一种改进型钕铁硼磁体材料及其改进方法与流程

文档序号:21094749发布日期:2020-06-16 20:12阅读:802来源:国知局
一种改进型钕铁硼磁体材料及其改进方法与流程

本发明涉及材料技术领域,尤其涉及一种改进型钕铁硼磁体材料及其改进方法。



背景技术:

迄今为止,钕铁硼仍然是磁能积最高的永磁材料。这类材料性能优异、成本低廉,已广泛用于微特电机、磁分离、磁传动、磁共振成像(mri)以及粒子束技术(自由电子激光器、同步辐射光源)等领域。然而,钕铁硼永磁材料在取向成型烧结后,磁体胚料会出现收缩的现象,导致在切割成品后碎料浪费严重,大约有3%-6%的磁体废料被浪费。磁体胚料烧结后的密度与取向成型工艺的变化有关。磁体胚料烧结后的密度与气流磨料出粉的平均颗粒尺寸有关,气流磨粉末平均颗粒尺寸越小,密度越低。磁体胚料烧结后的密度与成型压力有关。压力越大,磁场取向成型胚料密度越大,但压力过大又会导致(105)晶面的衍射峰升高,磁场取向度有所降低。钕铁硼永磁体经冷等静压后,与烧结磁体相比,其胚料的空隙会变少。烧结后各向异性烧结磁体的密度会增加到7.5-7.6%。

探索确定钕铁硼永磁体在取向成型工艺环节的各参数对烧结后胚料收缩比的影响以及磁性能的影响,有利于减少钕铁硼碎料的浪费和各项性能的提升。



技术实现要素:

本发明的目的在于解决上述现有技术存在的缺陷,提供一种改进型钕铁硼磁体材料及其改进方法。

一种改进钕铁硼磁体材料性能的改进方法,以nd2fe14b相为主的磁体材料,经过取向成型工艺的参数的改进以降低磁体材料的收缩比,最终制备得到所述改进钕铁硼磁体材料。

进一步地,如上所述的改进钕铁硼磁体材料性能的改进方法,包含下述步骤:

(1)以纯度≥99.50%的nd、fe、b为原料,按nd2fe14b分子式的化学计量比配料;

(2)在氩气保护下熔炼,快速冷凝甩成薄片;

(3)nd2fe14b甩片和表面清理后的钕铁硼废料在氢破碎工艺下进行粉碎;

(4)nd2fe14b粉体和钕铁硼废料粉体按一定比例混合,配出38h型号的磁体粉末;

(5)38h磁体粉末在气流磨工艺下进一步细化粉体颗粒,颗粒大小在5-10μm;

(6)取向成型工艺:

①使用不同等静压压力取向取向成型相同颗粒大小的粉体,经烧结后测出不同压力下的收缩比和磁性能;

②使用不同颗粒大小的粉体在压力p下取向成型,经烧结后测出不同颗粒大小下的收缩比和磁性能,确定最佳的粉体颗粒大小;

③不同压制密度的三方收缩比变化磁性能变化,最终确定压制密度;所述三方指:取向方向a,压力方向p,非压力和取向方向n;

(7)烧结胚料磁体材料,温度在1080℃。

进一步地,如上所述的改进钕铁硼磁体材料性能的改进方法,钕铁硼粉体取向成型在磁场强度为3t的平行磁场下、且低氧低温环境下进行;所述低氧为在真空度为10-2pa环境下,低温为在10℃-30℃。

进一步地,如上所述的改进钕铁硼磁体材料性能的改进方法,通过不同压制密度对三个方向的收缩比和磁性能的影响确定最佳的压制密度为3.59g/cm2

进一步地,如上所述的改进钕铁硼磁体材料性能的改进方法,通过不同等静压力对收缩比影响和不同等静压力对磁性能的影响确定最佳压力为180n时,剩磁br和矫顽力hcj最好。

进一步地,如上所述的改进钕铁硼磁体材料性能的改进方法,通过不同粒度对收缩比和磁性能的影响确定粉体粒度5.22μm时,剩磁br和收缩比是最好的。

根据如上任一方法制备得到的改进钕铁硼磁体材料。

本发明通过步骤(2)快速凝固可以抑制α-fe相的生长,因为α-fe相对磁体性能没有贡献,反而会降低磁性能。

本发明步骤(3)氢破碎是沿nd2fe14b相的晶界粉碎的,可避免晶粒被破坏,又能细化磁体颗粒,磁体颗粒越细,磁体性能越好。

本发明步骤(4)中,由于钕铁硼废料稀土含量减少,所以性能改进时,需要添加nd2fe14b。

本发明步骤(5)中,通过将颗粒尺寸控制在5-10μm之间,来保障磁铁致密度和磁磁畴的钉扎作用。

有益效果:

本发明主要改进钕铁硼磁体材料取向成型工艺的技术参数,使烧结后的胚料收缩比降低,以达到减少钕铁硼磁体碎料的浪费,还能有效提高磁体材料的各项性能。

附图说明

图1(a)为本发明不同压制密度对磁体胚料的厚度影响曲线图;

图1(b)为本发明不同压制密度对磁体胚料的厚度影响曲线图;

图1(c)为本发明不同压制密度对磁体胚料的磁能积影响曲线图;

图1(d)为本发明不同压制密度对磁体胚料的矫顽力影响曲线图;

图2(a)为本发明不同等静压力对磁体胚料的剩磁影响曲线图;

图2(b)为本发明不同等静压力对磁体胚料的矫顽力影响曲线图;

图3(a)为本发明不同粒度对磁体胚料的收缩比影响曲线图;

图3(b)为本发明不同粒度对磁体胚料的剩磁影响曲线图。

具体实施方式

为使本发明的目的、技术方案和优点更加清楚,下面对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

制备nd2fe14b合金永磁体材料减少收缩比以达到减少浪费碎料磁体,并提高各项磁性能的取向成型工艺方法,包含下述主要步骤:

(1)以纯度≥99.50%的nd、fe、b为原料,按nd2fe14b分子式的化学计量比配料;

(2)在氩气保护下熔炼,快速冷凝甩成薄片;

(3)nd2fe14b甩带片和钕铁硼废料(表面清理后)在氢破碎工艺下进行粉碎;

(4)nd2fe14b粉体和钕铁硼废料粉体按一定比例混合,配出38h型号的磁体粉末;

(5)38h磁体粉末在气流磨工艺下细化粉体颗粒,颗粒大小在5-10μm;

(6)取向成型工艺:①使用不同等静压压力取向取向成型相同颗粒大小的粉体,经烧结后测出不同压力下的收缩比和磁性能,确定最优压力p1;②使用不同颗粒大小的粉体在压力p下取向成型,经烧结后测出不同颗粒大小下的收缩比和磁性能,确定最佳的粉体颗粒大小r1成型取向度最好。③不同压制密度的三方(取向方向a,压力方向p,非压力和取向方向n)收缩比变化磁性能变化;

(7)烧结胚料磁体材料,温度在1080℃;

(8)测试磁性能,包括剩磁br、磁能积bh、矫顽力hcj。

产品收缩比和性能测试结果:

性能测试结果:

图1(a)-图1(d)为钕铁硼永磁材料不同压制密度下的收缩比以及磁性能得变化。压坯密度越大,非向和取向尺寸越大,但变化较小。压坯密度越大,压制尺寸越小,变化较大。随着压坯密度增大(特别大于3.75后),剩磁快速下降。综合可得出压坯密度为3.59g/cm2时收缩比和磁性能最好。

图2(a)-图2(b)为不同等静压力对收缩比影响和不同等静压力对磁性能的影响。由图可以知道压力为180n时,剩磁br和矫顽力hcj最好。

图3(a)-图3(b)为不同粒度对收缩比和磁性能的影响。粒度越粗,取向方向收缩比越小(尺寸越大),同等剩磁越低。由图可以看出粉体粒度5.22μm时,剩磁br和收缩比是最好的。

最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1