装置的最终显示效果。进一步地,采用增加ph3和sih4的总体积进而增加ph3和sih4的气体流量比的方式可以减小阈值电压漂移,同时获得较好的is(imagesticking,残影)效果,也可以使得制造出来的薄膜晶体管提高显示装置的最终显示效果。进一步地,通过设置保护层,可保护薄膜晶体管免受损伤。

一种显示装置,可以包括前述所述的薄膜晶体管结构实施例,上述显示装置,由于薄膜晶体管结构采用使用前述薄膜晶体管结构的制作方法实施例进行制造,而前述薄膜晶体管结构的制作方法实施例通过将沟道区加热第一预设时间,然后置于氮气的气氛中加热第二预设时间,最后置于氨气的气氛中加热第三预设时间。或者将沟道区加热第四预设时间,最后置于氨气的气氛中加热第五预设时间可修复沟道区的损伤,减少非晶硅中的弱键,增强薄膜晶体管的照光以及照光稳定性,减少阈值电压的漂移,进而可使得采用上述制作方法制造出来的薄膜晶体管的显示装置的最终显示效果得以提高。进一步地,采用增加ph3和sih4的总体积进而增加ph3和sih4的气体流量比的方式可以减小阈值电压漂移,同时获得较好的is(imagesticking,残影)效果,也可以使得采用上述制作方法制造出来的薄膜晶体管的显示装置的最终显示效果得以提高。

以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。

以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1