用于制造半导体器件的装置的制作方法

文档序号:93480阅读:173来源:国知局
专利名称:用于制造半导体器件的装置的制作方法
本发明涉及一种制造半导体器件的装置。
在传统的半导体制造技术中,半导体元件(或称芯片)的电极层和外引线之间是靠一根金制焊线连通的。但是,当采用金丝时,会出现如下一些问题。
(1) 当金制焊线在高温下被压焊时,在铝电极层和金制焊线之间会形成一种金和铝的金属间化合物。由于这种原因,该压焊区的导电性能降低。
(2) 即使该金制焊线本身不被氧化,但由于压焊区的电性能下降,该半导体器件的可靠性也会受到影响。
(3) 由于在压焊处理后形成了一种金和铝的金属间化合物,这样就不可能制造出具有稳定电性能的半导体器件。
(4) 昂贵的金制焊丝会增加半导体器件的制造成本。
为解决上述问题,日本专利申请№55-88318中所提出的方法是,使预期的压焊区部分活化,以便在电极层和铜引线框之间能用铜焊丝连通。但是,根据该技术,由于在铜焊丝上形成了一种氧化物,所以会发生压焊失效现象。同时,难以在铜焊丝的末端形成预定大小的球状体,从而导致虚焊。另外,每进行一次压焊,都需对预定压焊区进行活化,这样势必降低生产效率。
在日本专利申请№57-51237中,压焊丝穿过一根毛细管,该毛细管的末端被引入装在罩中的还原气体里,以期形成理想的球状体。同时,防止了金属压焊丝的氧化从而完成了压焊。根据这种常规技术,需要一种包括用来容纳还原气体的外罩的复杂装置。而且当压焊速度在1秒或更短时,常常发生压焊失效,因此操作不便。此外,在引线框上的氧化物不能被清除,所以铜焊线与铜引线框之间的压焊不能达到较高的可靠性。
本发明的目的是提供一种制造半导体器件的装置,由其制造的半导体器件的金属焊线压焊可靠性高,成本低,压焊区强度高。
为达到本发明之上述目的,特提供一种制造半导体器件的装置。其中,半导体芯片电极层和引线框的外引线之间用压焊丝连通。该装置包括一个用于沿传送方向传送引线框的传送通道,该通道具有一个金属焊线压焊位置和一个后步压焊位置,这两个位置沿传送方向是相互分离开的。
球状体形成装置;它在金属丝压焊位置加热铜或铜合金的压焊丝,并在该压焊丝的两端形成球状体。
压焊金属丝的进料装置;它用于将压焊金属丝的球状体压焊到电极层上。
压焊装置,它在后部压焊位置把该压焊金属丝的球状体压焊在外引线上。
气体供给装置;它向金属丝压焊位置提供一种还原性气体或惰性气体,并且使上述气体包围该压焊金属丝和球状体。
根据本发明,通过一种简便的装置,便可将铜或铜合金的焊丝压焊到半导体器件的电极层和引线框的外引线而且不会导致虚焊。因此可制造出一种在热循环试验或高温辐射试验中具有高耐用性的半导体器件。由于低成本的铜合金可用来作为压焊金属丝和引线框的材料,因而,这种半导体器件有可能做到低价高效。进而,一种具有高可靠性的塑料封装的大功率半导体器件也就容易制造了。
图1表示依据本发明实施例的一种制造半导体器件的装置全貌图。
图2至6是分别表示制造半导体器件各个步骤的纵向剖视图。
图7是装配半导体器件的平面图。
图8是一个燃烧器的结构剖视图。
图9A表示一根压焊金属丝的压焊区。
图9B是一个坐标图,它表示出压焊区直径与半导体器件失效率之间的关系。
图10A和10B表示压焊金属丝延伸到电极层中的深度。
图10C是一个坐标图,它表示延伸到电极层中的压焊金属丝长度与半导体器件产品失效率之间的关系。
图11是一个坐标图,它表示电极层厚度与半导体器件失效率之间的关系。
图12是一个坐标图,它表示高温辐射试验的结果。
图1所示为本发明提出的半导体器件制造装置的全貌图。图2至9分别是本发明各阶段局部放大剖视图。引线框40的传送通道10由一个大体上为园柱形的外罩20所构成。示于图1的仅仅是外罩20的上板。管芯烧结位置12,金属丝压焊位置14,后步压焊位置16以及后步烧结位置18沿引线框40的传送方向(用箭头2表示)在传送通道10中按所述顺序依次排列。窗口22,24和26开设在外罩20的上板上,分别对应位置12,14和16。用于加热引线框40的加热台28,30,32和34分别在对应12,14,16和18的位置上提供传送通道10。向传送通道10提供还原性气体通道(见图2中的气体通道31),设立在每个加热台228,30,32和34之中。还原性气体可以是体积为1∶9的H2气和N2气体混合而成。还原性气体是通过气体通道提供给传送通道110的。
气体引入部件36是安置在通道10的外罩20的上板上,位于位置14和16之间。另一个气体引入部件38设置在通道10的外罩20的上板上,对应位置18,图4、5、6中详细表示出,气体通道37和39分别设在部件36和38中。由H3和N2气相混合的还原性气体分别经过部件36和38中的气体通道37和39提供给传送通道10。以此方式,传送通道10的内部就被一种还原性气体(例如N2+10%H2)所充满。
在对应位置12的地方,提供了一个可夹持半导体芯片(半导体元件)50的夹头52。它可从向传送通道10送进和撤出。夹头52可以在位置12穿过窗口22插入传送通道10。芯片50是通过夹头52提供给传送通道10的。一个可夹持压焊金属丝80的毛细管60,安置在位置14附近,它可以送进和撤出传送通道10。毛细管60可以在位置14穿过窗口24插入传送通道10。压焊金属丝是靠毛细管60提供给传送通道的。压焊丝80是铜制的,例如无氧铜,无氧磷铜或者象Cu-20%Au那样的铜合金。压焊金属丝80热压焊到引线框40的外引线上,它被安置在对应位置16的地方,压焊部件70可以在位置16上穿过窗口26插入或撤出传送通道10。
一个导轨(末表示出)沿箭头2的指向布设在传送通道10的底部。引线框40沿着箭头2的指向在导轨上传送。引线框40是铜制的,例如无氧铜,无氧磷铜,或某种铜合金。如图7所详细表示的那样,在引线框40上形成了安装半导体元件芯片46和外引线44的位置。同时,气体通道31设置在加热台30之中,以接收从气体源送来的还原性气体。还原性气体通过间隙42排出到传送通道10,间隙42位于引线框40上形成的半导体芯片的装片位置46和引出线之间,其余的加热台28,32和34与加热台30有类似的结构。在加28,32和34中,还原性气体直接从气体通道31进入或通过间隙42进入到传送通道中。
正如图2中详细表示的那样,燃烧器90设置在外罩20外部接近窗口24的地方,毛细管60在位置14处通过窗口插入。如图8详细表示的,燃烧器90包括一个内管92和一个与其同轴的外套管94。外管94的末端比内管92的稍长。H2气和O2气的混合气体100加热(如加热到100℃或更高的温度)然后被熔化,从而形成一个球状体82。O2气和N2气的混合气体从管94和92之间的空隙96中排出形成一个包围火焰100的气罩。如图2所示,限定窗口24的外罩20的园柱形表面部分是可活动的,以便能改变窗口24的开口面积。当活动部分36被移动以减小窗口24的开口面积时,仅仅是靠近压焊丝80末端的部位被活动部分36所环绕。当还原性气体通过加热台30中的气体通道31供给传送通道10的时候,还原性气体按箭头4的指向流动,穿过具有小开口面积的窗口24,使得金属丝80下端的周围空间被置于还原性气体气氛中。
下面将叙述具有上述结构的装置的工作过程。如图1所示,引线框40是沿着箭头2所指示的方向在导轨(未标出)上传送的,并且停在位置12处。引线框40被加热台28加热至400℃左右。当夹头52向下移动,由夹头52所夹持的半导体芯片50通过窗口22送入传送通道10。焊料由一个适当的位置加到芯片50的下表面,于是,芯片50就靠焊料层54固定在引线框40的装片位置。然后引线框40沿箭头2的指向移动,并停在图2所示的位置14处。引线框40被加热台30加热至300℃左右。在引线框40上的芯片50有一电极层56。这个电极层56也被加热台加热至300℃左右。金属丝80随同毛细管60一起向下移动进入在窗口24附近的传送通道10的入口处。H2气和O2气的混合气体从燃烧器90的管子92中喷射出来,形成了火焰100。O2气和N2气的混合气体从管94和92之间的空隙中喷射出来,形成了包围火焰100的气罩102。由H2气和N2气的混合而产生的还原性气体通过加热台30中的气体通道31提供给传送通道10。该还原气由加热台30加热到200℃或更高的温度。活动部位36被移动以减小窗口24的开口面积。在传送通道10中的还原性气体沿箭头4的指向流动以包围金属丝80的下端和火焰100。按这种方式,在一种高温还原性气体环境中,金属丝的下部被火焰100加热熔化形成球状体82。这样,铜不会被氧化,因而避免了压焊失败。
还原性气体的H2气和N2气的混合比最好是分别选择为5~20%和95~80%(按体积)。为了增加还原能力.H2气的量可以增加,但当H2气量增加到20%或更高的时候,可能发生爆炸。当H2气量减少到低于5%时,还原能力将减弱。因此,混合比最好选择上述范围。为了进一步增加还原能力,可以分别在加热台30,32和34的位置14,16和18附近提供排气口48。还原性气体可以通过每个排气口48提供给传送通道10。
从管92中喷出而形成火焰100的H2气和O2气的混合气体其体积比以2∶1为好。同时,从管92和94之间的空隙中喷射出来的O2气和N2气的混合气体形成了气罩102。形成气罩102是为了避免火焰100被位置14的还原性气体所扑灭。气罩102的气体混合比以选择20%至100%的O2气和80%至0%的N2气为好。如果O2气过多,位置14(即金属丝80的下端周围)就不能保持在还原性气体环境中。
在球状体82形成后,如图3所示,毛细管60下降以使球状体82与电极层56接触,进而热压金属丝。在此过程中,电极层56以及球状体82的压焊区直径是金属丝80横截面直径的二倍或二倍以上。图9B是一个坐标图,它表示当产品经受温度循环试验时所测出的压焊失效率。在图9B中,压焊区直径D(见图9A)作为横坐标,压焊失效率作为纵坐标,参考符号d表示金属丝80的横截面直径。从图9A和图9B可以看出,当压焊区直径为2.0d或更大时,器件失效率基本为零。因此,必须使压焊区直径是金属丝80直径的2倍或2倍以上。
在金属丝压焊过程中,球状体82的平面端面部分延伸到电极层56中的深度最好是0.4至3μm。参考图10A,符号×表示球状体82延伸到厚度为Y的电极层56中的深度。图10C是一个坐标图,它表示产品经受温度循环试验时所得的球状体82的延伸深度X与产品失效率之间的关系。正如图10C所表示的,当深度X为0.4μm或0.4μm以上时,产品失效率基本为零。因此,将球状体82的平面端面部分延伸到电极层56中的深度必须为0.4μm或0.4μm以上。当电极层是一个厚度为1至3μm的铝层,金属丝80是一根直径为25μm的铜丝时。向金属丝施加50至100g的负荷,深度X即可达到0.5至2.5μm。
铜或铜合金压焊丝的硬度是金丝硬度的2倍左右。因此,如果电极层56较薄,其表面就容易发生断裂。图11是一个坐标图,它表示电极层厚度与产品失效率之间的关系。在图11中,电极层56的厚度为横坐标,产品失效率为纵坐标。如图11所表示的,当电极层56的厚度为1μm或1μm以上时,产品失效率基本可以降到零。
接下来,如图3所示,金属丝80在预定长度处被燃烧器90的氢氧焰所熔断。在这个过程中,就分别在与电极层56连接的金属丝81的末端以及留在毛细管60中的金属丝80的末端形成了球状体84和82。在此熔断过程中,金属丝80和81被还原性气体所包围。
如图4所示,金属丝81是由一种适当的装置(未表示出)将其弯曲到引线框40的外引线44一边。然后,引线框40从位置14移至位置16。在此过程中。传送通道10中的还原性气体温度保持在200至300℃,从而保持金属丝81在还原性气氛中。
然后,如图5所示,引线框停留在位置16,加热台32将引线框40加热至300℃或更高的温度。压杆70降下,穿过窗口26插入传送通道10。压杆70将金属丝81的球状体84热压在铜制的或铜合金制的外引线44上。如图10B所示,当金属丝87的直径为25μm时,最好向它施加300至500克的负荷以使球状体84向外引线44中的延伸深度为20至50μm(在图10B中用Z表示)。如果按照上述深度把金属丝81上的球状体84热压到外引线上,则产品失效率基本上可降到零。在这个后部过程中金属丝81,球状体84和压杆70均处于还原性气氛中。
其后,如图6所示,引线框40被传送到位置18,加热台34将其加热至300℃左右或更高的温度。完成烧结。在此过程中,还原性气体是通过加热台34中的气体通道35提供给传送通道10的,与此同时,还原性气体还通过气体引入部件38中的通道39被收入传送通道10。以此种方式,在位置18处,半导体芯片50、金属丝81和引线框40也被保持在还原性气氛中。
按此方式,如图7所示,金属丝80被连接在芯片50的电极层56和引线框40的外引线44之间。虽然在图1至图6中所表示的是单根金属丝,但实际上如图7所示有两根压焊金属丝被连结。按照本发明,使用 或铜合金制做的金属丝能避免用金属丝在压焊过程中的前述各种特有缺点另外,该金属丝能够有可靠的接触,在接触区的电性能的衰减可以被降到最小。熔断金属丝不仅可以采用上述装置中的氢氧焰,也可采用激光或电火花。在压焊金属丝的每个切断端,不仅可以通过球对球的方法,而且还可通过利用毛细管的楔形体切割压焊金属丝的方法来形成球状体。
对用上述方法制造的半导体器件施行了高温辐射试验。试验结果示于图12。图12是一个坐标图,它同时表示了根据本发明装置制造的器件和传统装置制造的器件产品失效率。在图12中,辐射时间为横坐标,产品失效率为纵坐标。在传统方法中,压焊金属丝是金制的,并且球状体和电极层的压焊区直径是压焊金属丝横截面直径的 1/2 。其余条件与本发明设备相同。采用传统装置,25%的产品在100小时后即告失效,在200小时后,几乎50%的产品失效,其试验结果如图12中曲线C所示。与此相比较,采用本发明设备,即使在200小时以后,产品失效率基本上为零,其试验结果如图12中曲线E所示。
对本发明设备和传统方法制造的半导体器件同时施行温度循环试检。另外还同时对这两种设备制造的器件的金属丝连线进行机械强度试验,在温度循环试验中,根据本发明制造出的半导体器件大大优于作为比较对象的传统工艺器件。在机械强度(抗拉强度)试验中,本发明中的铜合金压焊丝的强度是作为比较对象的金压焊丝强度的2至2.5倍。
权利要求
1.一种制造半导体器件的装置,其压焊金属丝连结在半导体元件的电极层和引线框的外引线之间,该装置包括球状体形成装置,它在金属丝压焊位置加热铜和铜合金压焊丝,并在该压焊金属丝的两端形成球状体;金属丝的进料装置,它用来向所述的金属丝压焊位置提供压焊金属丝,并把金属丝上的球状体压焊在电极上;压焊装置,它在后步压焊位置将压焊金属丝的球状体压焊在外引线上;其特征包括一个传送通道,它用来沿一个传送方向传送引线框,该传送通道提供有金属丝压焊位置和后步压焊位置,这两个位置是沿传送方向相互分离开的;气体供给装置,它用来向所述的金属丝压焊位置和后部压焊位置提供还原性气体或惰性气体,并使该还原性气体或惰性气体包围金属丝和球状体。
2.一种依照权利要求
1的装置,还包括加热装置,位于所述的金属丝压焊位置和后步压焊位置处,用来加热引线框。
3.一种依照权利要求
2的装置,其特征在于,所述的加热装置将引线框加热至300℃左右。
4.一种依照权利要求
1的装置,其特征在于,该还原性气体的温度保持在不低于200℃。
5.一种依照权利要求
4的装置,其特征在于,该还原性气体是由5%至20%的H2气和95%至80%的N2气混合组成的。
6.一种依照权利要求
1的装置,其特征在于,所述的压焊金属丝进料装置把压焊金属丝的球状体压焊到电极层上,以使球状体和电极层的压焊区直径不小于压焊金属丝直径的二倍。
7.一种依照权利要求
6的装置,其特征在于,所述的压焊金属丝进料装置把压焊金属丝的球状体压焊到电极层上,以使球状体的一部分延伸到电极层内,其深度为0.4至3μm。
8.一种依照权利要求
7的装置,其特征在于,所述的压焊金属丝进料装置对该金属丝施加50至100克的负荷。
9.一种依照权利要求
1的装置,其特征在于,所述的压焊装置将压焊金属丝的球状体压焊在外引线上以使球状体的一部分延伸到外引线内,其延伸深度为20至50μm。
10.一种依照权利要求
9的装置,其特征在于,所述的压焊装置对该金属丝施加300至500克的负荷。
11.一种依照权利要求
1的装置,其特征在于,在沿传送方向上的金属丝压焊位置之前,所述传送通道包含有一个管芯焊接位置。
12.一种依照权利要求
11的装置,还包括一个半导体元件的装片装置,它用来向所述管芯焊接位置提供半导体元件,并将该元件装在引线框上。
13.一种依照权利要求
1的装置,其特征在于,所述的球状体形成装置包括一个双重结构的燃烧器,该燃烧器有一个内管和一个置于该内管外部的外管,N2气和O2气的混合气体以2∶1的混合比从内管中喷出,形成了氢氧焰,而O2气和N2气的混合气体以20%至100%∶80%至0%的比例相混合,从外管和内管空间的空隙中喷出,以形成包围氢氧焰的气罩。
14.一种依照权利要求
13的装置,其特征在于,所述的传送通道是由一个大体上为长矩形和园柱形的外罩所构成,在对应金属丝压焊位置的外罩部位上有一个窗口,以使金属丝能穿过它进入该传送通道。
15.一种依照权利要求
14的装置,其特征在于,所述窗口的开口面积是可变的,而且当燃烧器熔化金属丝而形成球状体时,开口面积缩小,以使该球状体被还原性气体所包围。
专利摘要
一个引线框在充满还原性气体的传送通道中沿传送方向传送。在芯片焊接位置,将半导体芯片放在引线框上。铜或铜合金制做的金属丝提供给相邻的下一个金属丝压焊位置。用气罩包围的氢氧焰来熔化金属丝的下部末端,以形成一个球状体。金属丝由一根毛细管送入到传送通道内。球状体被热压到半导体芯片的电极层上。金属丝的另一端被熔断并在后步压焊位置被热压到引线框的外引线上,从而金属丝被连接在半导体芯片和外引线之间。
文档编号H01L21/603GK85106110SQ85106110
公开日1986年10月1日 申请日期1985年8月13日
发明者小林三男, 薄田修, 佐野芳彦, 渥美幸一郎 申请人:株式会社东芝导出引文BiBTeX, EndNote, RefMan
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1