半导体装置、电力变换装置及半导体装置的制造方法与流程

文档序号:20913397发布日期:2020-05-29 13:13阅读:117来源:国知局
半导体装置、电力变换装置及半导体装置的制造方法与流程

本发明涉及半导体装置、电力变换装置以及半导体装置的制造方法。



背景技术:

在专利文献1中公开了一种将半导体芯片叠放于绝缘基板的铜箔电路图案而进行了焊料接合的半导体装置的制造方法。就该半导体装置的制造方法而言,向铜箔电路图案的接合面区域内照射激光,分散地形成凹凸状的陷坑。然后,在接合面区域将绝缘基板与半导体芯片隔着焊料进行接合。为了使通过激光的照射而形成的陷坑不贯穿铜箔,使铜箔的厚度大于或等于0.5mm。

专利文献1:日本特开2008-282834号公报

有机绝缘层通常与陶瓷相比导热率低。在向具有有机绝缘层的绝缘基板形成0.5mm厚的电路图案的情况下,由于有机绝缘层的影响,有可能无法进行充分的散热。



技术实现要素:

本发明就是为了解决上述课题而提出的,其目的在于得到能够高效地散热的半导体装置、电力变换装置以及半导体装置的制造方法。

本发明涉及的半导体装置具备:绝缘基板,其具有有机绝缘层以及设置于该有机绝缘层之上的电路图案;以及半导体芯片,其设置于该电路图案的上表面,该电路图案的厚度大于或等于1mm且小于或等于3mm。

本发明涉及的半导体装置的制造方法是,在有机绝缘层之上形成厚度大于或等于1mm且小于或等于3mm的金属层,通过机械加工将该金属层进行图案化而形成电路图案,在该电路图案的上表面设置半导体芯片。

发明的效果

就本发明涉及的半导体装置以及半导体装置的制造方法而言,通过使电路图案的厚度大于或等于1mm且小于或等于3mm,从而即使使用导热率低的有机绝缘层,也能够从电路图案充分地散热。因此,能够高效地散热。

附图说明

图1是实施方式1涉及的半导体装置的剖面图。

图2是实施方式1涉及的半导体装置的放大图。

图3是说明在热阻的模拟中所使用的半导体装置的结构的图。

图4是表示热阻的计算结果的图。

图5是实施方式1的对比例涉及的半导体装置的剖视图。

图6是实施方式1的第1变形例涉及的半导体装置的剖面图。

图7是实施方式1的第2变形例涉及的半导体装置的剖面图。

图8是实施方式1的第3变形例涉及的半导体装置的剖面图。

图9是实施方式1的第4变形例涉及的半导体装置的剖面图。

图10是实施方式1的第5变形例涉及的半导体装置的剖面图。

图11是表示电力变换系统的结构的框图,在该电力变换系统中应用了实施方式2涉及的电力变换装置。

标号的说明

100、100a、300、400、500、600、700半导体装置,800电力变换装置,10、310、410、510、610、710绝缘基板,14有机绝缘层,16、316、416、516、616、716电路图案,716a第1电路图案,716b第2电路图案,417凹部,618槽,24半导体芯片,724a第1半导体芯片,724b第2半导体芯片,801主变换电路,802驱动电路,803控制电路

具体实施方式

参照附图,对本发明的实施方式涉及的半导体装置、电力变换装置及半导体装置的制造方法进行说明。对相同或相应的结构要素标注相同的标号,有时省略重复说明。

实施方式1.

图1是实施方式1涉及的半导体装置100的剖视图。半导体装置100具备绝缘基板10。在绝缘基板10的上表面设置半导体芯片24。半导体芯片24例如由硅形成。半导体芯片24通过接合材料22而与绝缘基板10的上表面接合。接合材料22例如是焊料。半导体芯片24例如是igbt(insulatedgatebipolartransistor)等开关元件。

在绝缘基板10之上以包围半导体芯片24的方式设置壳体20。绝缘基板10与壳体20通过粘接剂等而粘接。在壳体20之上设置端子26、28。端子26经由导线而与绝缘基板10所具有的电路图案连接。端子28经由导线而与半导体芯片24连接。端子26、28也可以分别是半导体芯片24的主电极端子、驱动端子。壳体20的内部由封装树脂30以覆盖半导体芯片24的方式封装。封装树脂30例如由环氧树脂形成。

图2是实施方式1涉及的半导体装置100的放大图。绝缘基板10具有:基座板12;有机绝缘层14,其设置在基座板12之上;以及电路图案16,其设置在有机绝缘层14之上。在电路图案16的上表面经由接合材料22而设置半导体芯片24。在图2中,省略了导线。基座板12和电路图案16例如由铜形成。有机绝缘层14由环氧树脂等树脂或液晶聚合物形成。有机绝缘层14的厚度例如是0.1mm~0.2mm。

在本实施方式中,半导体装置100具备2个半导体芯片24。不限于此,半导体装置100只要具备大于或等于1个半导体芯片24即可。另外,多个半导体芯片24也可以包含不同种类的半导体芯片。

电路图案16的厚度大于或等于1mm且小于或等于3mm。电路图案16的上表面的宽度与下表面的宽度相等。这里,电路图案16的下表面是与上表面相反侧的面,是与有机绝缘层14相对的面。电路图案16的与有机绝缘层14的上表面垂直的截面的形状为矩形。电路图案16的上表面的宽度例如是芯片宽度的1.2倍。

接下来,对半导体装置100的制造方法进行说明。首先,作为绝缘基板10的制造方法,以由2个金属层夹着有机绝缘层14的方式,使有机绝缘层14与金属层粘合。然后,对有机绝缘层14和金属层进行加热和加压。由此,在有机绝缘层14的上表面侧和下表面侧这两面形成金属层。金属层例如是铜板等导电板。金属层经过后述的加工而成为电路图案16和基座板12。用作电路图案16的金属层的厚度大于或等于1mm且小于或等于3mm,用作基座板12的金属层例如厚度是2mm。

接下来,通过机械加工将金属层进行图案化而形成电路图案16。机械加工例如是切削加工或刻纹(router)加工。接下来,在电路图案16的上表面设置半导体芯片24。接下来,在绝缘基板10之上搭载壳体20以及端子26、28。接下来,用导线将端子26、28与半导体芯片24、电路图案16连接。接下来,通过封装树脂30将壳体20的内部封装。

在本实施方式中,通过在绝缘基板10使用有机绝缘层14,从而与陶瓷绝缘基板相比,能够降低制造成本。这里,有机绝缘层14与陶瓷相比导热率低。有机绝缘层14的导热率例如是5~20w/m·k。另外,陶瓷的导热率在氮化硅的情况下约为70w/m·k,在氮化铝的情况下约为170w/m·k。因此,绝缘基板10有可能由于有机绝缘层14的影响而导致热阻变大。

对此,计算出变更了电路图案16的厚度的情况下的半导体装置100a的热阻的值。图3是说明在热阻的模拟中所使用的半导体装置100a的结构的图。就半导体装置100a而言,在空冷鳍片32的上表面经由散热脂34而接合绝缘基板10。散热脂34被空冷鳍片32和绝缘基板10夹持。空冷鳍片32由铝形成。在绝缘基板10的上表面通过焊料22而接合半导体芯片24。

图4是表示热阻的计算结果的图。图4示出了半导体芯片24与基座板12之间的热阻的通过模拟得到的计算结果。另外,图4示出了相对于电路图案16的厚度为0.5mm的情况下的热阻来说的热阻比。电路图案16越厚,热阻越下降。

在本实施方式中,在电路图案16的厚度大于或等于1mm时,得到使热阻降低的明显效果。在电路图案16的厚度为2.0mm的情况下,与0.5mm的情况相比,能够将热阻降低15%左右。此时,能够使半导体装置100a的热阻与使用了由氮化铝构成的陶瓷绝缘基板的情况下的热阻相同。另外,电路图案16越厚,相对于电路图案16的厚度的变化量来说的热阻的变化量变得越小。在电路图案16的厚度大于或等于3mm时,降低热阻的效果处于收敛的倾向。

由此,在本实施方式中,优选电路图案16的厚度大于或等于1mm且小于或等于3mm。由此,能够在由半导体芯片24发出的热到达有机绝缘层14之前,通过电路图案16而使热充分地扩散。因此,能够降低半导体装置100的热阻。

另外,电路图案16的厚度也可以大于或等于2mm。由此,即使使用有机绝缘层14,也会得到与陶瓷绝缘基板同等或比陶瓷绝缘基板低的热阻。

另外,通常就有机绝缘基板而言,有时为了降低热阻而使有机绝缘层形成得薄。在本实施方式中,由于能够通过电路图案16降低热阻,因此能够将有机绝缘层14设置得厚。因此,能够提高绝缘基板10的耐电压。

图5是实施方式1的对比例涉及的半导体装置200的剖视图。半导体装置200具备绝缘基板210。绝缘基板210具备电路图案216。半导体装置200在电路图案216的形成方法上与半导体装置100不同。电路图案216是通过对金属层进行蚀刻而形成的。在该情况下,由于蚀刻因子,电路图案216的下表面的宽度比上表面的宽度宽。

电路图案216越厚,横向的蚀刻量变得越大。因此,电路图案216越厚,电路图案216的下表面的宽度与上表面的宽度之差变得越大。因此,电路图案216越厚,越需要增大电路图案216间的距离。因此,如果加厚电路图案216,则半导体装置200有可能大型化。

与此相对,在本实施方式中,通过机械加工而形成电路图案16。因此,能够使电路图案16的与有机绝缘层14的上表面垂直的截面的形状为长方形。因此,与通过蚀刻而形成电路图案16的情况相比,能够使电路图案16间的距离近。因此,能够抑制半导体装置100的大型化并加厚电路图案16。另外,由于能够增大电路图案16的截面积,因此能够增大半导体装置100的电流密度。

在本实施方式中,是通过机械加工而形成电路图案16。作为其变形例,也可以从金属层的上表面起通过机械加工而加工至一定的深度,通过蚀刻而加工剩余的部分。例如,也可以在通过机械加工将金属层的加工部分加工至剩余50μm的厚度之后,通过蚀刻去除剩余的加工部分。由此,与仅通过机械加工而形成电路图案16的情况相比,能够在形成电路图案16时,防止对有机绝缘层14造成机械性的损伤。

图6是实施方式1的第1变形例涉及的半导体装置300的剖面图。半导体装置300具备绝缘基板310。绝缘基板310具备电路图案316。电路图案316的连接上表面与侧面的角被进行了倒角,例如如图6所示形成圆角。电路图案316的圆角是通过蚀刻或机械加工而形成的。通过平滑地连接电路图案316的上表面和侧面,从而能够缓和在封装树脂30产生的应力。因此,能够抑制由裂纹导致的封装树脂30的破坏。

图7是实施方式1的第2变形例涉及的半导体装置400的剖面图。半导体装置400具备绝缘基板410。绝缘基板410具备电路图案416。在电路图案416的上表面形成凹部417。凹部417是通过半蚀刻或机械加工而形成的。在凹部417设置有接合材料22。接合材料22以及半导体芯片24在俯视观察时被收纳在凹部417的内部。由此,能够抑制接合材料22以及半导体芯片24的位置偏差。因此,能够提高生产率。

图8是实施方式1的第3变形例涉及的半导体装置500的剖面图。半导体装置500具备绝缘基板510。绝缘基板510具备电路图案516。在电路图案516形成台阶。由于台阶,电路图案516朝向内侧而变厚。台阶是通过半蚀刻或机械加工而形成的。半导体芯片24与电路图案516中的中央部的最上层接合。因此,能够容易地进行半导体芯片24的搭载位置的定位。因此,能够抑制接合材料22以及半导体芯片24的位置偏差而提高生产率。另外,与台阶接触的封装树脂30作为锚而发挥功用。因此,能够抑制封装树脂30与绝缘基板510的剥离。

电路图案516并不限于一层台阶,为了得到更大的锚固效应,也可以形成多层台阶。另外,可以在电路图案516中的半导体芯片24的两侧形成台阶,也可以在一侧形成台阶。

图9是实施方式1的第4变形例涉及的半导体装置600的剖面图。半导体装置600具备绝缘基板610。绝缘基板610具备电路图案616。在电路图案616形成槽618。槽618形成于电路图案616中的搭载半导体芯片24的区域的外侧。槽618是通过半蚀刻或机械加工而形成的。将槽618填埋的封装树脂30作为锚而发挥功用。因此,能够抑制封装树脂30与绝缘基板610的剥离。因此,能够提高可靠性。

槽618的截面形状为长方形或正方形。不限于此,槽618的截面形状也可以是梯形、三角形、多边形或半圆形。另外,槽618的截面形状也可以是越靠近电路图案616的上表面而宽度越窄的形状。另外,可以在电路图案616中的半导体芯片24的两侧形成槽618,也可以在一侧形成槽618。

图10是实施方式1的第5变形例涉及的半导体装置700的剖面图。半导体装置700具备绝缘基板710。绝缘基板710具备电路图案716。电路图案716包含第1电路图案716a和第2电路图案716b。第2电路图案716b比第1电路图案716a薄。

另外,半导体芯片24包含在第1电路图案716a的上表面设置的第1半导体芯片724a以及在第2电路图案716b的上表面设置的第2半导体芯片724b。第2半导体芯片724b比第1半导体芯片724a厚。在第1半导体芯片724a和第2半导体芯片724b的上方设置端子738。第1半导体芯片724a的上表面和第2半导体芯片724b的上表面通过接合材料736而都与端子738接合。端子738为平板状。

就半导体装置700而言,电路图案716将第1半导体芯片724a与第2半导体芯片724b的厚度之差抵消。即,第1半导体芯片724a的上表面的从有机绝缘层14算起的高度与第2半导体芯片724b的上表面的从有机绝缘层14算起的高度相等。由此,能够容易地进行半导体装置700的组装。因此,能够提高生产率。

此外,半导体芯片24也可以取代硅而由宽带隙半导体形成。宽带隙半导体是碳化硅、氮化镓类材料或金刚石。通过由宽带隙半导体形成半导体芯片24,从而能够进一步提高半导体装置100的耐压性。

另外,通过使半导体芯片24由宽带隙半导体形成,由此能够进一步提高耐热性。因此,能够实现空冷鳍片32的小型化,能够使半导体装置100小型化。另外,半导体装置100能够进行高温动作。并且,能够降低电力损耗,因此能够使半导体装置100高效化。

这些变形能够适当地应用于以下的实施方式所涉及的半导体装置、电力转换装置以及半导体装置的制造方法。另外,关于以下的实施方式涉及的半导体装置、电力变换装置及半导体装置的制造方法,由于与实施方式1的共通点多,因而以与实施方式1的不同点为中心进行说明。

实施方式2.

本实施方式是将上述实施方式1所涉及的半导体装置100应用于电力变换装置。本实施方式不限定于特定的电力变换装置,但以下,作为实施方式2,对将实施方式1涉及的半导体装置100应用于三相逆变器的情况进行说明。

图11是表示电力变换系统的结构的框图,在该电力变换系统中应用了本实施方式涉及的电力变换装置800。

图11所示的电力变换系统由电源850、电力变换装置800、负载900构成。电源850是直流电源,向电力变换装置800供给直流电力。电源850能够由各种电源构成,例如,能够由直流系统、太阳能电池、蓄电池构成。另外,电源850也可以由与交流系统连接的整流电路、ac/dc转换器构成。另外,也可以使电源850由将从直流系统输出的直流电力变换为预定的电力的dc/dc转换器构成。

电力变换装置800是连接在电源850和负载900之间的三相逆变器。电力变换装置800将从电源850供给的直流电力变换为交流电力,向负载900供给交流电力。电力变换装置800如图11所示,具备:主变换电路801,其将直流电力变换为交流电力而输出;驱动电路802,其输出对主变换电路801的各开关元件进行驱动的驱动信号;以及控制电路803,其将对驱动电路802进行控制的控制信号向驱动电路802输出。

负载900是由从电力变换装置800供给的交流电力进行驱动的三相电动机。此外,负载900不限定于特定的用途,是搭载于各种电气设备的电动机。负载900例如用作面向混合动力汽车、电动汽车、铁道车辆、电梯或者空调设备的电动机。

以下,对电力变换装置800的详细情况进行说明。主变换电路801具备未图示的开关元件和续流二极管。主变换电路801通过开关元件的通断,从而将从电源850供给的直流电力变换为交流电力,向负载900供给。主变换电路801的具体的电路结构存在各种结构,但本实施方式涉及的主变换电路801是两电平的三相全桥电路。两电平的三相全桥电路能够由6个开关元件和与各个开关元件逆并联的6个续流二极管构成。向主变换电路801应用上述实施方式1的半导体装置100。6个开关元件两个两个地串联连接而构成上下桥臂,各上下桥臂构成全桥电路的各相(u相、v相、w相)。并且,各上下桥臂的输出端子即主变换电路801的3个输出端子与负载900连接。

驱动电路802生成对主变换电路801的开关元件进行驱动的驱动信号,供给至主变换电路801的开关元件的控制电极。具体地说,按照来自后述的控制电路803的控制信号,向各开关元件的控制电极输出将开关元件设为接通状态的驱动信号和将开关元件设为断开状态的驱动信号。在将开关元件维持为接通状态的情况下,驱动信号是大于或等于开关元件的阈值电压的电压信号即接通信号。在将开关元件维持为断开状态的情况下,驱动信号是小于或等于开关元件的阈值电压的电压信号即断开信号。

控制电路803对主变换电路801的开关元件进行控制,以向负载900供给所期望的电力。具体地说,基于应向负载900供给的电力,对主变换电路801的各开关元件应成为接通状态的时间即接通时间进行计算。例如,能够通过与应输出的电压相对应地对开关元件的接通时间进行调制的pwm控制,对主变换电路801进行控制。并且,向驱动电路802输出控制指令即控制信号,以使得在各时刻向应成为接通状态的开关元件输出接通信号,向应成为断开状态的开关元件输出断开信号。驱动电路802按照该控制信号,将接通信号或者断开信号作为驱动信号而向各开关元件的控制电极输出。

在本实施方式涉及的电力变换装置800中,作为主变换电路801而应用实施方式1涉及的半导体装置100,因此能够使电力变换装置800高效地散热。

在本实施方式中,对在两电平的三相逆变器应用实施方式1的例子进行了说明,但本实施方式并不限定于此,能够应用于各种电力变换装置。在本实施方式中,采用了两电平的电力变换装置,但也可以是三电平或多电平的电力变换装置。另外,在向单相负载供给电力的情况下,也可以向单相逆变器应用实施方式1。另外,在向直流负载等供给电力的情况下,也能够向dc/dc转换器或ac/dc转换器应用实施方式1。

另外,应用了实施方式1的电力变换装置800不限定于上述的负载900为电动机的情况,例如也能够用作放电加工机、激光加工机、感应加热烹调器或非接触器供电系统的电源装置。并且,也能够将电力变换装置800用作太阳能发电系统或蓄电系统等的功率调节器。

此外,也可以将在各实施方式中说明的技术特征适当地组合使用。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1