一种碳化硅基pin结构近红外光电二极管及其制备方法

文档序号:10689176阅读:314来源:国知局
一种碳化硅基pin结构近红外光电二极管及其制备方法
【专利摘要】本发明公开了一种碳化硅基PIN结构近红外光电二极管,本发明还公开了碳化硅基PIN结构近红外光电二极管的制备方法,首先对N型单晶碳化硅衬底进行清洗,清洗后用氮气吹干待用,然后对N型单晶碳化硅衬底进行沉积,沉积出本征晶体锗薄膜;其次对得到的本征晶体锗薄膜再次进行沉积,沉积出P型重掺杂晶体锗薄膜,再次对得到的带有P型重掺杂晶体锗薄膜的样品在N型单晶碳化硅面沉积ITO电极,接下来对得到的样品在P型重掺杂晶体锗薄膜上沉积ITO电极,最后进行退火以形成欧姆接触,然后利用网版印刷法于正背面将银导线与ITO电极连接形成引出电极,本发明解决了现有技术中存在的由于碳化硅材料禁带宽而使只能受控于紫外光源而不能近红外通信光源的问题。
【专利说明】
一种碳化硅基PIN结构近红外光电二极管及其制备方法
技术领域
[0001]本发明属于可扩展碳化硅光控二极管的光谱应用技术领域,具体涉及一种碳化硅基PIN结构近红外光电二极管,本发明还涉及碳化硅基PIN结构近红外光电二极管的制备方法。
【背景技术】
[0002]伴随着电子产品的广泛应用,电磁环境对电子产品的安全性和可靠性产生的影响和危害不容忽视。电磁干扰使得常规电子系统性能下降,以至无法工作的现象时有发生。采用光电隔离的方式是解决电磁干扰问题的有效途径,这使人们对研制光控开关器件产生了极大兴趣。受硅材料本身物理性能的限制,在高温、高频和大功率应用方面,硅基各类光控开关器件的局限性日渐明显,而碳化硅器件却显露出巨大潜力。但是,由于碳化硅材料禁带宽,致使该碳化硅光开关只能受控于紫外光源,而紫外光不仅对人体有害,也并非常用的近红外通信光源,这使得碳化硅光控开关器件的应用受到了限制。

【发明内容】

[0003]本发明的第一目的是提供一种碳化硅基PIN结构近红外光电二极管,解决了现有技术中存在的由于碳化硅材料禁带宽而使只能受控于紫外光源而不能近红外通信光源的问题。
[0004]本发明的第二目的是提供一种碳化硅基PIN结构近红外光电二极管的制备方法。
[0005]本发明所采用的第一技术方案是,一种碳化硅基PIN结构近红外光电二极管,具体结构为:包括二极管两端的电极,两电极之间依次设置有P型晶体锗薄膜、I型晶体锗薄膜和N型单晶碳化硅衬底。
[0006]本发明所采用的第二技术方案是,一种碳化硅基PIN结构近红外光电二极管的制备方法,具体按照以下步骤实施:
[0007]步骤1、对N型单晶碳化硅衬底进行清洗,清洗后用氮气吹干待用;
[0008]步骤2、对步骤I清洗后的N型单晶碳化硅衬底进行沉积,沉积出本征晶体锗薄膜;
[0009]步骤3、对步骤2得到的本征晶体锗薄膜再次进行沉积,沉积出P型重掺杂晶体锗薄膜;
[0010]步骤4、对步骤3得到的带有P型重掺杂晶体锗薄膜的样品利用磁控溅射设备,在N型单晶碳化硅面沉积ITO电极;
[0011]步骤5、对步骤4得到的样品利用磁控溅射设备,在P型重掺杂晶体锗薄膜上沉积ITO电极;
[0012]步骤6、使用快速退火设备对步骤5得到的样品进行退火以形成欧姆接触;
[0013]步骤7、利用网版印刷法于对步骤6得到的样品的正背面将银导线与ITO电极连接形成引出电极。
[0014]本发明第二技术方案的特点还在于,
[0015]步骤I中清洗流程为:使用清洗液-丙酮-酒精-去离子水逐步对样品进行清洗。
[0016]步骤2中沉积时利用化学气相沉积设备,用氢气作为载气,将反应腔加热至500°C,通入锗烷作为生长源气体,生长温度控制为700°C_900°C,生长时间控制为0.2-3小时,锗烷流量控制为0.1-100晕升/分。
[0017]步骤3中沉积时使用化学气相沉积设备,用氢气作为载气,将反应腔加热至500°C,通入锗烷作为生长源气体,通入硼烷作为掺杂源,生长温度控制为700°C-90(TC,锗烷流量控制为0.1-100晕升/分,硼烧流量控制为0.1-10晕升/分,生长时间控制为0.2-3小时。
[0018]步骤4中沉积时间控制为0.1-2小时,沉积压强为控制为0.l-10Pa,溅射功率控制为 100-500 瓦。
[0019]步骤5中沉积时间控制为0.1-2小时,沉积压强控制为0.Ι-lOPa,溅射功率控制为100-500 瓦。
[0020]步骤6中退火温度控制为800 °C -1100 °C,退火时间控制为60秒-600秒。
[0021]本发明的有益效果是,碳化硅基PIN结构近红外光电二极管机器制备方法,利用晶体锗在单晶碳化硅上面的沉积成膜搭配,形成PIN异质结结构,解决碳化硅器件的近红外光控问题,使碳化硅器件能被常用的近红外通信光源控制,制备过程简单易行。
【附图说明】
[0022]图1是本发明一种碳化硅基PIN结构近红外光电二极管的结构示意图;
[0023]图2是本发明一种碳化硅基PIN结构近红外光电二极管的制备方法流程示意图。
[0024]图中,1.电极,2.P型晶体锗薄膜,3.1型晶体锗薄膜,4.N型单晶碳化硅衬底。
【具体实施方式】
[0025]下面结合附图和【具体实施方式】对本发明进行详细说明。
[0026]本发明利用晶体锗在单晶碳化硅上面的沉积成膜搭配,形成P-1-N异质结结构,N为N型单晶碳化硅衬底,I为本征晶体锗薄膜,P为P型掺杂晶体锗薄膜,锗薄膜作为可见-近红外光吸收层,解决碳化硅器件的近红外光控问题,使碳化硅器件能被常用的近红外通信光源控制。
[0027]本发明一种碳化硅基PIN结构近红外光电二极管,具体结构为:包括二极管两端的电极1,两电极I之间依次设置有P型晶体锗薄膜2、1型晶体锗薄膜3和N型单晶碳化硅衬底4,碳化硅基PIN结构近红外光电二极管的制备方法,具体按照以下步骤实施:
[0028]步骤1、对N型单晶碳化硅衬底进行清洗,清洗后用氮气吹干待用;
[0029]步骤2、对步骤I清洗后的N型单晶碳化硅衬底进行沉积,沉积出本征晶体锗薄膜;
[0030]步骤3、对步骤2得到的本征晶体锗薄膜再次进行沉积,沉积出P型重掺杂晶体锗薄膜;
[0031]步骤4、对步骤3得到的带有P型重掺杂晶体锗薄膜的样品利用磁控溅射设备,在N型单晶碳化硅面沉积ITO电极;
[0032]步骤5、对步骤4得到的样品利用磁控溅射设备,在P型重掺杂晶体锗薄膜上沉积ITO电极;
[0033]步骤6、使用快速退火设备对步骤5得到的样品进行退火以形成欧姆接触;
[0034]步骤7、利用网版印刷法于对步骤6得到的样品的正背面将银导线与ITO电极连接形成引出电极。
[0035]其中,步骤I中清洗流程为:使用清洗液-丙酮-酒精-去离子水逐步对样品进行清洗。
[0036]步骤2中沉积时利用化学气相沉积设备,用氢气作为载气,将反应腔加热至500°C,通入锗烷作为生长源气体,生长温度控制为700°C_900°C,生长时间控制为0.2-3小时,锗烷流量控制为0.1-100晕升/分。
[0037]步骤3中沉积时使用化学气相沉积设备,用氢气作为载气,将反应腔加热至500°C,通入锗烷作为生长源气体,通入硼烷作为掺杂源,生长温度控制为700°C-90(TC,锗烷流量控制为0.1-100晕升/分,硼烧流量控制为0.1-10晕升/分,生长时间控制为0.2-3小时。
[0038]步骤4中沉积时间控制为0.1-2小时,沉积压强为控制为0.l-10Pa,溅射功率控制为 100-500 瓦。
[0039]步骤5中沉积时间控制为0.1-2小时,沉积压强控制为0.Ι-lOPa,溅射功率控制为100-500 瓦。
[0040]步骤6中退火温度控制为800 °C -1100 °C,退火时间控制为60秒-600秒。
[0041 ] 本发明的工作原理如下:
[0042]利用晶体锗在单晶碳化硅上面的沉积成膜搭配,形成PIN异质结结构,解决碳化硅器件的近红外光控问题,使碳化硅器件能被常用的近红外通信光源控制。在SiC衬底上沉积锗是希望利用锗较窄的禁带宽度,从而吸收可见光和近红外光。当光射入半导体中,当光的能量大于半导体的禁带宽度时,光会被价带中的电子吸收跃迀到导带,形成一对电子空穴对。当光入射到Pn结的耗尽层时,产生的电子空穴对会被pn结的内建电场拉到耗尽层两侧,分别在pn结的两边形成空穴和电子的积累,从而形成光生电势,当把pn结两端短接,会有从P型半导体流出,经过导线,流入η型半导体的电流,即光生电流。与Si材料相比,Ge材料具有更窄的禁带宽度(31:1.12^,66:0.66^),更高的载流子迀移率(3001(时,电子迀移率为3900cm/V.s)和更低的生长温度u4^Ge材料更窄的禁带宽度可使SiC/Ge异质结的响应波长向红外方向移动,实现对近红外光,特别是对1.3Ιμπι和1.55μπι波段的高响应。众所周知,1.3Ιμπι波长附近其色散为零,而1.55μπι波长附近其损耗值达到了极小值0.2dB/km,是最重要的两个光通信波段,而SiC/Ge异质结的长波限约为1.9μπι,理论上完全能够实现其响应。本发明首先提出了在碳化硅衬底上外延锗单晶薄膜来形成PIN结构,充分利用Ge材料的高迀移率特性,使器件具备较高的响应速度,使用低压气相化学沉积法在SiC衬底外延Ge薄膜,6H-SiC衬底经过清洗处理后放入低压气相化学沉积设备内,将反应室抽真空,真空度为10—3Pa,然后升温到1050°C左右进行高温氢气清洗,通入H2用于刻蚀衬底表面氧化物及增大表面能的作用。接着降温到工艺所需温度700°C?900°C进行Ge的外延生长,此时生长源气为GeH4和H2混合气体,其中H2是作为载气通入其中的,生长条件为:压力440Pa,时间90min,温度800°C?900°C。然后对生长好的样品利用磁控溅射设备,先在N型单晶碳化硅衬底上沉积ITO电极,后在P型晶体锗薄膜表面上沉积ITO电极。使用快速退火设备对ITO电极进行退火以形成欧姆接触。最后用网版印刷法于正背面将银导线与ITO电极连接形成引出电极。
[0043]本发明的测试结果分析如下:
[0044]测试结果表明该异质结具有较好的整流特性,当开启电压为-1V时,在非紫外光照强度为0.6W/cm2时,该结构具有很好的光响应特性,此时最大开启电压V。。为92.0mV,光电流Iph为0.6mA/cm2。该工艺能够制备输出较大光电流,高响应速度的光控SiC/Ge异质结光电二极管,借以触发SiC功率器件,满足光控SiC器件的设计要求。
[0045]本发明的其他一些特点是,在常规的光电器件中,为了能使入射光更好地到达有源吸收区,迎光面金属电极常被制作为叉指状电极结构,但由于金属电极的遮光效应,势必降低光电器件的量子效率。为了达到即透光又导电的目的,本发明提出了透明电极加以改进,在我们所研究的ΙΤΟ/Ρ-Ge/1-Ge/n-SiC器件应用中,入射光的一部分在器件表面被反射掉,在有源层中被吸收部分的大小又取决于材料的吸收系数和厚度。入射到吸收区中的光子所产生的光生载流子通过耗尽层的内电场漂移,再通过扩散最后被收集,成为外电路中流过的光电流。
【主权项】
1.一种碳化硅基PIN结构近红外光电二极管,其特征在于,具体结构为:包括二极管两端的电极(I),两电极(I)之间依次设置有P型晶体锗薄膜(2)、1型晶体锗薄膜(3)和N型单晶碳化娃衬底(4)。2.—种碳化硅基PIN结构近红外光电二极管的制备方法,其特征在于,具体按照以下步骤实施: 步骤1、对N型单晶碳化硅衬底进行清洗,清洗后用氮气吹干待用; 步骤2、对所述步骤I清洗后的N型单晶碳化硅衬底进行沉积,沉积出本征晶体锗薄膜; 步骤3、对所述步骤2得到的本征晶体锗薄膜再次进行沉积,沉积出P型重掺杂晶体锗薄膜; 步骤4、对所述步骤3得到的带有P型重掺杂晶体锗薄膜的样品利用磁控溅射设备,在N型单晶碳化硅面沉积ITO电极; 步骤5、对所述步骤4得到的样品利用磁控溅射设备,在P型重掺杂晶体锗薄膜上沉积ITO电极; 步骤6、使用快速退火设备对所述步骤5得到的样品进行退火以形成欧姆接触; 步骤7、利用网版印刷法于所述步骤6得到的样品的正背面将银导线与ITO电极连接形成引出电极。3.根据权利要求2所述的一种碳化硅基PIN结构近红外光电二极管的制备方法,其特征在于,所述步骤I中清洗流程为:使用清洗液-丙酮-酒精-去离子水逐步对样品进行清洗。4.根据权利要求2所述的一种碳化硅基PIN结构近红外光电二极管的制备方法,其特征在于,所述步骤2中沉积时利用化学气相沉积设备,用氢气作为载气,将反应腔加热至500°C,通入锗烷作为生长源气体,生长温度控制为700°C-900°C,生长时间控制为0.2-3小时,锗烧流量控制为0.1-100晕升/分。5.根据权利要求2所述的一种碳化硅基PIN结构近红外光电二极管的制备方法,其特征在于,所述步骤3中沉积时使用化学气相沉积设备,用氢气作为载气,将反应腔加热至500°C,通入锗烷作为生长源气体,通入硼烷作为掺杂源,生长温度控制为70(rc-90(rc,锗烷流量控制为0.1-100晕升/分,硼烧流量控制为0.1-10晕升/分,生长时间控制为0.2-3小时。6.根据权利要求2所述的一种碳化硅基PIN结构近红外光电二极管的制备方法,其特征在于,所述步骤4中沉积时间控制为0.1-2小时,沉积压强为控制为0.l-10Pa,溅射功率控制为 100-500 瓦。7.根据权利要求2所述的一种碳化硅基PIN结构近红外光电二极管的制备方法,其特征在于,所述步骤5中沉积时间控制为0.1-2小时,沉积压强控制为0.Ι-lOPa,溅射功率控制为100-500 瓦。8.根据权利要求2所述的一种碳化硅基PIN结构近红外光电二极管的制备方法,其特征在于,所述步骤6中退火温度控制为800 °C -1100 °C,退火时间控制为60秒-600秒。
【文档编号】H01L31/028GK106057929SQ201610378283
【公开日】2016年10月26日
【申请日】2016年5月31日
【发明人】李连碧, 臧源, 冯松, 蒲红斌, 封先锋, 宋立勋, 涂喆研, 韩雨凌, 褚庆
【申请人】西安工程大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1