对半导体晶片表面进行平整的方法

文档序号:6823001阅读:566来源:国知局
专利名称:对半导体晶片表面进行平整的方法
发明的背景本发明一般涉及用于制造半导体的晶片露出表面的修整方法,具体涉及使用磨料磨具修整用于制造半导体有结构晶片的露出表面的方法。
在集成电路的制造过程中,用于制造半导体的半导体晶片一般经过许多加工步骤,包括淀积、形成图形和蚀刻步骤。半导体晶片的这些制造步骤的细节可参见Tonshoff,等发表在Annals of the International Institution for ProductionEngineering Research,39/2/1990卷,第621-635页中题为“硅的研磨加工”一文。在每一步骤中,常需要修整晶片的露出表面,以便使晶片适合于随后的制造步骤。
例如,在沉积步骤后,在进行再一次沉积或随后的加工前,一般需要对晶片表面上的沉积材料(即沉积层)进行进一步加工。在另一个例子中,在蚀刻步骤后,通常需要在晶片的蚀刻表面上沉积导电或绝缘材料层或者同时沉积这两种材料层。这种方法的具体例子用于金属Damascene方法中。
在Damascene方法中,将图样蚀刻在氧化物介电层上。蚀刻后,在整个表面上还可以沉积粘结/阻挡层,随后将一层金属沉积在该粘结/阻挡层表面上。接着通过除去表面上沉积的金属和粘结/阻挡层区域而对沉积的金属层进行修整。通常,需除去足够的金属,使晶片露出的表面同时含有金属和氧化物介电材料。从顶部观看,晶片的露出表面上是对应于蚀刻图形的金属和在金属旁的介电材料的平面。在修整的晶片表面上的金属和氧化物介电材料具有不同的物理特性,如不同的硬度值。必须仔细地设计用于修整Damascene法制得的晶片的磨料磨具,以便同时修整所述材料而不会划伤任何一种材料的表面。另外,该磨料磨具在晶片上产生的平的露出外表面必须具有露出的金属区和露出的介电材料区。
这种将沉积的金属层修整至晶片外表面上露出氧化物介电材料的方法几乎不允许产生误差,因为在晶片表面上的金属层具有亚微米的尺寸。显然沉积金属的除去速率必须很快以便降低制造成本。另外,必须从未蚀刻区将金属完全除去。而留在蚀刻区上的金属必须限于一些不连续的区域。再者,在一个区域内保留的金属必须连续以确保适当的导电性。简单地说,在亚微米尺度上金属的修整过程必须均匀、受控和可重复。
一种对晶片露出表面进行修整的常规方法采用如下方法,即采用含有许多分散在液体中的磨粒的淤浆来处理半导体晶片表面。通常,将这种淤浆涂覆在抛光垫上,随后用该抛光垫研磨晶片表面,即使晶片表面相对于抛光垫进行移动,为的是除去晶片表面上的材料。一般来说,该淤浆还含有与晶片表面会发生化学反应的试剂。这类方法通常称为化学机械平整(CMP)方法。
然而,由这种CMP淤浆引起的一个问题,是为了获得所需的表面形貌必须对过程小心地进行监控。第二个问题是磨料淤浆引起的沾污。另一个问题是该淤浆会产生大量颗粒,处理半导体晶片后,必须将其从晶片表面上清除并处置掉。处理和处置这些淤浆会增加半导体晶片制造者的加工成本。
近来代替CMP淤浆的另一种方法是使用磨料磨具来修整半导体表面。这种方法报导在1997年3月27日公开的国际申请WO 97/11484中。所用磨料磨具的研磨表面是具有纹理的,它包含分散在粘合剂中的磨粒。在使用时,通常在一种流体即液体的存在下,使该磨料磨具与半导体晶片表面接触,相互间相对移动来修整晶片上的材料单层,形成平整而均匀的晶片表面。使用磨料磨具解决了CMP淤浆引起的许多问题。
本发明发挥了利用磨料磨具修整半导体晶片表面的优点,使晶片表面露出至少两种不同的材料(通常是具有不同硬度值的材料)。
发明的概述本发明涉及对制造半导体用的晶片进行表面修整的方法。所述方法可用于修整含有第一材料和第二材料的晶片,所述第一材料具有一个蚀刻形成图样的表面,所述第二材料分布在所述第一材料的表面上。该方法的第一步是使晶片上的第二材料与固定在磨料磨具上的许多三维研磨复合体进行接触,所述三维研磨复合体是许多磨粒分散和粘固在粘合剂中形成的物体。第二步是在第二材料与所述许多研磨复合体接触的同时相对移动晶片,直至晶片的露出表面平整并且至少包括一个第一材料露出区和一个第二材料露出区。所述第二材料通常是金属,但也可以是中间体材料如粘结/阻挡层,或者是金属层与粘结/阻挡层的复合层。所述第一材料通常是介电材料。某些合适的中间体材料或粘结/阻挡层包括钽、钛、氮化钽、氮化钛。其它合适的中间体材料或粘结/阻挡层包括金属、氮化物和硅化物。
在本说明书中,晶片通常包括第一材料,它具有一个蚀刻形成图样的表面和分布在该第一材料表面上的第二材料。第一材料的图样包括有凸起的图形区、凹槽区和通道,以及构成完整半导体器件的其它结构。用例如Damascene法制造并用本发明磨料磨具修整的晶片表面应无划痕或其它会影响半导体器件功能的缺陷。在较好的实施方案中,晶片表面是平的并且表面没有用Rt值表示的划痕或其它缺陷。本发明较好的Rt值通常约小于3,000,宜小于约1,000,最好小于约500。晶片可在其基底上还包括第三、第四、第五或更多的材料层。可对各层材料如上所述对仅具有第一和第二材料的晶片那样进行修整。
在Damascene法中修整晶片的方法可以例如从基底上至少具有第一材料和第二材料的晶片开始。这些材料中的至少一种具有一个蚀刻成图样的表面。将一层外层材料分布在该第一和第二材料上,填入表面蚀刻的图样中。放置晶片使之与粘固在磨料磨具上的许多研磨复合体接触。晶片的外层材料被放置成与固定在磨料磨具上的许多研磨复合体接触,所述研磨复合体是许多磨粒分散并粘固在粘合剂中构成的物体。在外层材料与许多研磨复合体接触的同时,将晶片相对磨料磨具进行移动,直至晶片露出的表面平整并且该平面至少包括一个第一材料的露出区和一个第二材料的露出区为止。
在本发明一个实施方案中,修整晶片的方法可从分布在至少一层介电材料上的导电材料层开始。该介电材料具有一个蚀刻成图样的表面。可将晶片与磨料磨具接触并相对移动晶片露出的主表面(导电材料)来修整这种晶片。所述磨料磨具通常有一个具有许多带纹理的三维研磨复合体的露出主表面,所述复合体是许多磨粒分散并粘固在粘合剂中形成的物体。使磨料磨具的许多研磨复合体与导电材料之间保持接触和移动,直至晶片露出的表面平整并且该平面至少包括一个导电材料的露出区和至少一个介电材料的露出区,并且导电材料的露出表面和介电材料的露出表面在一个平面上。介电材料上可覆盖一层或多层中间体材料,如粘结/阻挡层。在磨去导电材料后,介电材料的露出表面通常基本上不含中间材料。或者,磨去导电材料后,仅露出中间体材料和导电材料的表面。此时进一步修整,在晶片表面上会露出介电材料和导电材料。
本发明方法尤其适合于修整导电表面(在本申请中通常称之为第二材料)。导电表面可由电阻率小于约0.1Ω-cm的任何导电材料制成。较好的导电材料金属如钨、铜、铝、铝铜合金、金、银或这些金属的各种合金。较好的介电材料的介电常数一般约小于5。
在实践中,晶片和磨料磨具之间的移动是在约0.1-25psi,较好约0.2-15psi的压力下进行的。在本发明一个实施方案中,晶片和磨料磨具之间相对旋转和/或移动。例如,磨料磨具或者晶片或者这两者互相之间进行旋转并沿晶片和磨料磨具的相对中心进行直线移动。晶片和磨料磨具也可以在椭圆形或8字形的路径上作变速运动。在晶片和磨料磨具之间的转动速度可以是1-10,000rpm。当磨料磨具旋转时,其较好的转动速度为10-1,000rpm,宜为10-250rpm,最好为10-60rpm。当晶片旋转时,其转速为2-1,000rpm,较好为5-500rpm,最好为10-100rpm。
在本发明一个实施方案中,在工作液体的存在下用磨料磨具修整晶片的导电表面。一种适用的工作液体是含各种添加剂的水溶液。合适的添加剂包括络合剂、氧化剂或钝化剂、表面活性剂、润湿剂、缓冲剂、防锈剂、润滑剂、或这些添加剂的混合物。添加剂还可包括与晶片表面上的第二材料(如金属或金属合金导体)发生反应的试剂,如氧化剂、还原剂、钝化剂或络合剂。氧化剂的例子包括过氧化氢、硝酸、铁氰酸钾、硝酸铁或其混合物。络合剂的例子包括氢氧化铵和碳酸铵。另外,工作流体可相对不含添加剂或其它试剂。在这种情况下,工作流体可以是自来水、蒸馏水或去离子水。合适的钝化剂是苯并三唑。
用于本发明方法中的较好的磨料磨具具有一个带纹理的三维研磨外表面,它是由许多磨粒分散在粘合剂中制成的。磨料磨具最好还包括背衬,背衬最好是聚合物膜。该背衬具有正面和背面。背衬的材料可选自常用于磨料磨具的各种材料,如纸、非织造物、布、处理布、聚合物膜和底涂的聚合物膜。在一个较好的实施方案中,背衬是底涂的聚合物膜。
背衬的至少一个表面涂覆有粘合剂和磨粒。磨料涂层最好是一定程度上可磨耗的。合适的粘合剂可以是有机或无机材料。较好的粘合剂是有机粘合剂。另外,粘合剂可以是热塑性粘合剂或热固性粘合剂。当粘合剂是热固性粘合剂时,粘合剂最好由粘合剂前体制成。具体地说,合适的粘合剂前体处于未固化的可流动状态。当制成磨料磨具后,将该粘合剂前体置于能引发粘合剂前体固化或聚合的条件(通常是能量源)下。在聚合或固化步骤中,粘合剂前体被固化并转化成粘合剂。在本发明中,粘合剂前体最好是可自由基固化的聚合物。受到一种能量(如辐照能)作用后,可自由基固化的聚合物就交联成粘合剂。可自由基固化聚合物的某些较好例子包括丙烯酸酯单体、丙烯酸酯低聚物或丙烯酸酯单体和其低聚物的混合物。较好的粘合剂前体包括丙烯酸酯官能的聚氨酯聚合物。
磨粒可以是在露出的晶片表面上具有所需性能的任何合适的磨粒,不同类型的材料使用不同的磨粒。所需的性能包括晶片露出表面的金属磨削速率、表面光洁度和平整度。可以根据具体的晶片表面材料来选择磨粒。例如,对于铜晶片表面,较好的磨粒包括α-氧化铝颗粒。而对于铝晶片表面,较好的磨粒是α和χ氧化铝。
磨粒的粒度部分取决于具体的磨料磨具组成和在磨削过程中选用的工作液体。一般来说,平均粒度不超过约5微米的合适磨粒是较好的。磨粒的平均粒度不超过1微米为宜,最好不超过约0.5微米。
磨粒还可与填料颗粒一起使用。较好的填料颗粒的例子包括硅酸镁、三水合铝及其混合物。
在本发明中,粘合剂和磨粒形成许多具有一定形状的研磨复合体。研磨复合体的形状可是各种三维形状,包括由以正、零或负斜度延伸至第三维中的封闭的第一平面曲线与基本平行于第一平面曲线的封闭第二平面曲线、背衬或某一点构成的形状。第一和第二平面曲线以及任何中间过渡曲线不一定处处都是凸形的。封闭的第二平面图形可大于或小于封闭的第一平面图形,可与第一平面图形不相同或者可以相对于封闭第一平面图形旋转。由封闭的平面曲线质心轨线形成的延伸轴无需与第一平面垂直。相对封闭第一平面曲线,封闭第二平面曲线最好不要倾斜。在研磨复合体形貌的末端表面上可形成更小的形貌,如凹槽。一种合适的复合体形状,其底部横截面例如可是圆形的,它光滑地或以一个或多个不连续的台阶逐渐演变,在顶部平面上转变成直径稍小的非正六角形。这些研磨复合体可具有精确形状或不规则的形状。研磨复合体最好相互隔开。研磨复合体较好的几何形状有例如球台、棱锥、棱台、圆锥、立方体、长方体(block)、圆柱体、十字形、具有平顶表面的柱形。在背衬表面上研磨复合体通常以一定的次序或图样排列。研磨复合体还可以无规地排列在背衬表面上。研磨磨具上的研磨复合体还可以排列成行。在研磨磨具上研磨复合体的面积密度可以有一定范围。合适的面积密度为每平方厘米至少有2个研磨复合体至每平方厘米至少有1,000个研磨复合体。另外,研磨复合体的高度小于2mm、小于0.5mm或小于0.1mm。此外,研磨复合体中还可含有一种或多种添加剂。合适的添加剂包括磨粒表面改性添加剂、偶合剂、填料、膨胀剂、纤维、抗静电剂、引发剂、悬浮剂、润滑剂、润湿剂、表面活性剂、颜料、染料、UV稳定剂、络合剂、链转移剂、加速剂、催化剂、活化剂、钝化剂或其混合物。
另外,磨料涂层可固定在基垫上。该基垫具有正面和背面,磨料涂层在基垫的正面上。在磨料磨具背衬的背面上可施涂一层压敏粘合剂,以便将磨料磨具固定在该基垫上。
附图简述

图1是表面修整前有结构半导体晶片一部分的剖面示意图2是表面修整后有结构半导体晶片一部分的剖面示意图;图3是一个在制造半导体时用于修整晶片表面的装置的部分侧视图;图4是本发明方法中所用的一种磨料磨具的部分剖面图;图5是本发明方法中所用的另一种磨料磨具的部分剖面图;图6是本发明方法中所用的一种磨料磨具的部分剖面图;图7是本发明方法中所用的另一种磨料磨具的部分顶视图。
发明的详细描述在本申请中,使用下列定义“粘固”磨料磨具是指基本上不含未粘结磨粒(除平整过程中产生的以外)的整体磨料磨具。
“三维”磨料磨具是指一种磨料磨具,至少沿其部分厚度分布有许多磨粒,使得在平整半导体晶片时其一些颗粒除去后,又露出其它磨粒,从而继续具有平整功能。
“有纹理的”磨料磨具是指其表面上具有一些突起部分和一些凹进部分的磨料磨具,其中至少突起部分含有磨粒和粘合剂。
“可磨耗”磨料磨具是指在使用条件下以受控的方式磨损消耗的磨料磨具。
“研磨团粒”是指粘结在一起形成单个颗粒体的许多磨粒。
“研磨复合体”是指具有一定形状的物体,许多个研磨复合体能整体上提供含磨粒和粘合剂的有纹理的三维磨料磨具。所述磨粒可以是研磨团粒。
“精确成形的研磨复合体”是指从其制造模具中取出后具有并保持与模腔反形的模制研磨复合体。如美国专利5,152,917(Pieper等)所述,在使用磨料磨具之前,其上面的研磨复合体较好基本上不含突出于研磨复合体外露表面的磨粒。
在常规的半导体器件的制造流程中,对一个平底硅晶片进行一系列加工步骤,在这些步骤中沉积数层包含两种或多种不同材料区的均匀层,一起形成多层结构的单层。尽管可用各种方法在某一给定的层中形成一些单独的单元,但是通常用本领域常用的方法将均匀的第一材料层施涂在晶片本身上,或者施涂在已形成的中间层上,在这第一材料层上蚀刻出许多凹陷,随后用第二材料填充这些凹陷。或者,可将厚度基本均匀的含第一材料的许多形貌区沉积(通常通过掩模)在晶片上或沉积在已在晶片上形成的一个层上,随后在这些与那些形貌区邻近的区域填入第二材料,以制成该层。最后,晶片的外表面基本上是总体平面形的,并与基底硅晶片表面平行。
通常通过将第二材料沉积在中间体晶片的露出表面上来进行所述第二材料的填充操作,所述沉积层的厚度足以使其填入在正面一步或多步沉积/蚀刻或掩模沉积步骤中未填满的层结构部分。结果,在成品半导体器件中的第一材料层区域也被第二材料所覆盖,并且第一材料加上第二材料的厚度大于晶片最终露出层所需的厚度。在要修整的晶片露出表面上使用Damascene方法形成多层金属化结构时,在介电性的第一材料上(如二氧化硅)形成凹槽或凹坑。未形成凹槽或凹坑的介电性第一材料或粘结/阻挡层的外表面形成一层基本上总体平的第一表面,该表面局部地桥接所述凹槽或凹坑而不影响平面度,将由同样局部桥接的许多凹槽或凹坑的底部集合定义为基本上总体平的第二表面。这是为了便于说明该表面总体上不间断地通过实际上有结构图样的介电材料。第一和第二基本上总体平的表面最好与原始硅晶片表面平行,并与直接制作在该层下方的半导体器件层的表面平行。第二基本上总体平的表面通常与其直接下面的层(如有的话)相对应。可用的粘结/阻挡层(如氮化钛或钛)和其上的金属第二材料(如铜或铝)层则贴合地沉积在晶片的蚀刻区即图样区中。此时中间体晶片露出的外表面通常完全处于如本文所述的第一基本上总体平的表面上。
以前,通常用使用磨料淤浆和抛光垫的综合化学机械平整法(CMP)来除去过量的第二材料。本发明用采用三维成形磨料磨具的较为洁净的平整法代替使用易引起的沾污的淤浆CMP,其中所述磨料磨具的结构元件包含许多分布在粘合剂中的磨粒。可将一种工作流体与所述磨料磨具一起使用,所述流体包含能使第二材料化学改性的成分,或者包含在磨料磨具的作用下以其它方式有助于从中间体晶片表面上除去第二材料的成分。
下列非限制性的叙述将说明本发明方法。用Damascene法形成的金属线、块和通道最终是由采用三维磨料磨具的总体平整法获得的。该平整法是将要平整的晶片露出表面与在本发明磨料磨具表面上的许多研磨复合体接触,并在保持接触的同时相对地移动晶片和磨料磨具。可以使用一种工作流体,所述流体包含能对第二材料进行化学改性的成分,或者包含在磨料磨具的作用下以其它方式有助于从晶片第一材料表面上除去第二材料的成分。平整加工连续进行到如本文所述晶片的露出外表面包括至少一个第二材料的露出区和至少一个第一材料的露出区。若未能足够连续地进行平整加工会导致导电材料不合需求地桥接介电材料。而若平整加工进行得过分,超越基本总体平的第一表面,会产生割断一根或多根导线的风险。在有些情况下,当第一材料的表面露出并且第一材料的除去速率不同于第二材料的除去速率时,第二材料的除去速率会变慢乃至停止。本发明磨料磨具设计成用于在含有多于一种材料并且各种材料具有不同磨削速率的晶片上能形成平的表面。本发明磨料磨具设计成在平整过程中对这些材料表面产生的刮痕降至最低限度。
介电材料和金属的位置可以颠倒;第一和第二材料可以不限于分别是介电材料和导体材料,并且甚至可不限于是介电材料和导体中的至少一种。本发明方法的一个实施方案可以从一种晶片开始,在成品半导体器件的一个单层内该晶片具有多于两种的材料;该晶片具有一种材料,它直接在第一材料或第二材料的特定区域之下,该材料可以是第一材料、第二材料、第三材料或这些材料的混合物;该晶片具有由凹槽或凹坑的最外底部集合所限定的第二总体上基本平的表面,如果在单一层中存在两组或许多组不同深度的凹槽或凹坑的话;该晶片具有一个表面,在开始本方法平整前,在最后制得的层的最终经平整表面的上方,该表面不是每一位置均存在第二材料;并且该晶片的基底含有非硅材料。
图1是适合于本发明方法的有图样的晶片10的示意图。为清楚起见,图中省略了掺杂区、活性器件、晶体外延层、载体和场(field)氧化物层。晶片10具有基底11和许多形貌区,它通常由适当的材料(如单晶硅、砷化镓和本领域已知的其它材料)制得。一层阻挡层或粘结层13(通常由氮化钛或钛制成)覆盖着该基底层和基底上的形貌区。其它阻挡层可包括钽、氮化钽或氮化硅。
一层金属导体层14覆盖着阻挡层13和基底上形貌区的正面。可使用金属或金属合金,如铝、铜、铝铜合金、钨、银或金。金属层的形成通常是在阻挡层13上沉积连续的金属层。随后除去过量的金属,形成如图2所示所需的金属互联的图样15。其上面就形成分隔的金属互联表面15和分隔的形貌区表面16,除去过量金属后应形成平的表面,不存在会影响最终半导体器件操作性能的刮痕或其它缺陷。
装置图3表示用于修整晶片的本发明方法所用的一种装置。这种机器的各种变型和/或其它机器也可适用于本发明。本领域的普通技术人员知道,这种装置和其许多变型以及其它类型的装置是与抛光垫和研磨淤浆一起使用的。合适的市售装置的一个实例是购自IPEC/WESTECH of Phoenix,AZ的CMP(化学机械方法)磨床。另一种CMP磨床可购自STRASBAUGH或SPEEDFAM。
装置30包括与马达(未画出)连接的机头单元31、从机头单元31中伸出的卡盘32;这种卡盘的一个实例是万向卡盘。卡盘32应设计成能承受不同的力并适应不同的转动,使得磨料磨具能为半导体晶片提供所需的表面光洁度和平坦度。然而在平整过程中,卡盘可以容许半导体晶片转动或不转动。
卡盘31的末端是晶片固定器33。晶片固定器33的用途是将半导体晶片34固定在机头单元31上,并在平整过程中防止半导体晶片松开。半导体晶片固定器设计成能容纳半导体晶片,它可以是例如圆形、椭圆形、矩形、正方形、八角形、六角形、五角形等等。
在某些情况下,晶片固定器由两部分构成,即晶片支承垫和任选的扣环。扣环是贴合半导体晶片周边的大体为圆形的装置。晶片支承垫可用一种或多种材料(如聚氨酯泡沫)制成。
晶片固定器33在其扣环部分35沿半导体晶片34的边缘延伸。扣环部分(它是可用可不用的)可以是单独的部分或与固定器33构成整体。在某些情况下,晶片固定器33不伸出晶片34边缘之外,所以晶片固定器33不与磨料磨具42接触。在另一些情况下,晶片固定器33伸出半导体晶片34边缘之外,使得半导体晶片固定器33与研磨复合体接触。在这种情况下,晶片固定器可能影响研磨复合体的操作性能。例如,晶片固定器33可能对磨料具有“调节”作用,并在平整过程中会除去磨料磨具表面的最外部分。
晶片固定器或扣环可用能使磨料磨具向半导体晶片提供所需修整的任何材料制成。合适材料的例子包括聚合物材料。
晶片固定器33的旋转速度取决于具体的装置、平整条件、磨料磨具和所需的平整要求。然而一般来说,晶片固定器33的旋转速度约为2-1000转/分,一般约为5-500转/分,较好约为10-300转/分,更好约为20-100转/分。如果晶片固定器旋转得太慢或太快,就不能得到所需的磨削速率。
晶片固定器33和/或底座42可按圆形方式、螺旋形方式、非均匀方式、8字形方式、或无规运动方式旋转。晶片固定器或底座还可摆动或振动,例如向固定器或底座传递超声波振动。
适用于目前使用的100-500mm直径晶片的磨料磨具,其直径一般约为10-200mm,较好约为20-150mm,更好约为25-100mm。磨料磨具的转速可以为5-10000转/分,一般10-1000转/分,大约10-250转/分更好,最好为10-60转/分。晶片和磨料磨具较好按相同的方向旋转,但也可按相反的方向旋转。
晶片表面34和晶片固定器33之间的界面最好较为平坦并均匀,确保获得所需的平整度。贮液器37储存着工作液体39(下文中将更详细说明),该液体通过管道38泵送到晶片和装接在基底42上的磨料磨具41之间的界面中。在平整过程中,流向磨料磨具和晶片表面之间界面中的工作液体应具有恒定的流量。工作液体的流量取决于所需的平整要求(磨削速率、表面光洁度和平整度)、晶片的具体结构和露出金属的化学性能。工作液的流量一般为10-500毫升/分,较好约为25-250毫米/分。
在本发明平整加工中,通常将磨料磨具固定在对其起支承垫作用的基垫43上。在某种程度上,该基垫提供刚性使磨料磨具有效地磨削露出的晶片表面,并提供贴合性,使磨料磨具均匀地贴合在被磨削的露出的晶片表面上。这种贴合性对在整个晶片的露出表面获得所需的表面光洁度至关重要。因此,具体基垫(即基垫的物理性能)的选择应与磨料磨具适合,使得磨料磨具提供所需的晶片表面性能(磨削速率、表面光洁度和平整度)。
合适的基垫可由所需的任何材料制成,如金属或聚合物泡沫、橡胶和塑料片,并且可以是复合材料。一种较好的双组分层压基垫公开在美国专利5,692,950中,它具有一层弹性聚碳酸酯层和一层贴合的聚氨酯泡沫层。
用于将磨料磨具装接在基垫上的方法应能在平整过程中使磨料磨具既平整又具有刚性。较好的装接方法是使用压敏粘合剂(如膜或带状的压敏粘合剂)。适合于这种目的的压敏粘合剂包括以皱胶、松香、丙烯酸类聚合物和共聚物(如聚丙烯酸丁酯和其它聚丙烯酸酯)、乙烯基醚(如聚乙烯基正丁醚)、醇酸树脂粘合剂、橡胶粘合剂(如天然橡胶、合成橡胶、氯化橡胶)以及它们的混合物为基的粘合剂。压敏粘合剂较好用常规技术层压或涂覆在磨料磨具的背面。其它类型的压敏粘合剂涂层还公开在美国专利5,141,790中。
磨料磨具也可用钩圈型连接装置固定在基垫上。毛圈织物可在磨料磨具的背面,许多钩状物则在基垫上。也可以是钩状物在磨料磨具的背面,而毛圈织物在基垫上。钩圈型连接装置描述在美国专利4,609,581、5,254,194、5,505,747和PCT WO 95/19242中。使用真空板则描述在美国专利5,593,344中。
可对本发明加工步骤或方法进行改进来优化晶片的平整过程。磨料磨具可包括观察窗或孔,以便操作者透过磨料磨具观察与许多研磨复合体的层相邻的晶片。另外,可使用常规的能监测晶片抛光过程终点的测定方法(如探测基片电气性的变化、机械扭矩或摩擦力的变化或平整过程中噪声的变化),来优化使用具有许多三维研磨复合体的磨料磨具的本发明方法。人们还认为,通过分析抛光操作流出物的方法能很好地用于固定的磨料磨具。认为在流出物中不存在大量磨粒能简化这种监测并能增强上述这些方法的总体效力。这些方法描述在EP 824995A和美国专利Re.34,425、5,036,015、5,069,002、5,222,329、5,244,534、4,793,895、5,242,524、5,234,868、5,605,760和5,439,551中。
美国专利520,283、5,177,908、5,234,867、5,297,364、5,486,129、5,230,184、5,245,790和5,562,530中所述的在要抛光的物体表面上或在抛光垫的表面上形成均匀磨耗速率的一些方法,也适用于本发明的磨料磨具。那些与具体的研磨表面无关的常规的晶片载体结构和晶片支承/装接方法,也可用于本发明带纹理的三维研磨复合体。尽管带纹理的三维研磨复合体的研磨表面一般不需要用于淤浆/垫子法的那种常规修整处理,但是最好在使用过程中或两次使用之间,使用本领域已知合适的垫子修整处理法对其进行修整处理,以便形成优良的初始表面或除去积聚的沉积物。如美国专利5,593,344所述,通过取代有纹理的三维研磨复合体的带材或卷材和适当的工作流体,还可使用采用连续带材或卷材料和淤浆的各种晶片平整方法,那些与具体研磨表面上相互作用无关的抛光工艺如晶片载体结构和晶片支承/装接方法,也可与本发明有纹理的三维研磨复合体的磨料磨具一起使用。
操作条件影响平整过程的因素包括晶片表面与磨料磨具之间所选用的合适接触压力、工作液的类型、晶片表面与磨料磨具间的相对速度和相对运动、工作液的流量。这些影响因素是相互依赖的,可以根据需平整的具体晶片表面进行选择。
一般来说,因为一块半导体晶片可能要进行许多个加工步骤,所以半导体制造工业要求在平整过程中有相当高的材料磨削速率。材料的磨削速率应至少为100/分,较好至少为500/分,更好至少为1000/分,最好至少为1500/分。在某些情况下,需要磨削速度至少高达2000/分,甚至为3000-4000/分。磨料磨具的磨削速率随机器的条件和要平整的晶片表面类型而异。
但是,尽管一般要求较高的磨削速率,可是应选择磨削速率使之不损害所需的表面光洁度和/或基片表面的形貌。
可用一些已知方法衡量晶片的表面光洁度。一种较好的方法是测量晶片表面的Rt值,Rt值提供“粗糙度”的一种量度,并可指示出刮痕或其它表面缺陷。例如可参见Chapter 2,RST PLUS Technical Reference Manual,Wyko Corp.,Tucson,AZ。对晶片表面的修整,应使其Rt值不超过约4000,较好不超过约2000,最好不超过约500。
Rt值通常是用干涉仪(如购自Wyko Corp的Wyko RST PLUS干涉仪)或TENCOR表面光度仪测量的。刮痕也可用暗场显微镜技术测出。刮痕深度可用原子力显微镜技术测出。表面是要求没有刮痕和缺陷的。
磨料磨具与晶片间的界面压力(即接触压力)较好约小于30psi,更好约小于25psi,最好约小于15psi。已发现本发明方法所用的磨料磨具在所例举的界面压力下可提供良好的磨削速率。在平整过程中也可使用两种或多种平整条件。例如,第一处理阶段可以采用比第二处理阶段更高的界面压力。在平整过程中也可改变晶片和/或磨料磨具的旋转和平移速度。
平整操作较好在工作液的存在下进行。所述工作液可根据需平整的晶片表面的组成进行选择,在某些情况下,工作液通常包含水,可以是自来水、蒸馏水或去离子水。
工作液与磨料磨具相结合通过化学机械抛光过程进行平整。在抛光的化学过程中,工作液与外层即露出的晶片表面发生反应。随后在机械过程中,磨料磨具将这种反应产物除去。在金属表面的平整过程中,工作液最好是化学蚀刻剂(如氧化物或氧化剂)的水溶液。例如,当工作液中的氧化剂与铜反应形成氧化铜表面层,就发生了铜的化学抛光。当磨料磨具从晶片表面除去这些金属氧化物时就发生了机械平整过程。也可能是金属先机械地除去,随后与工作流体中的组分发生反应。
其它适用的化学蚀刻剂包括络合剂。这些络合剂的作用与前面所述氧化剂的作用相似,因为络合剂与晶片表面的化学反应产生一层容易被研磨复合体的机械作用除去的层。
当晶片是铜时,如Coombs,Printed Circuits Handbook,4thEd所述,可使用一些特定的铜蚀刻剂。化学蚀刻剂通常含有带酸或不带酸的氧化剂。合适的化学蚀刻剂包括硫酸;过氧化氢;氯化铜;铝、钠和钾的过硫酸盐;氯化铁;铬硫酸;铁氰化钾;硝酸;及其混合物。合适络合剂的例子包括碱性铵,如含氯化铵和其它铵盐和添加剂的氢氧化铵、碳酸铵、硝酸铁及其混合物。还可加入各种添加剂以提高稳定性,促进表面处理或作为蚀刻速度改进剂。已知某些添加剂会进行各向同性的蚀刻,即在所有方向的蚀刻速率即除去速率均相同。
可加入工作液中的合适氧化剂或漂白剂包括过渡金属配合物,如铁氰化物、EDTA铁铵、柠檬酸铁铵、柠檬酸铁、草酸铁铵、柠檬酸铜、草酸铜、葡糖酸铜、酒石酸铜等,其中的络合剂通常是多齿胺、羧酸或两者的混合物。许多配位化合物描述在Cotton & Wilknson,Advanced Inorganic Chemistry.5thEd中。可使用那些氧化电位适合于氧化铜金属和/或氧化亚铜的化合物,如钒、铬、锰、钴、钼和钨的配位化合物。
其它合适的氧化剂包括卤素的含氧酸及其盐,如碱金属盐。这些酸描述在Cotton & Wilknson,Advanced Inorganic Chemistry.5thEd中。这些酸的阴离子通常包含卤原子,如氯、溴或碘。这些卤原子与一个、两个、三个或四个氧原子相连。其例子包括氯酸(HOClO2)、亚氯酸(HOClO)、次氯酸(HOCl)及其各自的钠盐,例如氯酸钠、亚氯酸钠和次氯酸钠。已知也有溴和碘的类似物。
对含铜晶片进行平整,较好的氧化剂包括硝酸、过氧化氢和铁氰化钾。其它合适的氧化剂列在West等的Copper and Its Alloy,(1982)和Leidheiser的TheCorrosion of Copper.Tin and Rheir Alloy(1971)两书中。在去离子水中氧化剂的浓度通常约0.01-50重量%,较好为0.02-40重量%。
在工作液中加入络合剂(铜的配位体和/或鳌合剂)可以增强铜的氧化和溶解。这些化合物可与铜键合,增加铜金属或铜的氧化物在水中的溶解度,如Cotton& Wilknson,以及Hathaway在Comprehensive Coordination Chemistry,Vol 5;Wilhinson,Gillard,McCleverty,Ed综述的那样。可加入或可用于工作液中的合适添加剂包括单齿络合剂,如铵、胺、卤化物、假卤化物、羧酸盐、硫醇盐等,它们也称为配位体。可加入工作液中的其它添加剂包括多齿络合剂,通常是胺多齿络合剂和羧酸多齿络合剂。合适的胺多齿络合剂包括乙二胺、二亚乙基三胺、三亚乙基四胺或其混合物。合适的多齿羧酸和/或其盐包括柠檬酸、酒石酸、草酸、葡糖酸、次氮基乙酸或其混合物。兼有两种单齿和多齿的络合物包括氨基酸,如氨基乙酸,和常用的分析鳌合剂,如EDTA-乙二胺四乙酸及其许多类似物。
另一些鳌合剂包括多磷酸盐、1,3-二酮、氨基醇、芳基杂环碱、酚、氨基酚、肟、Schiff碱和硫化合物。
同样对于平整含铜的晶片,较好的络合剂是氢氧化铵和碳酸铵。在去离子水中络合剂的浓度通常约0.01-50重量%,较好为0.02-40重量%。络合剂可与氧化剂结合使用。其它合适的络合剂可参见West等的Copper and Its Alloy,(1982)和Leidheiser的The Corrosion of Copper.Tin and Their Alloys(1971)。
铜及其合金可用于许多环境和用途中,因为它具有优良的抗腐蚀性。在与溶液接触时铜的表面性能与该溶液的pH和铜的电化学电位有关。在低的pH和在高的pH下,铜会受腐蚀。在接近中性的pH和稍微碱性的pH下,铜会受到铜氧化物涂层(这些涂层可以是氧化亚铜和氧化铜)的钝化作用。研磨表面处理领域的熟练技术人员可知,金属或金属氧化物的表面特性会极大地影响磨料的作用。因此,抛光液的pH以及作为防腐蚀剂和/或钝化剂的添加剂是重要的。
可向工作液中加入缓冲剂来控制pH,从而减小由于清洗水少量稀释造成的pH变化和/或不同来源去离子水的pH差异。如上所述,pH会对铜的表面性能和铜的除去速率产生很大的影响。最好的缓冲剂应与半导体以及CMP之后的清洗要求相容,并且杂质(如碱金属)要低。另外,最好的缓冲剂可以调节,将pH范围覆盖在由酸性至近中性直至碱性。多元酸可用作缓冲剂,当它部分或全部被氢氧化铵中和成铵盐时,就是较好的代表性例子,包括磷酸-磷酸铵体系;多磷酸-多磷酸铵体系;硼酸-四硼酸铵体系;硼酸-五硼酸胺体系。
其它三元或多元质子酸和其盐,尤其是铵盐是适用的。它可包括基于下列质子酸的铵离子缓冲液体系,所有这些体系中至少具有一个大于7的pKa这些质子酸例如天冬氨酸、谷氨酸、组氨酸、赖氨酸、精氨酸、鸟氨酸、半胱氨酸、酪氨酸和肌肽。
用于金属,尤其是钢和镀锌钢的防腐蚀剂是已知的。在关于防腐蚀剂的一般教科书中通常未涉及铜的防腐蚀剂,它包括一种特殊的技术。广泛使用的已知铜抑制剂是苯并三唑及其衍生物(称为唑衍生物),如甲苯基三唑。已知铜在某种程度上会被氧化亚铜纯化,尤其在中性或轻微碱性pH条件下。另外,还知道磷酸盐可作为锌和钢的钝化涂层。加入钝化剂可保护未与磨料磨具接触的金属区免被蚀刻剂过早和过分地除去,或者可控制氧化剂与露出金属表面反应的程度。钝化剂的一个例子是苯并三唑。其它钝化剂可参见Leidheiser的The Corrosion ofCopper.Tin and Their Alloys(1971),pp 119-123。钝化剂的用量和种类部分取决于所需的平整要求(切削速率、表面光洁度和平整度)。工作液中也可含有添加剂,如表面活性剂、润湿剂、缓冲剂、防锈剂、润滑剂、肥皂等。选择这些添加剂,是为了提供所需的作用,而不损害位于下面的半导体晶片表面。例如,可将润滑剂加入工作液中,减少平整过程中磨料磨具与半导体晶片表面间的磨擦。
也可将无机颗粒加入到工作液中。这些无机颗粒可以增加磨削速率。这些无机颗粒的例子包括二氧化硅、氧化锆、碳酸钙、氧化铬、氧化铈、铈盐(如硝酸铈)、石榴石、硅酸盐和二氧化钛。这些无机颗粒的平均粒度应小于约1000,较好约小于500,更好约小于250。
虽然可以将颗粒加入到工作液中,但优选的工作液基本上不含无机颗粒,如未与磨料磨具连接的松散的磨粒。优选的是,工作液中无机颗粒的含量小于1%重量,较好小于0.1%重量,更好为0%重量。
一种合适的工作液包含鳌合剂、氧化剂、离子缓冲剂和钝化剂。这种工作液可包含3.3重量%过氧化氢、93.1重量%水、3.0重量%(NH4)2HPO4、0.5重量%柠檬酸铵和0.1%1-H-苯并三唑。通常,该溶液用于抛光铜晶片。另一种合适的工作液包含氧化剂、酸和钝化剂。按重量百分数计,这种工作液可包含15.0%过氧化氢、0.425%磷酸和0.2%1-H-苯并三唑,剩余百分数是水。
工作液的用量应充足,能够促进从表面上除去金属或金属氧化物的沉积物。在许多情况下,在碱性工作液和/或化学蚀刻剂中就有足量液体。然而在某些情况下,除了第一工作液外,较好的是在平整界面上还存在第二液体。第二液体可以与第一工作液的液体相同,也可以不同。
磨料磨具磨料磨具的要求是其使用寿命长,例如磨料磨具应能完成至少2个,较好至少5个,更好至少20个,最好至少30个不同的晶片。磨料磨具应能提供良好的磨削速率。另外,磨料磨具应能产生具有合格平坦度、表面光洁度和最少表面凹陷的半导体晶片。用于制造磨料磨具的材料、所需的纹理和制造工艺都影响是否能满足这些标准。
一般来说,磨料磨具可含有背衬。磨粒分散在粘合剂中形成带纹理的三维研磨复合体,该复合体固定、粘合或粘结在背衬上。磨料磨具不一定要具有背衬。
在本发明方法所用的磨料磨具中,研磨复合体是“三维”的,使得在磨料磨具至少一部分厚度上存在许多磨粒。
磨料磨具也有与之相关的“纹理”,即它是“有纹理的”的磨料磨具。参照图4和上面所述的磨料磨具可以看到这些纹理。在这些磨料磨具中,棱锥形研磨复合体是突起部分,棱锥体之间的谷是凹陷部分。
所述凹陷部分可起槽道的作用,有助于使工作液分布在整个晶片表面上。这些凹陷部分的槽道作用还有助于从晶片和磨料磨具界面上除去磨损的磨粒和其它碎片。这些凹陷部分还可防止本领域称为“粘着作用”的现象。即如果研磨复合体是光滑而不是带纹理的,则磨料磨具可能粘着在或留在晶片表面上。最后,该凹陷部分能使磨料磨具的突起部分上形成更高的单位压力,从而有助于从研磨表面上除去脱落的磨粒,露出其上面新的磨粒。
本发明磨料磨具的形状可以是圆形的,如磨盘状。圆形磨盘的外缘较好是光滑的,也可以是毛边的。磨料磨具也可以是椭圆形或任何多边形的,如三角形、正方形、矩形等。在另一个实施方案中,磨料磨具可以是带状的。磨料磨具也可制成卷材,在磨料领域中一般称之为研磨带卷。一般来说,在平整过程中要对研磨带卷进行编号(indexed)。磨料磨具上还可以穿孔,提供穿透磨料涂层和/或背衬的开孔,以便在使用前、使用过程中或使用后使液体介质穿透之。
背衬磨料磨具可以有一个背衬。背衬的厚度应非常均匀。如果背衬的厚度不够均匀,会导致晶片均匀度的变化较大。许多背衬材料适合于这个目的,包括柔软的背衬或较硬的背衬。柔性研磨背衬的例子包括聚合物薄膜、上底漆的聚合物薄膜、金属箔、布、纸、硫化纤维、非织造材料及其处理过的形式、以及它们的复合材料。一种优选的背衬是聚合物薄膜。这种薄膜包括聚酯薄膜、聚酯和共聚酯薄膜、微孔聚酯薄膜、聚酰亚胺薄膜、聚酰胺薄膜、聚乙烯醇薄膜、聚丙烯薄膜、聚乙烯薄膜等。聚合物薄膜背衬的厚度一般约为20-1000微米,较好为50-500微米,更好为60-200微米。
聚合物薄膜背衬与粘合剂间也应有良好的粘合性。在许多情况下,为提高粘合性,可对聚合物薄膜背衬要涂覆上研磨复合体的表面先进行处理。所述处理可包括表面改性或涂覆化学型底漆。表面改性的例子包括电晕处理、UV处理、电子束处理、火焰处理和打毛处理,为的是提高表面积。化学型底漆的例子包括美国专利3,188,265中所揭示的聚偏氯乙烯和乙烯丙烯酸共聚物、美国专利4,906,523中揭示的胶体分散体、美国专利4,749,617中揭示的氮丙啶材料。
另一种合适的背衬包括压花聚合物(如聚酯、聚氨酯、聚碳酸酯、聚酰胺、聚丙烯或聚乙烯)薄膜背衬或压花纤维背衬(如纸或其它非织造纤维材料)。也可将压花材料层压到非压花材料上形成背衬。压花的图形可以是任何纹理。例如,该图形可以是球台形、棱锥形、棱台形、圆锥形、立方形、长方形或园柱形等。该图形还可以呈六边形排列、脊形或点阵形状。还可以是由一些几何形体(如棱柱)构成的脊。
背衬也可以是发泡背衬,如聚氨酯泡沫塑料之类的聚合物泡沫塑料。将研磨复合体直接施加在基垫的正面上也在本发明范围内。这是研磨复合体直接与基垫相连。
可以将压敏粘合剂层压到背衬的背面上,也可直接涂覆在背衬的背面上。或者,压敏粘合剂可以是层压在背衬背面上的转移带。在本发明的另一方面,可将泡沫基材层压到背衬上。
磨粒研磨复合体含有磨粒和粘合剂。粘合剂将磨粒固定在磨料磨具上,以便在晶片的平整过程中,磨粒不容易从磨具上脱落。磨粒可均匀地分散在粘合剂中,也可不均匀地分散在粘合剂中。术语“分散”是指磨粒分布在整个粘合剂中。一般来说,优选的是将磨粒均匀分散,使所得的磨料涂层能进行更为均一的修整过程。
对于修整晶片表面,优选的是采用细的磨粒。磨粒的平均粒度可以约为0.001-50微米,一般为0.01-10微米,宜小于约5微米,较好小于约3微米。在某些情况下平均粒度约为0.5微米或甚至约为0.3微米。磨粒的粒度一般用磨粒的最大尺寸来量度。几乎在所有情况下,粒度是有一定范围或分布的。在某些情况下,宜严格控制粒度分布,使所得的磨料磨具能在晶片上产生非常均一的表面光洁度。磨粒还可以以磨料团粒的形式存在。在团粒内部许多磨粒被粘合剂粘结在一起。磨粒也可以因磨粒之间的引力粘结在一起。
合适磨粒的实例包括熔凝氧化铝、热处理氧化铝、白色熔凝氧化铝、多孔氧化铝、过渡氧化铝、氧化锆、氧化锡、氧化铈、熔凝氧化锆铝或氧化铝基溶胶凝胶产生的磨粒等。氧化铝磨粒可含有金属氧化物改性剂。氧化铝基溶胶凝胶产生的磨粒的例子可见美国专利4,314,827、4,623,364、4,744,802、4,770,671和4,881,951。
对于含铝的晶片表面,较好的磨粒是α氧化铝、χ-氧化铝和其它过渡氧化铝。对于含铜的半导体晶片,较好的磨粒是α氧化铝。α氧化铝磨粒可以是熔凝氧化铝磨粒。较好的α氧化铝细颗粒内部具有孔隙。多孔α氧化铝通常是将多孔过渡氧化铝颗粒在其转变为α氧化铝的温度下,短时间加热而制成的。这种转变成α氧化铝的变化通常伴有表面积明显减小,但是当将过渡氧化铝短时间置于转化温度,形成的颗粒仍会保留内部孔隙。在这些颗粒中的孔比过渡氧化铝中的孔大。在过渡氧化铝的情况下,其孔径约为1-30nm,而在α氧化铝中的孔径约为40-200nm。转化成α氧化铝所需的时间取决于过渡氧化铝的纯度、粒度和结晶度。一般来说,将过渡氧化铝在1000-1400℃的温度范围内加热数十秒至数十分钟。这种转化方法的描述可参见Alcoa Company of America出版的Wefers等的Oxidesand Hvdroxides of Aluminum(1987)。小于1微米的α氧化铝磨粒可购自PraxairSurface Technologies of Indianapolis,IN。χ氧化铝颗粒可以是由煅烧氧化铝水合物(如三水合氧化铝)制成的多孔χ氧化铝。工业上三水合氧化铝磨粒来自HuberEngineered Minerals,Norctoss,GA。氧化铈磨粒可购自Rhone Poulenc;Shelton,CT;Transelco,New York;Fujimi,Japan;Molycorp,Fairfield,NJ;AmericanRar Ox,Chaveton City,MA;和Nanophase,Burr Ridge,IL。氧化铝来自AlcanChemicals,Alcan Aluminum Corporation,Cleveland,OH和Condea Chemie GMBH,Hamburg,Germany。氧化铈磨粒可基本上不含改性剂或掺杂剂(如其它金属氧化物),也可含有改性剂和/或掺杂剂(如其它金属氧化物)。在某些情况下,这些金属氧化物会与氧化铈反应。还可以将氧化铈与两种或多种金属氧化物改性剂一起使用。这些金属氧化物可与氧与铈反应形成反应产物。
所用的磨粒还可是含有两种或多种不同类型磨粒的混合物。其中这些磨粒可具有不同的硬度。在两种或多种不同磨粒的混合物中,一种磨粒可具有相同的平均粒度,也可具有不同的平均粒度。
在某些情况下,较好使用添加剂对磨粒的表面进行改性处理。这些添加剂可改进磨粒在粘合剂前体中的分散性并/或改进其与粘合剂前体和/或粘合剂的粘合性。对磨粒的这种处理还可改进其磨削特性。进一步处理还可明显降低粘合剂前体/磨粒淤浆的粘度。其粘度较低,就能在粘合剂前体和磨粒构成的磨料淤浆中加入更多的磨粒。磨粒表面处理的另一个可能的优点是减少了磨粒的团聚。合适表面改性添加剂的实例包括润湿剂(有时也称为表面活性剂)和偶合剂。偶合剂可在粘合剂与磨粒之间产生缔合桥。合适偶合剂的实例包括硅烷、钛酸酯和锆铝酸酯。市售偶合剂的实例包括购自OSI Specialties,Inc.,Danbury,CT的“A174”和“A1230”。用于氧化铈磨粒的这种偶合剂的另一个实例是钛酸异丙基三异十八烷酰(triisosteroyl)酯。市售的润湿剂有购自Byk Chemie,Wallingford,CT的Disperbyk 111和购自ICI America Inc.,Wilmington,DE的FP4。可使用各种方法对磨粒进行这些表面处理。例如,可在磨具的制造过程中直接将表面处理剂加入磨料淤浆中。在另一种方法中,是将这些表面处理剂先涂覆在磨粒的表面上,然后再将这些磨粒配成磨粒淤浆。
填料颗粒磨料磨具也还可以含有填料颗粒。填料可改变研磨复合体的磨耗性。在某些使用合适填料和其合适用量的情况下,填料可降低研磨复合体的磨耗性。相反,在某些使用合适填料和其合适用量的情况下,填料可增加研磨复合体的磨耗性。也可选择填料,减少研磨复合体的成本,改变淤浆的流变性、并/或改变研磨复合体的研磨性能。应选择填料,使其不损害所需的平整要求。适用于本发明的填料的例子包括三水合氧化铝、硅酸镁、热塑性颗粒和热固性颗粒。其它各种填料包括无机盐、硫、有机硫化合物、石墨、氮化硅和金属硫化物。填料的这些实例仅意味着一些适用填料的代表性例子,并不包括所有适用的填料。在某些情况下,宜使用两种或多种不同粒度填料的混合物。填料可以是大致各向等大的,也可以是针形的。如上面在描述磨粒时所述的那样,也可对填料进行表面处理。填料不应在晶片露出表面上产生明显的刮痕。
粘合剂半导体的露出晶片表面用磨料磨具进行平整,该磨料磨具含有许多分散在粘合剂中的磨粒。粘合剂的具体化学性能对磨料磨具的性能至关重要。例如,如果粘合剂“太硬”,由其制得的磨料磨具会在露出的金属表面上产生深的和不可接受的刮痕。相反,如果粘合剂“太软”,由其制得的磨料磨具在平整过程中的金属磨削速率又不够,或者磨料磨具的耐用性差。因此,对粘合剂应进行选择以提供所需的磨料磨具特性。
较好的粘合剂是可自由基固化的粘合剂前体。置于热能或辐照能量作用下,这些粘合剂能快速聚合。一组较好的可自由基固化的粘合剂前体,包括烯键不饱和的粘合剂前体。这种烯键不饱和的粘合剂前体的例子,包括具有侧接的α,β不饱和羰基的氨基塑料单体或低聚物、烯键不饱和单体或低聚物、丙烯酸化的异氰脲酸酯单体、丙烯酸化的聚氨酯低聚物、丙烯酸化的环氧单体或低聚物、烯键不饱和单体或稀释剂,丙烯酸酯分散液及其混合物。这里术语丙烯酸酯包括丙烯酸酯和甲基丙烯酸酯。
用于本发明磨料磨具的粘合剂较好由有机粘合剂前体形成。粘合剂前体较好要具有足够的流动性以便涂覆,然后凝固化。凝固化可通过固化(如聚合和/或交联)和/或干燥(如驱除液体)或简单地通过冷却而实现。粘合剂前体可以含有机溶剂、含水或是100%固体(即基本上不含溶剂)。热塑性聚合物或材料、热固性聚合物或材料以及它们的混合物都可用作粘合剂前体。
在许多情况下,磨料复合体由含磨粒和粘合剂前体混合物的淤浆制成。按重量计,磨料复合体可含有1-95份的磨粒和5-99份的粘合剂。研磨复合体较好含有约30-85份的磨粒和约15-70份的粘合剂。若按研磨复合体的体积计,该研磨复合体可含有0.2-0.8份磨粒和0.2-0.8份粘合剂前体。该体积比是按磨粒和粘合剂前体计算的,不包括背衬或可能加入的填料或添加剂的体积。
粘合剂前体较好是可固化的有机材料(即受到热能和/或其它能量(如电子束、紫外光、可见光等的作用时或加入能导致聚合物固化或聚合的化学催化剂、水汽或其它试剂时,能进行聚合和/或交联的材料)。粘合剂前体的实例包括环氧聚合物、氨基聚合物或氨基塑料聚合物,如烷基化的脲-甲醛聚合物、蜜胺-甲醛聚合物和烷基化的苯并胍胺-甲醛聚合物;丙烯酸类聚合物,包括丙烯酸酯和甲基丙烯酸酯,如丙烯酸乙烯酯、丙烯酸化环氧树脂、丙烯酸化聚氨酯、丙烯酸化聚酯、丙烯酸化聚醚、乙烯基醚、丙烯酸化油和丙烯酸化聚硅氧烷;醇酸树脂,如聚氨酯醇酸树脂;聚酯聚合物;活性聚氨酯聚合物;酚醛聚合物,如可溶酚醛树脂和酚醛清漆聚合物、酚醛/胶乳聚合物;环氧聚合物,如双酚环氧聚合物;异氰酸酯;异氰脲酸酯;聚硅氧烷聚合物,包括烷基烷氧基硅烷聚合物;或活性乙烯基聚合物。这些聚合物可以是单体、低聚物、聚合物或它们的混合物。
较好的氨基塑料粘合剂前体的每个分子或低聚物中具有至少一个侧接的α、β不饱和羰基。这些聚合物材料进一步描述在美国专利4,903,440(Larson等)和5,236,472(Kirk等)中。
烯键不饱和粘合剂前体包括含碳、氢和氧原子,有时还含氮原子和卤原子的单体和聚合化合物。氧原子或氮原子或两者一般存在于醚、酯、氨基甲酸酯、酰胺和脲基团中。烯键不饱和单体可以是单官能的、双官能的、三官能的、四官能的或更高官能的,包括丙烯酸酯基单体和甲基丙烯酸酯基单体。合适的烯键不饱和化合物较好是由含脂族单羟基或脂族多羟基的化合物与不饱和羧酸反应制得的酯,所述不饱和羧酸的例子有丙烯酸、甲基丙烯酸、衣康酸、巴豆酸、异巴豆酸、马来酸。烯键不饱和单体的代表性实例,包括甲基丙烯酸甲酯、甲基丙烯酸乙酯、苯乙烯、二乙烯基苯、丙烯酸羟乙酯、甲基丙烯酸羟乙酯、丙烯酸羟丙酯、甲基丙烯酸羟丙酯、丙烯酸羟丁酯、甲基丙烯酸羟丁酯、丙烯酸十二烷酯、丙烯酸辛酯、丙烯酸己内酯、甲基丙烯酸己内酯、甲基丙烯酸四氢糠酯、丙烯酸环己酯、丙烯酸十八烷酯、丙烯酸2-苯氧基乙酯、丙烯酸异辛酯、丙烯酸异冰片酯、丙烯酸异癸酯、聚乙二醇一丙烯酸酯、聚丙二醇一丙烯酸酯、乙烯基甲苯、乙二醇二丙烯酸酯、聚乙二醇二丙烯酸酯、乙二醇二甲基丙烯酸酯、己二醇二丙烯酸酯、三甘醇二丙烯酸酯、丙烯酸2-(2-乙氧基乙氧基)乙酯、丙氧基化的三羟甲基丙烷三丙烯酸酯、三羟甲基丙烷三丙烯酸酯、甘油三丙烯酸酯、季戊四醇三丙烯酸酯、季戊四醇三甲基丙烯酸酯、季戊四醇四丙烯酸酯和季戊四醇四甲基丙烯酸酯。其它烯键不饱和物质包括单烯丙基、多烯丙基和多甲基烯丙基的羧酸酯和酰胺,如邻苯二甲酸二烯丙基酯、己二酸二烯丙基酯或N,N-二烯丙基己二酰二胺。其它含氮的烯键不饱和单体包括异氰脲酸三(2-丙烯酰氧基乙)酯、1,3,5-三(2-甲基丙烯酰氧基乙)-s-三嗪、丙烯酰胺、甲基丙烯酰胺、N-甲基丙烯酰胺、N,N-二甲基丙烯酰胺、N-乙烯基吡咯烷酮或N-乙烯基哌啶酮。
较好的粘合剂前体是含有两种或多种丙烯酸酯单体的混合物。例如,粘合剂前体可以是三官能丙烯酸酯和单官能的丙烯酸酯单体的混合物。一种粘合剂前体的一个例子是丙氧基化的三羟甲基丙烷三丙烯酸酯和丙烯酸2-(2-乙氧基乙氧基)乙酯的混合物。多官能丙烯酸酯和单官能丙烯酸酯聚合物的重量比,可约为1-90份多官能丙烯酸酯比10-99份单官能丙烯酸酯。
也可由丙烯酸酯和环氧树脂的混合物来配制粘合剂前体,如美国专利4,751,138(Tumey等)所述。
其它粘合剂前体包括具有至少一个侧链丙烯酸酯基团的异氰脲酸酯衍生物和具有至少一个侧链丙烯酸酯基团的异氰酸酯衍生物,它们进一步描述在美国专利4,652,274(Boettcher等)中。优选的异氰脲酸酯物质是异氰脲酸三羟乙酯的三丙烯酸酯。
另一种粘合剂前体包括羟基为端基的异氰酸酯延伸的(extended)聚酯或聚醚的二丙烯酸化的聚氨酯以及多丙烯酸或多甲基丙烯酸化的聚氨酯。市售丙烯酸化聚氨酯的实例包括以商品名称“UVITHANE 782”购自Morton Chemical的聚氨酯;以商品名称“CMD 6600”、“CMD 8400”和“CMD 8805”购自UCB RadcureSpecialties,Smyrna,GA的聚氨酯;购自Henkel Corp.,Hoboken,NJ的“PHOTOMER”树脂(如PHOTOMER 6010);购自UCB Radcure Specialties的“EBECRYL 220”(六官能芳族丙烯酸化聚氨酯)、“EBECRYL 284”(用1,6-己二醇二丙烯酸酯稀释的分子量为1200的脂族二丙烯酸化聚氨酯)、“EBECRYL4287”(芳族二丙烯酸化聚氨酯)、“EBECRYL 4830”(用四甘醇二丙烯酸酯稀释的脂族二丙烯酸化聚氨酯)、“EBECRYL 6602”(用三羟甲基丙烷乙氧基三丙烯酸酯稀释的三官能芳族丙烯酸化聚氨酯)、“EBECRYL 840”(脂族二丙烯酸化聚氨酯)和“EBECRYL 8402”(脂族二丙烯酸化的聚氨酯);以及购自SartomerCo.,Exton,PA的“SARTOMER”树脂(如SARTOMER 9635、9645、9655、963-B80、966-A80、CN980M50等)。
另一种粘合剂前体包括环氧树脂的二丙烯酸酯和环氧树脂的多丙烯酸或多甲基丙烯酸酯,如双酚A环氧树脂的二丙烯酸酯。市售的丙烯酸化环氧树脂的实例包括以商品名称“CMD 3500”、“CMD 3600”和“CMD 3700”购自UCBRadcure Specialties的丙烯酸化环氧树脂。
其它粘合剂前体也可以是丙烯酸化聚酯聚合物。丙烯酸化的聚酯是丙烯酸与二元酸/脂族二醇基聚酯的反应产物。市售的丙烯酸化聚酯的实例,包括以商品名称“PHOTOMER 5007”(六官能丙烯酸酯)和“PHOTOMER 5018”(四官能四丙烯酸酯)购自Henkel Corp.的丙烯酸化聚酯;以及以商品名称“EBECRYL 80”(四官能改性聚酯丙烯酸酯)、“EBECRYL 450”(脂肪酸改性的聚酯六丙烯酸酯)和“EBECRYL 830”(六官能聚酯丙烯酸酯)购自UCB Radcure Specialties的丙烯酸化聚酯。
另一种较好的粘合剂前体是烯键不饱和的低聚物和单体。例如,粘合剂前体可包括丙烯酸酯官能的聚氨酯低聚物和一种或多种单官能的丙烯酸酯单体。该丙烯酸酯单体可以是五官能的丙烯酸酯、四官能的丙烯酸酯、三官能的丙烯酸酯、二官能的丙烯酸酯、单官能的丙烯酸酯聚合物或其混合物。
粘合剂前体还可以是丙烯酸酯分散液,如美国专利5,378,252(Follensbee)所述。
除了热固性粘合剂外,也可使用热塑性粘合剂。合适的热塑性粘合剂的实例包括聚酰胺、聚乙烯、聚丙烯、聚酯、聚氨酯、聚醚酰亚胺、聚砜、聚苯乙烯、丙烯腈-丁二烯-苯乙烯嵌段共聚物、苯乙烯-丁二烯-苯乙烯嵌段共聚物、苯乙烯-异戊二烯-苯乙烯嵌段共聚物、缩醛聚合物、聚氯乙烯以及它们的混合物。
也可使用混有热固性树脂的水溶性粘合剂前体。水溶性粘合剂前体的例子包括聚乙烯醇、皮胶和水溶性纤维素醚(如羟丙基甲基纤维素、甲基纤维素和羟乙基甲基纤维素)。这些粘合剂可参阅美国专利4,255,164(Butkze等)。
研磨复合体还可含有增塑剂。一般而言,加入增塑剂可增加研磨复合体的磨耗性,并软化总体的粘合剂组合物。在某些情况下,增塑剂起粘合剂前体的稀释剂作用。为减少相分离,增塑剂应与粘合剂相容。合适增塑剂的实例包括聚乙二醇、聚氯乙烯、邻苯二甲酸二丁酯、邻苯二甲酸烷基苄酯、聚乙酸乙烯酯、聚乙烯醇、纤维素酯、硅油、己二酸酯、癸二酸酯、多元醇、多元醇衍生物、磷酸叔丁基苯基二苯基酯、磷酸三(甲苯酯)、蓖麻油、以及它们的混合物。邻苯二甲酸酯衍生物是一种较好的增塑剂。
在粘合剂前体含有烯键不饱和单体和低聚物的情况下,可以使用聚合引发剂。它的实例包括有机过氧化物、偶氮化合物、醌、亚硝基化合物、酰卤化物、腙、巯基化合物、吡喃翁化合物、咪唑、氯三嗪、苯偶姻、苯偶姻烷基醚、二酮、苯酮以及它们的混合物。合适的市售紫外光活化光引发剂的实例,其商品名称例如是购自Ciba Geigy Company的“Irgacure 651”和“Irgcure 184”以及购自Merck的“DAROCUR 1173”。另一种可见光活化的光引发剂的商品名称为“IRGACURE 369”,购自Ciba Geigy Company。合适的可见光活化的引发剂的实例可参见美国专利4,735,632。
合适的引发剂体系可包括光敏化剂。代表性的光敏化剂可具有羰基或叔氨基或兼有这两种基团。较好的具有羰基的光敏化剂包括二苯酮、苯乙酮、苯偶酰、苯甲醛、邻氯苯甲醛、呫吨酮、噻吨酮、9,10-蒽醌或其它芳族酮。较好的具有叔胺的光敏化剂包括甲基二乙醇胺、乙基二乙醇胺、三乙醇胺、苯基甲基乙醇胺或苯甲酸二甲氨基乙酯。市售的光敏化剂包括以商品名称“Quanticure ITX”、“Quanticure QTX”、“Quanticure PTX”和“Quanticure EPD”购自Biddle SawyerCorp.的光敏化剂。
一般来说,以粘合剂前体各组分的重量计,光敏化剂或光引发剂体系的用量约为0.01-10重量%,更好为0.25-4.0重量%。
另外,较好在加入颗粒材料(如磨粒和/或填料颗粒)之前,将引发剂分散(宜均匀分散)在粘合剂前体中。
一般来说,较好将粘合剂前体置于辐射能,更好在紫外光或可见光作用下,以固化或聚合粘合剂前体。在某些情况下,一些磨粒和/或一些添加剂会吸收紫外光和可见光,这会阻碍粘合剂前体的固化过程。例如在二氧化铈磨粒的情况下就会发生这种现象。使用含磷酸酯的光引发剂,特别是含酰基氧化膦的光引发剂,能解决这个问题。这种酰基氧化膦的实例是2,4,6-三甲基苯甲酰二苯基氧化膦。它可以商品名称“LR 8893”购自BASF公司。其它市售酰基氧化膦的实例,包括购自Merck的“Darocur 4263”和“Darocur 4265”。
在以环氧化物或乙烯基醚为原料的粘合剂中,可用阳离子引发剂引发聚合。阳离子引发剂的实例包括鎓阳离子盐(如芳基锍盐)以及有机金属盐。其它例子可参见美国专利4,751,138(Tumey等)、5,256,170(Harmer等)、4,985,340(Palazotto)和4,950,696。
也可使用双固化和混合固化的光引发剂体系。在双固化的光引发剂体系中,固化通过相同或不同的反应机理在两个分开的步骤中进行。在混合固化的光引发剂体系中,在紫外光/可见光或电子束照射下,两种固化机理同时进行。
研磨复合体还可含有添加剂,如磨粒表面改性添加剂、钝化剂、水溶性添加剂、水敏剂(water sensitive agents)、偶合剂、填料、膨胀剂、纤维、抗静电剂、活性稀释剂、引发剂、悬浮剂、润滑剂、润湿剂、表面活性剂、颜料、染料、UV稳定剂、络合剂、链转移剂、促进剂、催化剂和活化剂。这些物质的用量应进行选择,以便提供所需的性质。
研磨复合体中可加入水和/或有机溶剂。选择水和/或有机溶剂的用量,以便获得所需的粘合剂前体和磨粒构成的涂料的粘度。一般来说,水和/或有机溶剂应与粘合剂前体相容。前体聚合后,可将水和/或有机溶剂除去,或保留在研磨复合体中。
烯键不饱和稀释剂或单体的实例可在美国专利5,236,472(Kirk等)中找到。在某些情况下,这些烯键不饱和稀释剂是有用的,因为它们可与水相容。其它活性稀释剂揭示于美国专利5,178,646(Barber等)中。
研磨复合体的构型有许多不同形式、有纹理的三维磨料磨具。代表性的例子示意性表示在图4-7中。
较好的研磨复合体可以是精确成形的(其定义见上面发明的概述)或不规则成形的,优选的是精确成形的研磨复合体。
一个研磨复合体可具有几何固体所具有的任何形状。该形体与背衬接触的底面,其表面积一般大于复合体顶端的表面积。复合体的形状可选自许多几何固体的形状,如立方体、圆柱体、棱柱体、长方体、棱锥体、棱台、圆锥体、半球体、锥台、十字体或具有顶端的柱状横截面的形体。棱锥形复合体可具有四个侧面、五个侧面或六个侧面。研磨复合体还可以是不同形体的混合物。研磨复合体可排列成行、螺线形或格子形,也可以呈无规排列。
研磨复合体的侧面可以与背衬垂直,倾斜于背衬或者宽度向顶端逐渐减小而呈渐尖形。如果研磨复合体的侧面是渐尖形的,就容易从制造模具的空腔中取出研磨复合体。渐尖的角度可以约为1-75度,较好约为2-50度,更好约为3-35度,最好约为5-15度。较小的角度是优选的,因为当复合体磨损时它可以形成较为一致的名义接触面积。因此,实际采用的渐尖角度一般是便于从制造模具中取出研磨复合体的大角度和足以形成均匀横截面的小角度相互权衡的结果。也可使用顶端横截面大于底面横截面的研磨复合体,但是其制造需用与简单模制法不同的方法。
在一个磨料磨具中,各个研磨复合体的高度较好相同,但也可以有不同的高度。研磨复合体相对于背衬或相对于复合体之间结合区的高度一般约小于2000微米,较好约为25-200微米。
各研磨复合体的基面可以相互毗连,或者相邻研磨复合体的基面也可以相隔一定的距离。在某些实施方案中,相邻研磨复合体间的实体接触不超过每个接触的研磨复合体垂直高度的33%。毗连研磨复合体间的实体接触程度更好为每个接触研磨复合体垂直高度的1-25%。这种毗连的定义也包括相邻的研磨复合体共有一块共同的研磨复合体接合区或桥连结构的排列,这种桥连结构中相邻研磨复合体面对的侧面相互接触并在其中延伸。较好的是,接合区的高度不超过每个相邻研磨复合体垂直高度的33%。研磨复合体接合区是用与制造研磨复合体相同的淤浆制成的。“相邻”的两个研磨复合体是指在这两个研磨复合体的中心连线上没有插入另一个研磨复合体。最好至少有一部分研磨复合体相互隔开,以便在研磨复合体的突起部分之间形成凹陷区。
研磨复合体的线密度可以约为1个复合体/厘米至约100个复合体/厘米,可以改变线密度,使研磨复合体在一处的密度大于在另一个处的密度。例如,在磨料磨具的中央其密度可以最大。复合体的面密度可为约1-10,000个复合体/cm2。
还可以露出一些背衬区,即磨料涂层没有覆盖整个背衬表面。这种排列进一步描述在美国专利5,014,468(Ravipati等)中。
研磨复合体较好按预定的图样配置在背衬上,或者配置在背衬上的预定位置。例如,通过在背衬和具有空腔的制造模具之间加入淤浆而制得的磨料磨具中,研磨复合体分布的预定图样相应于制造模具上的空腔分布图样。因此,这种图样能一个磨具接一个磨具地复制下去。
在一个预定图样的实施方案中,研磨复合体排成阵列,这是指研磨复合体按一定规则排列,例如对齐的行和列,或交替错开的行和列。如有必要,一排研磨复合体可直接对齐在第二排研磨复合体的正面。较好的是,一排磨复合体与第二排研磨复合体错开。
在另一个实施方案中,研磨复合体可按“无规”的阵列或图样排列。这是指研磨复合体不按上述的行列等规则排列。例如,研磨复合体可按1995年3月23日公布的PCT WO 95/07797(Hoopman等)和1995年8月24日公布的PCT WO95/22436(Hoopman等)所述的方式排列。然而,应该理解这种“无规”方式的排列是一种预定图样的排列,因为磨料磨具上研磨复合体的位置是预定的,这些位置相应于制造该磨料磨具时所用制造模具上的空腔位置。
带纹理的三维磨料磨具还可具有各种磨料涂层组成。例如,磨盘的中心可含有与磨盘外部区域不同(如“更软、更硬,或更易或更少磨耗)的磨料涂层。
图4中磨料磨具40包括固定或粘结在背衬42上的棱锥形研磨复合体41。在相邻研磨复合体之间有凹陷部分或谷43。图中还显示了第二排棱锥形研磨复合体与第一排研磨复合体错开排列。在磨具对晶片进行平整的过程中,棱锥研磨复合体的最远点即顶端与晶片表面接触。
图5中研磨复合体50是不规则形状的棱锥研磨复合体。在这个图中,研磨复合体具有棱锥形形状,而限定棱锥体的界面是不规则形状的。这种不完美的形状可能由于在粘合剂前体固化或凝固之前淤浆的流动而使初始形状变形造成的。不规则的形状是指形体的表面不直、不清晰、不可重现、不精确或不完美。
图6中的磨料磨具60具有棱台形研磨复合体61。
图7中的研磨复合体70具有“十字”形研磨复合体71和“x”形研磨复合体72。这些研磨复合体排列成排。相邻排中的研磨复合体错开排列,不直接对齐。另外,各排研磨复合体被间距或凹谷隔开。凹谷或间距与研磨复合体高度相比可以很小。研磨复合体的另一种排列或图形与图6相似,但是间隔的各排研磨复合体具有“十字”形或“x”形的形状。在这种排列中,奇数行中的研磨复合体仍与偶数行的研磨复合体相互错开。在上述十字形或“x”形研磨复合体的排列中,形成十字形或“x”形的线的长度较好约为750微米,形成十字形或“x”形的线的宽度约为50微米。
具有精确成形研磨复合体的磨料磨具,其较好的制造方法揭示在美国专利5,152,917(Pieper等)和5,435,816(Spurgeon等)中。合适方法的其它描述可参见美国专利5,437,754(Calhoun)、5,454,844(Hibbard等)和5,304,223(Pieper等)。研磨复合体的制造应在净化的环境(如100级、1000级或10000级净化室内)中进行,减少磨料磨具的污染。
一种合适的方法包括制备含有磨粒、粘合剂前体,或者还含有添加剂的淤浆;提供具有一个正面的制造模具;将淤浆加入具有许多空腔的制造模具空腔中;将背衬放在制造模具被淤浆覆盖的表面上;使粘合剂前体至少部分固化或凝胶化,然后使磨具与制造模具的空腔分离,形成研磨复合体。
淤浆是用合适的混合技术将粘合剂前体、磨粒和可能有的添加剂混合在一起制成的。混合技术的实例包括低剪切混合和高剪切混合,用高剪切混合较好。超声波能量也可与混合步骤结合使用,以降低淤浆的粘度(在磨料磨具制造过程中,粘度是重要的)并/或改变所得磨料淤浆的流变性。混合淤浆时还可将其加热至30-70℃,进行微流化(microfluidized)或球磨。
一般将磨粒逐渐加入粘合剂前体中。所得淤浆应是粘合剂前体、磨粒和可能有的添加剂的均匀混合物。如有必要,可加入水和/或其它溶剂降低粘度。在混合步骤之中或之后,可对淤浆抽真空减少空气泡的形成。
涂覆工位可以是任何常规的涂覆装置,如落模式涂覆器、刮涂器、帘流涂覆器、真空模式涂覆器或模式涂覆器。较好的涂覆技术例如是在美国专利3,594,865、4,959,265(Wood)和5,077,870(Millage)中所述的采用真空带液体的模(vacuum fluid bearing die)。涂覆过程中,应尽量减少气泡的形成,但是在某些情况下,将淤浆涂覆在制造模具上时在淤浆中引入气泡却是有益的。夹杂的空气可在磨料涂层中形成空隙(如空穴),就可能会提高研磨复合体的磨耗性。另外,在混合或涂覆过程中也可将空气泵入淤浆中。
对制造模具涂覆上淤浆后,用任何方法使背衬与淤浆接触,使淤浆润湿背衬的表面。用接触夹辊使淤浆与背衬接触,将所得的结构压在一起。夹辊可用任何材料制成;然而,夹辊较好用结构材料,如金属、金属合金、橡胶或陶瓷制成。夹辊的硬度可以为30-120肖氏硬度(durometer),一般为60-100肖氏硬度,较好约为90肖氏硬度。
然后,用一能源将能量传递到淤浆中,使粘合剂前体至少部分固化。能源的选择部分取决于粘合剂前体的化学性质、制造模具的类型和其它过程条件。所用能源不应使制造模具和背衬显著变质。粘合剂前体的部分固化是指将粘合剂前体聚合到淤浆不能流动的状态。如有必要,从制造模具上取下后,可采用任何常规的能源使粘合剂前体完全固化。
粘合剂前体至少部分固化后,将制造模具和磨料磨具分开。如果粘合剂前体没有完全固化,则经历一定时间和/或经过能源照射后可使粘合剂前体完全固化。接着,将制造模具重新绕在心轴上以便重复使用,并将磨料磨具缠绕在另一个心轴上。
在所述第一种方法的另一种变化形式中,将淤浆涂覆在背衬上,而不是涂覆在制造模具的空腔内。然后使涂覆淤浆的背衬与制造模具接触,使淤浆流入制造模具的空腔内。制造磨料磨具的其余步骤与上述相同。
最好用辐射能量来固化粘合剂前体。辐射能可透过背衬或透过制造模具。背衬和制造模具不应明显地吸收辐射能。另外,辐射能源不得对背衬和制造模具有显著损害作用。例如,紫外光可透过聚酯背衬。如果制造模具用某些热塑性材料(如聚乙烯、聚丙烯、聚酯、聚碳酸酯、聚醚砜、聚甲基丙烯酸甲酯、聚氨酯、聚氯乙烯或它们的混合物)制成,则紫外光或可见光可透过制造模具进入淤浆中,对于热塑性材料为原料的制造模具,制造磨料磨具时应控制操作条件,以免产生过多的热量。如果有过多热量产生,会使热塑性工具变形乃至熔化。
能源可以是热能源或辐射能源,如电子束、紫外光或可见光。所需的能量大小取决于粘结剂前体中活性基团的化学性质以及粘合剂淤浆的厚度和密度。若用热能,大约50-250℃的炉温和15分钟至16小时的加热时间一般是足够的。适用的电子束辐射或电离辐射的剂量值约为0.1-10兆拉德,较好为1-10兆拉德。紫外光辐射是指波长约为200-400纳米,较好约为250-400纳米的辐射。可见光是指波长为400-800纳米,较好为400-550纳米的辐射。
所产生的固化淤浆即研磨复合体具有与制造模具相反的形状。研磨复合体在制造模具上至少部分固化或凝固后,就具有精确而预定的形状。
制造模具具有一个正面,它含有许多空腔即凹陷。这些空腔与要成形的研磨复合体的形状基本是相反的,用于产生研磨复合体的形状和部位。
这些空腔可具有与研磨复合体相反的几何形状。选择空腔的大小使得在每平方厘米内获得所需数目的研磨复合体。这些空腔可以呈点状散布,其中相邻的空腔相互毗连,邻接的部位是相邻空腔凹陷的壁汇合至制造模具平的共同主表面,该主平面部位是在各空腔相邻的部位。
制造模具的形式可以是带、片材、连续片材或卷材、涂覆辊(如凹版印刷辊)、安装在涂覆辊上的套筒或模头。制造模具可以由金属(如镍)、金属合金或塑料制成。制造模具可以用常规的技术制造,包括光刻法、滚花法、雕刻法、滚铣法、电铸法、金刚石车削法等。例如,铜模具可用金刚石刀具车削而成,然后可在铜模具上电镀出镍金属模具。制造模具的制造可参见美国专利5,152,917(Pieper等)、5,489,235(Gagliardi等)、5,454,844(Hibbard等)、5,435,816(Apurgeon等)、PCT WO95/07797(Hoopman等)和PCT WO 95/22436(Hoopman等)。
可从金属母模上复制热塑性模具。母模具有制造模具所需的反形。母模较好用金属制成,如镀镍的铝、铜或青铜。可以将热塑性片材与母模一起加热,将两者压在一起,从而用母模对热塑性材料进行压花。热塑性材料也可挤塑或浇铸在母模上,然后进行压制。将热塑性材料冷却到不能流动的状态,然后与母模分离,获得制造模具。
合适的热塑性制造模具可参见美国专利5,435,816(Spurgeon等)。可用于制造制造模具的热塑性材料的实例包括聚酯、聚丙烯、聚乙烯、聚酰胺、聚氨酯、聚碳酸酯或它们的混合物。热塑性制造模具较好含有一些添加剂,如抗氧化剂和/或紫外光稳定剂。这些添加剂可延长制造模具的使用寿命。制造模具还可含有剥离涂层,以便容易地将磨料磨具从制造模具上剥离。这些剥离涂层的实例包括聚硅氧烷和含氟化合物。
有许多方法制造含不规则形状研磨复合体的磨料磨具。虽然是不规则形状,但这些研磨复合体仍是按预定的图样制成的,因为研磨复合体的位置是预定的。在一种方法中,将淤浆涂覆在制造模具的空腔中,形成研磨复合体。制造模具可以是与上述制备精确成形研磨复合体时相同的制造模具。然而,在将粘合剂前体固化或凝固到从制造模具上取下时足以基本上保持其形状之前,就从制造模具上取出淤浆。然后才将粘合剂前体固化或凝固。因为粘合剂前体不是在制造模具的空腔中固化的,所以淤浆会发生流动,使生成的研磨复合体变形,因而形状不规则。
这种磨料磨具的制造方法可参见美国专利4,773,920(Chasman等)和5,014,468(Ravipati等)。
在该方法的一个变化形式中,可将淤浆涂覆在背衬上。然后将背衬与制造模具接触,使制造模具的空腔中填入淤浆。制造磨料磨具的其余步骤与上述相同。在制成磨料磨具后,在转变(converting)前可将其弯曲和/或加湿。
在另一种制造不规则形状研磨复合体的方法中,可将淤浆涂覆在凹版印刷辊的表面上。再将背衬与凹版印刷辊接触,此时淤浆润湿背衬。然后凹版印刷辊使淤浆外形具有一定的形状即纹理。再从凹版印刷辊上取下淤浆/背衬的结合物。然后使这个结合物处于使粘合剂前体固化的条件下,结果其中的淤浆就形成研磨复合体。这种方法的一种变化形式是将淤浆涂覆在背衬上,再使背衬与凹版印刷辊接触。
凹版印刷辊可产生所需的研磨复合体形状,如球台、棱锥、棱台、圆锥、立方体、长方体或柱体。研磨复合体分布的图样可以是六边形排列、脊形或点阵形,还可以是由一定几何形体(如棱柱)构成的脊形。凹版印刷辊可产生在相邻研磨复合体间存在接合区的图样。这种接合区可含有磨粒和粘合剂的混合物。或者,凹版印刷辊可产生在相邻研磨复合体之间露出背衬的图样。类似地,凹版印刷辊可产生由不同形状研磨复合体构成的图样。
另一种方法是通过筛网来喷或涂淤浆,产生图形和研磨复合体。然后使粘合剂前体固化或凝固,形成研磨复合体。采用筛网可产生所需的研磨复合体形状,如球台、棱锥、棱台、圆锥、立方体、长方体和柱体。研磨复合体分布的图样可以是六边形排列、脊形或点阵形,还可以是由一定几何形体(如棱柱)构成的脊形。采用筛网还可产生在相邻研磨复合体间存在接合区的图样。这种接合区可含有磨粒和粘合剂的混合物。或者,采用筛网可产生在相邻研磨复合体间露出背衬的图样。类似地,采用筛网可产生由不同形状研磨复合体构成的图样。这种方法描述在美国专利3,605,349(Anthon)中。
另一种制造带纹理的三维磨料磨具的方法是使用压花背衬。简单地说,将淤浆涂覆在这种背衬上。淤浆沿着压花背衬的轮廓,形成带纹理的涂层。可用任何合适的技术将淤浆涂覆在压花背衬上,如辊涂、喷涂、模式涂覆或刮涂。淤浆被覆在压花背衬上后,将所得的结合物置于合适的能源下,引发固化或聚合,形成研磨复合体。涂覆在压花背衬上的研磨复合体的实例可参见美国专利5,015,266(Yamamoto等)。
另一种用压花背衬制造磨料磨具的方法描述在美国专利5,219,462(Bruxvoort)中。将淤浆涂在压花背衬的凹陷部分中。淤浆中含有磨粒、粘合剂前体和膨胀剂。将所得的结构置于膨胀剂能使淤浆膨胀出背衬正面的条件下。然后将粘合剂前体固化,形成研磨复合体。
压花背衬技术的一种变化形式是使用穿孔背衬,该背衬的正面上粘接有磨料涂层。该穿孔背衬具有一系列预定位置的穿透背衬厚度方向的孔或空腔。将淤浆涂覆(如刮涂)在背衬上。这些填有淤浆的空腔必然会产生带纹理的磨料涂层。如果用适当的载体支承该磨料磨具,则在固化步骤后可以除去该穿孔的背衬。
制造磨料磨具的另一种方法是使用热塑性粘合剂。磨具可用或不用背衬制造。一般用常规技术将热塑性粘合剂、磨粒和可能加入的添加剂配混在一起,形成混合物,将该混合物加入挤塑机中,挤塑成任意的形体如一颗粒的或一段段的料。然后再按照某种常规方法制造磨料磨具。
例如,用空腔形状基本上与磨料磨具表面所需形状相反的模具注塑或压塑该混合物,也可制成磨料磨具。也可将混合物加热到形成熔融淤浆的温度,然后将其加入模具,再冷却。或者,也可将粘合剂加热到能流动的程度,然后加入磨粒和其它添加剂,形成熔融的淤浆,随后使用常规的方法将该熔融的淤浆转变成研磨复合体。
实施例测试程序I测试程序I测定各种研磨磨具从晶片表面磨削金属的能力。本测试程序模拟半导体晶片的平整过程。用于本测试程序的晶片表面是具有铜或铝(10,000厚的层)表面的二氧化硅基晶片。
涂覆金属的晶片是用直径为100mm,厚度约为0.5mm的单晶硅基单元制得的,后者购自位于San Jose,CA的Waferner或Silicon Valley Microelectronics。在沉积金属层前,在硅晶片表面上生长一层热氧化物(即热生长的氧化硅)。该热氧化物层约5,000厚。在某些情况下,在沉积金属前先在该热氧化硅层上沉积一层钛(Ti)或氮化钛粘结/阻挡层。Ti层的厚度约为50-500,氮化钛层的厚度约为100-3,000。随后使用物理气相沉积法(PVD)在硅基片上沉积一层均匀的铜或铝。铜或铝层的厚度使用四点探针测得。
使用的试验机为与图3中所述设备相似的6Y-1改进型Strausbaugh LappingMachine。将晶片工件支承在泡沫塑料载体(DF 200,购自Rodel of Newark,DE)上并将该复合体置于带弹簧的塑料扣环中。将各实施例的磨料磨具粘合在PCF 20支承垫上,再固定在试验机的台板上。
将支承晶片的载体头与磨料磨具接触,随后使晶片约以100rpm的速度旋转,使磨料磨具约以67rpm的速度旋转。晶片和磨料磨具均以顺时针方向旋转。除了旋转以外,晶片还沿距磨料磨具边缘约13mm起始的一个弧移动(每9秒移动约31mm)。除非另有说明,磨料磨具与载体头相互接触的压力约为350kPa(50磅)。以大约80ml/min的流量将过氧化氢溶液(15重量%H2O2的去离子水溶液)通到晶片和磨具的界面上。使用磨料磨具将晶片抛光1分钟(60秒)。抛光以后,从支承载体上取下晶片,用去离子水漂清后干燥。
测量金属层厚度的改变,计算金属的磨削速率。使用相同的四点探针在同一位置测定初始(即抛光前)和最终(即抛光后)的厚度。从两次至五次的读数取平均得出磨削速度,单位为每分钟(/min)。
用实施例1-9的磨料磨具抛光具有沉积金属层的晶片前,先对具有热生长氧化硅连续层的晶片抛光1-4分钟。使用去离子水和过氧化氢作为工作液。在与金属涂覆的试验晶片相似的条件下磨削此氧化硅晶片。
表1中的材料商品名称用于描述磨具1-14的制造。
表1 所用材料的商品名称
<p>依次配合18.75克SR 492、56.25克SR 256、1.5克D 111和2.4克LR8893,再用高剪切混合机混合1分钟。在搅拌的同时,加入100克在500℃经过4小时加热的ALT,并将磨料淤浆再混合10分钟。根据制造磨料磨具的通用程序(见后)将所得磨料淤浆涂覆在EAA上,制得磨具1依次配合56.29克SR 492、168.75克SR 256、15.01克D 111和7.21克LR 8893,再用高剪切混合机混合1分钟。在搅拌的同时,加入300克ALA,并将磨料淤浆再混合10分钟。根据制造磨料磨具的通用程序将所得磨料淤浆涂覆在EAA上,制得磨具2。
依次配合18.75克SR 351、56.25克SR 256、5.83克FP4和2.9克LR8893,再用高剪切混合机混合1分钟。在搅拌的同时,加入400.58克CEO,并将磨料淤浆再混合10分钟。根据制造磨料磨具的通用程序将所得磨料淤浆涂覆在EAA上,制得磨具3。
依次配合18.75克SR 351、56.28克SR 256、3.26克D 111和2.40克LR8893,再用高剪切混合机混合1分钟。在搅拌的同时,加入131.01克AAF,并将磨料淤浆再混合10分钟。根据制造磨料磨具的通用程序将所得磨料淤浆涂覆在EAA上,制得磨具4。
依次的合18.76克SR 351、56.28克SR 256、8.0克D 111和2.40克LR8893,再用高剪切混合机混合1分钟。在搅拌的同时,加入160克在400℃经4小时加热的ALT,并将磨料淤浆再混合10分钟。根据制造磨料磨具的通用程序将所得磨料淤浆涂覆在EAA上,制得磨具5。
根据测试程序I对磨具1-5进行试验。对于磨具1,用同样的磨料磨具抛光10片不同的金属试验晶片(编号1-1至1-10),在抛光第一块金属试验晶片前先对热氧化物晶片抛光2分钟,随后依次在两次金属试验晶片抛光之间再对一块热氧化物晶片抛光4分钟。对于磨具2,在抛光金属试验晶片前先对一块热氧化物晶片抛光2分钟。对于磨具3,在抛光金属试验晶片前先对一块热氧化物晶片、一块金属晶片和第二块热氧化物晶片抛光1分钟。对于磨具4和磨具5,在抛光金属试验晶片前先对一块热氧化物晶片抛光1分钟。对于磨具4,对第二块热氧化物晶片和金属试验晶片抛光1分钟。对于磨具3,磨料磨具以约80rpm的速度旋转。表2列出了晶片上金属层的种类、载体头和磨料磨具之间的压力和金属磨削速率。
表2
用购自WYCO Corp.,Phoenix,AZ的商品名为WYCO RST PLUS的光干涉仪测定用磨具1(晶片#5)、磨具3处理的试验晶片和用磨具4处理的第二金属试验晶片的表面光洁度。测得的峰谷距离(Rt)分别为962、204和210。
依次配合7.50克CN 980、45.00克SR 256、3.75克SR 339、18.75克SR351、7.01克FP4和2.40克LR 8893,再用高剪切混合机混合1分钟。在搅拌的同时,加入467.30克CEO,并将磨料淤浆再混合10分钟。根据制造磨料磨具的通用程序将所得磨料淤浆涂覆在PVDC上,制得磨具6。
依次配合7.50克CN 980、48.75克SR 256、18.75克SR 351、5.31克D 111和2.40克LR 8893,再用高剪切混合机混合1分钟。在搅拌的同时,加入151.60克AAF,并将磨料淤浆再混合10分钟。根据制造磨料磨具的通用程序将所得磨料淤浆涂覆在PVDC上,制得磨具7。
根据测试程序I在铜上试验磨具6和7。对于实施例6和7,在抛光金属试验晶片前,先对热氧化物晶片抛光1分钟(60秒)。每个实施例试验好几片试验晶片(即同一磨料磨具使用多次),对每次试验计算两个数据点取平均。表3列出了各次试验的金属磨削速率。
表3
依次配合37.51克CD 501、112.51克SR 256、16.53克D 111和4.80克LR8893,再用高剪切混合机混合1分钟。在搅拌的同时,加入400.00克AAF,并将磨料淤浆再混合10分钟。根据制造磨料磨具的通用程序将所得磨料淤浆涂覆在PVDC上,制得磨具8。
依次配合15.02克CN980、97.20克SR 256、37.50克SR 351、14.08克FP4和4.80克LR 8893,再用高剪切混合机混合1分钟。在搅拌的同时,加入938克CEO,并将磨料淤浆再混合10分钟。根据制造磨料磨具的通用程序将所得磨料淤浆涂覆在PVDC上,制得磨具9。
根据测试程序I在铜上试验磨具8和9,但是使用不同的工作流体。对于所有的试验,在抛光金属试验晶片前,先用去离子水作为工作流体对热氧化物晶片抛光1分钟(60秒)。每次试验均使用新的磨料磨具,但是在使用过氧化氢作为工作液的磨具9的情况下,使用经过硝酸溶液试验的同一磨具进行试验。下表4列出了使用的工作流体和各次试验的磨削速率。
各种工作流体的制备如下H2O2溶液是将30重量%的过氧化氢用相同重量的去离子水稀释得到的。NH4OH溶液是将10ml 30重量%氢氧化铵与足量的去离子水混合,使最终的总体积为1000ml而制备的。NH4OH/K3Fe(CN)6溶液是先制得上面所述的NH4OH溶液,随后将990g该溶液与10g K3Fe(CN)6混合,搅拌至该盐完全溶剂而制备的。HNO3溶液是将10ml 70重量%HNO3的水溶液与足量的去离子水混合,形成1000ml的总体积后得到的。HNO3/苯并三唑溶液是先制得上述HNO3溶液,随后将999g该溶液与1g苯并三唑混合,搅拌至苯并三唑溶解而得到的。
表4
测试程序II使用热沉积法在4英寸硅晶片表面先形成约5,000厚的二氧化硅。通过蚀刻出一系列深度约为5,000的100微米正方形形成晶片图样。随后在有此图样的晶片上用PVD法沉积200厚的钛,接着PVD沉积约10,000厚的铜,制得带图样的铜试验晶片。
将试验晶片抛光7.5分钟。在抛光过程中向晶片施加含15重量%过氧化氢、0.425重量%磷酸、0.2重量%苯并三唑和8重量%聚乙二醇(分子量600)的工作液。除了蚀刻的100微米正方形区域外,晶片的许多区域上的铜和钛被磨削除去,露出氧化硅阻挡层。
下列一些实施例说明试验本发明磨具能将沉积铜的硅晶片平整至露出热氧化物阻挡层。
依次配合60.01克SR 9003、90.03克SR 339、11.12克D 111和4.80克LR8893,再用高剪切混合机混合1分钟。在搅拌的同时,加入370.01克TRS 2039,并将磨料淤浆再混合10分钟。随后根据制造磨料磨具的通用程序使用聚丙烯制造模具(含圆柱体形空腔)将该磨料淤浆涂覆在F1上,制得磨具10。所述圆柱体的直径约175微米,高约2.5密尔,支承面(bearing area)比例约为20%。
根据测试程序II用磨具10进行试验,测量晶片上100微米正方形的轮廓,以测定铜被除去露出二氧化硅阻挡层的表面上表面凹陷范围。使用Tencor P-22轮廓曲线仪测量该表面凹陷。在晶片上如上测定6个不同的位置。结果列于表5。
表5
测试程序III使用热沉积法在4英寸硅晶片表面先形成约5,000厚的二氧化硅。通过蚀刻出一系列深度约为5,000的100微米正方形形成晶片图样。随后在有此图样的晶片上PVD沉积200厚的钛,接着PVD沉积约10,000厚的铜,制得有图样的铜试验晶片。
将试验晶片抛光3.0分钟。在抛光过程中向晶片施加含3.3重量%过氧化氢、93.1重量%水、3.0重量%(NH4)2HPO4、0.5重量%柠檬酸铵和0.1重量%BTA的工作液。除了蚀刻的100微米正方形区域外,晶片的许多区域上的铜和钛被磨削除去,露出氧化硅阻挡层。
依次配合30.0克SR 9003、45克SR 339、6.9克DISPERBYK 111和2.4克LR 8893,再用高剪切混合机混合1分钟。在搅拌的同时,加入370.01克TRS2039,并将磨料淤浆再混合10分钟。随后根据制造磨料磨具的通用程序使用聚丙烯制造模具(含圆柱体形或柱形空腔)将该磨料淤浆涂覆在F1上,制得磨具11。磨具11是使用具有200微米柱形空腔的制造模具制得的。根据测试程序II用磨具11进行试验,测量晶片上100微米正方形的轮廓,以测定铜被除去露出二氧化硅阻挡层的表面上的表面凹陷范围。使用Tencor P-22轮廓曲线仪测定该表面凹陷。在晶片上如上测定4个不同的位置。结果列于表6。
表6
<p>其它磨料磨具的制造描述如下如磨具11一样制得磨具12,但是使用具有960微米柱形空腔的制造模具;如制造磨具11一样制得磨具13,但是使用具有1000微米柱形空腔的制造模具,制造模具更详细的描述见后;依次配合30.0克SR 90003、45克SR 3392、1.53克油酸、3.56克B-CEA、2.4克LR 8893和144.5克TRS 2039。随后根据制造磨料磨具的通用程序使用聚丙烯制造模具(含圆柱体形或柱形空腔)将该磨料淤浆涂覆在F1上,制得磨具14。磨具14是用具有200微米柱形空腔的模具制得的。
如制造磨具14一样制得磨具15,但是使用具有960微米柱形空腔的制造模具。用于平整半导体晶片表面的磨料磨具的制造方法通常包括一个过滤步骤。将磨料淤浆涂覆在制造模具中以前,用60微米或80微米的过滤器对磨料淤浆进行过滤。
制备磨料磨具的通用程序磨料磨具1-15是用下列方法制得的将聚丙烯材料浇注在金属母模中制得聚丙烯制造模具,所述母模具有由一群相邻的棱台组成的浇注表面。形成的制造模具具有棱台形的空腔。相邻棱台底面间的间距不超过约510微米(0.020英寸)。各棱台的高度约为80微米,底边长约为178微米,顶边长约为51微米。
200微米的柱图样是圆柱的三角形排列,该圆柱的直径为200微米,高60微米,圆心至圆心的距离为373微米。
960微米的柱图样是圆柱的三角形排列,该圆柱的直径为960微米,高75微米,圆心至圆心的距离为1500微米。
1000微米的柱图样是长方柱的三角形排列,该长方柱底面的每边长为1000微米,高100微米,中心至中心的距离为3400微米。所有长方柱的正方形底面均具有相同的取向,其一边与连接排列三角形两点之间的连线中的一条平行。
研磨复合体排列的线密度约为50排/厘米。用掩模型压敏粘合带将制造模具固定在金属载板上。使用高剪切混合机将由各实施例所列组分组成的磨料淤浆混合至均匀。随后通常将该磨料淤浆用60微米或80微米的过滤器过滤。用橡胶刮浆刀将磨料淤浆填入制造模具的空腔中,再将经过底涂的聚酯背衬与制造模具空腔中的磨料淤浆接触,接着令其通过台顶式实验室层压机(购自Chem Instruments,#001998型)。此时连续地喂入两个压力约为280-560Pa(40-80psi),速度设置为2-7的橡胶压辊之间。将一块石英板置于磨具上方。让模具和背衬及磨料淤浆一起在2个购自American Ultraviolet Company的掺铁灯泡或2个购自Fusion Systems Inc.的紫外灯(“V”灯泡)下通过,以固化其中的磨具,这两种灯的功率均约157.5瓦/厘米(400瓦/英寸)。射线穿透薄膜背衬。通过速度约为10.2-13.7米/分钟(15-45英尺/分钟),并且最多通过2次。
为了制备用于测试的磨料磨具,将磨料磨具层压在购自美国3M公司的压敏粘合带上。然后冲切出直径30.5厘米(12英寸)的圆形测试样品供试验用。
平整过程结束后,通常使用本领域已知的方法清洗经平整的晶片。一般来说,选择清洗介质使之能除去碎片而基本上不损伤晶片表面。合适的清洗介质的例子包括自来水、蒸馏水、去离子水、有机溶剂等。它们可单独使用或组合使用。如有必要,清洗介质中可含有肥皂或其它添加剂帮助清洗。
通常,本发明磨料磨具用于平整多于一片的半导体晶片。在连续进行两次平整步骤之间对磨料磨具进行修整处理也包括在本发明范围内。该处理步骤可清除“磨损的磨粒”和/或除去任何不合需要的碎片,从而提高磨料磨具的磨削能力和被平整晶片表面的质量。在这些情况下,磨料磨具的表面可用众所周知的常规技术进行处理,包括使其研磨表面与金刚石修整工具、刷、粘合磨具、涂覆磨具、金属棒、水流等接触。其它的技术包括使其接受激光或电晕能量的作用(如使用购自Sherman Treaters,Ltd.,United Kingdom的Sherman电晕处理设备)。对磨具进行修整处理并不总是适宜的,因为这需要时间还增加成本。在连续的两次平整步骤之间不对磨具进行修整处理也在本发明范围内。
权利要求
1.一种对制造半导体器件用晶片的表面进行修整的方法,它包括如下步骤a)提供一种晶片,它包括至少一种具有蚀刻形成图样的表面的第一材料,和至少一种分布在第一材料所述表面上的第二材料;b)使晶片上的第二材料与固定在磨料磨具上的许多三维研磨复合体进行接触,所述三维研磨复合体包括许多粘固和分散在粘合剂中的磨粒;c)在第二材料与所述许多研磨复合体接触的同时,相对移动晶片,直至晶片的露出表面平整并且至少包括一个第一材料露出区和一个第二材料露出区。
2.一种对制造半导体器件用晶片的表面进行修整的方法,它包括如下步骤a)提供一种晶片,它包括至少一种具有蚀刻形成图样的表面的介电材料,和至少一种分布在所述至少一种介电材料所述表面上的导电材料;b)使晶片上的导电材料与固定在磨料磨具上的许多三维研磨复合体进行接触,所述三维研磨复合体包括许多粘固和分散在粘合剂中的磨粒;c)在导电材料与所述许多研磨复合体接触的同时,相对移动晶片,直至晶片的露出表面平整并且至少包括一个导电材料露出区和一个介电材料露出区。
3.一种对制造半导体器件用晶片的表面进行修整的方法,它包括如下步骤a)提供一种晶片,它包括至少一种具有蚀刻形成图样的表面的介电材料,该介电材料上覆盖有至少一层中间层,并且该中间层被导电材料所覆盖;b)使晶片上的导电材料与固定在磨料磨具上的许多三维研磨复合体接触,所述三维研磨复合体包括许多粘固和分散在粘合剂中的磨粒;c)在导电材料与所述许多研磨复合体接触的同时,相对移动晶片,直至晶片的露出表面至少包括一个导电材料露出区和一个介电材料露出区。
4.如权利要求3所述的方法,其特征在于所述中间层材料是粘结/阻挡层。
5.一种对制造半导体器件用晶片的露出主表面进行修整的方法,它包括如下步骤a)提供一种包括至少第一材料和第二材料的晶片,该第一和第二材料各自具有一个表面,两种材料中的至少一种具有一个蚀刻形成图样的表面,所述至少第一材料和第二材料上分布有外层材料;b)使晶片的外层材料与固定在磨料磨具上的许多三维研磨复合体接触,所述三维研磨复合体包括许多粘固和分散在粘合剂中的磨粒;c)在外层材料与所述许多研磨复合体接触的同时,相对磨料磨具移动晶片,直至晶片的露出表面平整并且包括一个外层材料露出区和至少一个第一材料露出区和一个第二材料露出区。
6.如权利要求1、2、3或5所述的方法,它还包括在工作液存在的条件下使晶片和磨料磨具相接触。
7.如权利要求6所述的方法,其中工作液是水溶液。
8.如权利要求6所述的方法,其中工作液包含鳌合剂、氧化剂、离子缓冲剂、钝化剂或其混合物。
9.如权利要求1、2、3或5所述的方法,其中步骤c)中露出的晶片表面的Rt值小于4,000。
10.如权利要求1、2、3或5所述的方法,其中所述许多研磨复合体是精确成形的。
11.如权利要求1、2、3或5所述的方法,其中磨料磨具装接在基垫上。
12.如权利要求11所述的方法,其中所述基垫是聚碳酸酯片和聚氨酯泡沫材料的层压物。
13.如权利要求1、2、3或5所述的方法,其中所述第二材料、外层材料或导电材料是金、银、铝、钨、铜或其合金。
14.一种适用于制造半导体的晶片,它是用权利要求1、2、3或5所述的方法制得的。
15.一种对制造半导体器件用晶片的表面进行修整的方法,它包括如下步骤a)提供一种晶片,它包括至少一种具有蚀刻形成图样的表面的介电材料,该介电材料上覆盖有至少一层中间层,并且该中间层被导电材料所覆盖;b)使晶片上的导电材料与固定在磨料磨具中的许多三维研磨复合体接触,所述许多研磨复合体包括许多粘固和分散在粘合剂中的磨粒;c)在导电材料与所述许多研磨复合体接触的同时,相对移动晶片,直至晶片的露出表面至少包括一个导电材料露出区和一个中间层露出区。
全文摘要
公开了一种对制造半导体用晶片的表面进行修整的方法。它可用于修整具有含一层第二材料的未修整露出表面的晶片,第二材料分布在晶片上至少一种第一材料的离散形貌区上。方法的第一步是将晶片露出表面与具有许多三维研磨复合体露出表面的磨料磨具接触并相对移动,该研磨复合体含许多粘固和分散在粘合剂中的磨粒,如此除去第二材料。在第二步,继续接触并相对移动,直至晶片的露出表面包括至少一个第一材料露出区和一个第二材料露出区。
文档编号H01L21/768GK1254441SQ9880467
公开日2000年5月24日 申请日期1998年4月30日 优先权日1997年4月30日
发明者D·A·卡萨基, H·K·克兰兹, T·E·伍德, L·C·哈迪 申请人:美国3M公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1