腐蚀方法和腐蚀成形品、压电振动器件及其制造方法

文档序号:7539161阅读:191来源:国知局
专利名称:腐蚀方法和腐蚀成形品、压电振动器件及其制造方法
技术领域
本发明涉及腐蚀方法和利用该方法成形的石英晶片等腐蚀成形品。本发明特别涉及为获得成形作业高效率化和成形品高质量化而采取的对策。
背景技术
伴随着通讯设备的高频化和微型计算机工作频率的高频率化,对于石英振子和石英滤波器等压电振动器件也逐渐提出了高频化要求。一般讲,作为与高频化相对应的石英晶片(石英片),常利用的是AT切割石英片的厚度滑移振动,正如众所周知的那样,其频率取决于厚度,频率和厚度成反比例。例如,作为基本振动频率,在要获得600MHz时,必须形成3μm以下的极薄型压电振动片。这样的极薄片,加工时的研磨作业很难,而且也很难提高制造合格率。
为了解决该课题,提出的构成如图51所示,在石英晶片100的中央部分设有凹部101,在该凹部101的底部设置进行了薄壁加工的振动区域102,由其周围厚壁的增强部d强化该振动区域102,称作所谓反台面型的结构。这种石英振动片,其构成是在具有薄壁化振动区域102和其周围形成增强部分103的石英晶片100中,形成未图示的激振电极和引出电极。通过采用这样的构成,可使振动区域102变得比以前的更薄,并能提高合格率。这种石英晶片,例如在特开2000-341064号公报中有所公开。
作为这种反台面型石英振动片的一种形式,如图52(g)中所示剖面那样,通过在振动区域102和增强部103之间形成阶梯状的台阶部104,可知提高了石英晶片100的机械强度,并能减缓外力向振动区域102传播。以下对具有这种台阶部104的反台面型石英振动片的成形操作进行说明。
如图52(a)(石英晶片和掩模层的剖面示意图)所示,对于上下面利用抛光加工形成镜面的石英晶片a1,其下侧面的整个面和上侧面的一部分上形成掩模层(抗蚀膜)RR。这种掩模层RR,例如是由铬(Cr)和金(Au)形成2层结构。上侧面的掩模层RR的形成区域是除形成上述振动区域102部分外的全部区域。具体讲,在上侧面的整个面上形成掩模层RR,再利用光刻技未,有选择地除去与振动区域102相对应位置的掩模层RR。同样,将残留在石英晶片a1上的掩模层RR作为掩模,将石英晶片a1在氢氟酸+氟化铵溶液等腐蚀液中浸渍,进行第1次湿式腐蚀。图52(b)示出了这种第1次湿式腐蚀结束时的状态。这样形成第1段的台阶部e1。
接着,再有选择地除去残留掩模层RR的一部分。这种掩模层RR的除去区域,如图52(c)所示,是形成第2段梯部e2的区域。随后,和上述一样,利用腐蚀液进行第2次湿式腐蚀。图52(d)示出了第2次湿式腐蚀结束时的状态,由此形成第2段的台阶部e2。
进而,有选择地除去残留掩模层RR的一部分。该掩模层RR的除去区域,如图52(e)所示,是形成第3段梯部e3的区域。随后,和上述一样,利用腐蚀液进行第3次湿式腐蚀。图52(f)示出了第3次湿式腐蚀结束时的状态,由此形成第3段的台阶部e3。
这样经过多次腐蚀过程后,通过除去上下面的全部掩模层RR,如图52(g)所示,形成在振动区域102和增强部分103之间具有阶梯状台阶部e的石英晶片a。这样,通过在振动区域102的上下面上形成规定的电极,即制作成石英振子。
如图53(g)所示,利用和上述大致相同的腐蚀方法可以形成所谓叫作台面型的石英晶片,即,设定石英晶片a的中央部分厚度尺寸大于外缘部分的厚度尺寸。即,如图53(a)所示,对于利用抛光加工使上下面形成镜面化的石英晶片a1,只在除了其上下面外缘部的部分上形成掩模层RR。将该掩模层RR作为掩模,将石英晶片a1在氢氟酸+氟化铵溶液等腐蚀液中进行浸渍,进行第1次湿式腐蚀。图53(b)示出了这第1次湿式腐蚀结束时的状态。
接着,如图53(c)所示,除去残留的掩模层RR的外缘部分。随后,和上述一样,利用腐蚀液进行第2次湿式腐蚀。图53(d)示出了第2次湿式腐蚀结束时的状态。
进而,如图53(e)所示,除去残留掩模层RR的外缘部分。随后,和上述一样,利用腐蚀液进行第3次湿式腐蚀。图53(f)示出了第3次湿式腐蚀结束时的状态。
这样经过多次腐蚀工序后,通过除去上下面的全部掩模层,如图53(g)所示,形成设定石英晶片a的中央部分厚度尺寸大于外缘部分的厚度尺寸,而且,在中央部分和外缘部分之间具有阶梯状台阶部e的石英晶片a。
然而,在上述的各石英晶片的成形工作中,必需多次腐蚀工序,必须反复数次石英晶片向腐蚀液的浸渍工序和该石英晶片的干燥工序。因此,不仅作业繁杂,而且作业时间很长,伴随着浸渍工序和干燥工序的反复进行,石英晶片有可能产生粗糙面。
这种产生粗糙面的原因之一,是在上述干燥工序中,尘埃等附着在振动区域的表面上,在没有除去原样移送到浸渍工序中。在产生这种粗糙面时,特别是在反台面型制品中,有可能对石英振子的性能造成恶劣影响(基频产生波动等)。在干燥工序后的浸渍工序中,在已形成的台阶部附近有可能存在空气,这时,腐蚀液不能再次进入该台阶部附近,导致腐蚀不良,也不能使石英晶片形成规定的形状。再有,在数次浸渍工序中的最后阶段内,石英晶片上存在壁厚相当薄的部分,在浸渍工序和干燥工序时,其薄壁部分和其周边部会产生裂痕等破损,也有可能关联到合格率恶化。
上述粗糙面的弊端和合格率的恶化,不仅石英晶片,而且同样利用腐蚀对玻璃、金属、半导体等进行加工时,都有可能同样发生。
多年来,作为压电振动器件的一种,已知很容易获得小型化的音叉型石英振子。这种振子,例如,如特开平10-294631号公报中所公开的,具有音叉型石英振子,其形成是对利用腐蚀加工形成音叉型的石英晶片,利用光刻技术在表面上形成规定的电极。
在特开2002-76806号公报中公开了一种构成,即,音叉型石英振动片的各脚部分别在正反面(主面)的中央部形成沟部。这样,在脚部的正反面上形成沟部时,即使将振动片形成小型化,也能抑制脚部的振动损失,同时也能有效将CI值(晶体阻抗)抑制到最低。这种音叉型石英振子特别适宜安装在时钟等精密仪器中。
以下,作为上述在脚部的正反面具有沟部的音叉型石英晶片成形方法,就上述公报中公开的工序进行说明。
首先,如图54(a)所示,将石英板(石英Z板)的石英基片a加工成板状。这时利用抛光加工将石英基片a的正反面形成镜面。
接着利用未图示的喷溅器件,在石英基片a的正面和反面蒸上镀Cr(铬)膜b1,进而在其表面上蒸镀Au(金)膜b2(图54(b))。同样,在如此形成的金属膜b1,b2的表面上,如图54(c)所示,形成光抗蚀剂层c,c。
接着,除去一部分光抗蚀剂层c,形成外形图形,使在与想要制作的音叉型石英晶片形状(音叉型形状)一致的振动片成形区域a和石英基片a的外缘部分的框架部分e,e上,分别残留光抗蚀剂层c,c。以剖面示出的是图54(d),以斜视图示出的是图55(a)。在此状态下,如图55(a)所示形成光抗蚀剂层c,c,露出音叉型石英晶片的规定形状。
随后,如图54(e)所示,利用Au腐蚀液和Cr腐蚀液,除去上述图54(d)中没有形成光抗蚀剂层c部分的各金属膜b1,b2。因此,如图55(b)所示,在除去各金属膜b1,b2的部分上露出石英基片a。
接着,如图54(f)所示,除去图54(e)中全部残留的光抗蚀剂层c。
随后,如图54(g)所示,在石英基片a的正反面上形成光抗蚀剂层f。
同样,如图54(h)所示,除去一部分光抗蚀剂层f。具体讲,不仅除去上述振动片成形区域d和框架部e以外部分的光抗蚀剂层f,而且也除去相当于沟部g(图54(1))部分的光抗蚀剂层f,形成沟部图形。
接着,如图54(i)所示,利用石英腐蚀液进行外形腐蚀。即,进行只保留振动片成形区域d和框架部e的外形腐蚀。
接着,如图54(j)所示,利用Au腐蚀液和Cr腐蚀液除去相当于在音叉型石英晶片脚部成形沟部g部分的各金属膜b1,b2。
同样,如图54(k)所示,利用石英腐蚀液将石英基片a腐蚀到规定深度,在脚部的两个面上形成沟部g,g,……,使剖面形状略呈H型。随后,通过除去光抗蚀剂层f和各金属膜b1,b2,制作成如图54(1)所示的具有剖面略呈H型脚部的音叉型石英晶片h。
对于如此制作的音叉型石英晶片h,在其振动区域的上下面上形成规定的电极,制作成音叉型石英振动片,通过将该音叉型石英振动片安装在外壳内,音叉型石英振子制作完成。
然而,上述公报中公开的成形方法中,首先,利用腐蚀除去要成形的音叉型石英晶片h外缘的更外侧区域,即进行外形腐蚀工序(图54(i)的工序)后,进行在脚部主面上形成沟部g的沟部腐蚀工序(图54(k)的工序)。即,石英晶片h的外形成形和沟部成形用不同工序进行。
为此,这种已有技术中,加工工序数多,导致加工作业繁杂和加工时间冗长,很麻烦。因为分别在外形腐蚀工序和沟部腐蚀工序中利用石英腐蚀液进行腐蚀,所以至少需要进行2次石英腐蚀,有可能带来石英晶片表面粗糙等弊端。
因此,利用上述公报中公开的方法,在脚部的正反面上形成沟部时,在该沟部要求极高的加工精度。这就使设有如上述沟部的,比不设有沟部的,振动频率的波动趋于增大。因此,为了抑制这种偏差,以高精度进行加工沟部,最为有效。
在成形该沟部时,虽然可较低地抑制CI值,但为了有效地将CI值抑制得低,必须以高精度进行沟部加工。
本发明就是鉴于上述已有技术中存在的问题而研制的,第1个目的就是提供一种腐蚀方法和腐蚀成形品,即,只在1次腐蚀工序中就能形成规定形状(例如,具有上述台阶部的形状)的石英晶片,据此,能防止石英晶片面粗糙、避免了腐蚀不良现象、防止了薄壁部分和其周边部分发生破损,同时,也能提高腐蚀成形品的加工精度。
如上述的石英晶片,装入由氧化铝等陶瓷形成的外壳中,利用粘合剂固定在外壳内。即,利用导电性粘合剂将引出电极粘接在外壳内的端子上,据此,石英晶片对于外壳形成电的而且是机械的连接,例如,制作成表面安装型的石英振子。
这时,由于形成的结构是利用粘合剂将上述反台面型石英晶片或极薄型平板状石英晶片固定在外壳内,所以伴随着该粘合剂的固化收缩而产生的应力会影响到石英晶片的振动区域。结果是石英晶片的共振频率发生变动,得不到规定频率特性的可能性增高。来自外壳外部的作用力对石英晶片振动区域的直接作用也可能增高,这种情况下也不能获得规定的频率特性。
为将石英晶片固定在壳体内,而不受该粘合剂固化收缩影响时,必须以高精度将粘合剂涂布在固化收缩不对石英晶片产生影响的位置上,这就需要高性能的制造装置,导致其成本的高涨,伴随着制造加工的繁杂化,也必然导致加工效率恶化。
本发明也是为解决此类问题而研制的,所以第2个目的是提供一种腐蚀方法及腐蚀成形品,即,避免在利用粘合剂将压电振动器件固定在外壳内时,粘合剂固化收缩对振动区域产生影响,使压电振动器件获得良好的频率特性。
再有,多年来,作为压电振动器件的一种,已知有容易进行小型化的音叉型石英振子。例如,如特开平10-294631号公报中公开的那样,这种振子具有对利用腐蚀加工形成音叉型的石英晶片,利用光刻技术在表面上形成规定电极而构成的音叉型石英振动片。以下对该电极的形成工序进行说明。
图39是一般的音叉型石英振动片10的正面图,在电极形成部分加以斜线。图40是表示利用光刻技术在石英晶片1A的表面上形成电极73,74的工序的图,示出了沿图39中II-II线的剖面部分。
在电极73,74的形成工序中,首先,对形成上述音叉型的石英晶片1A(图40(a)),利用真空蒸镀法在其整个面上形成由铬和金等材料构成的电极膜15(图40(b))。随后,利用由正型的光抗蚀剂液构成的抗蚀膜31覆盖整个石英晶片1A的面(图40(c))。对该抗蚀膜31进行规定的曝光、显像处理,在电极膜15要腐蚀区域的抗蚀膜31上形成开口部分75(图40(d))。这样,对开口部分75处露出的电极膜15进行腐蚀处理,部分除去电极膜15后(图40(e)),再除去上述抗蚀膜31(图40(f))。据此,只在石英晶片1A的规定区域内形成电极73,74,得到音叉型石英振动片10。
作为如此制造的音叉型石英振动片10的电极形成区域,如图39和图40(f)所示,通过石英晶片1A的各边缘部,形成相邻面(形成正交)相互连续的区域。这是为了使各脚部61,(62)中的主面61a,(62a)的电极73,(74),和其他的脚部62,(61)中的侧面62b,(61b)的电极73,(74)进行连接,并相互导通。为此,这种压电振动器件中,确保在各边缘部的电极73,73,(74,74)的连接性是极为重要的。
因此,在上述电极的形成工序中,存在以下所述的课题。图56是为说明该课题的相当于图40的图。一般讲,如图56(c)所示,石英晶片1A的整个面由抗蚀膜31包覆时,将石英晶片1A在抗蚀液槽中进行浸渍,或利用喷射将抗蚀液涂布在石英晶片1A上。这种情况下,涂布在石英晶片1A各面上的抗蚀液会产生表面张力,沿图56(c)中虚线箭头所示方向拉近抗蚀液。即,抗蚀液很容易在偏离边缘部的方向上形成流动。因此,在边缘部,不能获得充分的抗蚀液涂布量,有时在边缘部周围会产生完全不存在抗蚀液的情况。图57是受表面张力影响,边缘部分不存在抗蚀液(图中假想线)状态的石英晶片1A正面图。
这样,在边缘部周围不存在抗蚀液的状态下,进行上述曝光、显像处理和电极膜的腐蚀处理时,如图56(e),(f)所示,不仅仅是上述开口部75处曝出的电极膜15,而且边缘部周围的电极膜15也被除去,也就不可能确保该边缘部的电极73,74的连接性,完成的石英振动片1成为不合格品。
作为解决这种弊端的方法,认为对石英晶片1A可设定更多的抗蚀液涂布量。
然而,即使这种情况下,仍不能避免上述表面张力的发生。为此,即使在边缘部周围能存在某厚度的抗蚀膜31,在除此以外的部分上,也必须增大抗蚀膜31的厚度。这样一来,对于该膜厚大的部分,曝光能量显得不足,不可能充分进行曝光、显像处理。结果是在要除去抗蚀膜31的区域(形成上述开口部分75的区域)内,有可能仍残留部分抗蚀膜31,电极膜15需要腐蚀的部分不能进行腐蚀。
认为对抗蚀膜31的膜厚大的部分设定大的曝光量,不会残留不需要的抗蚀膜31,但由此会导致图形形成的精度恶化,成为阻碍振子小型化的重要原因。
本发明就是解决此类问题而研制的,第3个目的是消除由涂布在石英晶片(压电振动基片)的各面的抗蚀液产生表面张力引发的弊端,减少不合格品的发生率,提高压电振动器件的生产率。
发明公开为了达到上述目的,本发明是在利用腐蚀将石英晶片等被成形物形成规定形状时,使用腐蚀度相互不同的多种掩模层,使各处的腐蚀量产生差异。
具体讲,是将被成形物腐蚀成规定形状的腐蚀方法。在该腐蚀方法中,在将上述被成形物的各处,利用腐蚀度相互不同的多种掩模层形成掩蔽的状态下,通过对该被成形物进行腐蚀处理,根据各掩模层各自腐蚀度的大小,使被成形物各处的腐蚀量相互不同,将被成形物腐蚀成规定的形状。
所谓腐蚀度相互不同的多种掩模层,是指掩模层的材料不同,掩模层的厚度不同、对掩模层的表面处理不同,掩模层的成膜工作不同等等。根据本发明,利用腐蚀度高的掩模层(易溶于腐蚀液的掩模层),在掩蔽部分,腐蚀动作早期就开始,所以腐蚀量很多,反之,利用腐蚀度低的掩模层(腐蚀液难以溶解的掩模层),在掩蔽部分,腐蚀动作开始迟缓,所以腐蚀量很少。利用这样由掩模层的差异产生腐蚀量的差异,可将被成形物形成任意的形状,可以高效率、高精度进行上述台阶部的成形。
即,本发明的方法,由于是利用1次腐蚀工序,得到规定形状的腐蚀成形品,所以避免了伴随多次反复进行腐蚀液的浸渍工序和干燥工序而产生以往粗糙面的弊端。而且,伴随这种反复动作,在上述台阶部附近存在空气使腐蚀液进入不良现象,也不再发生,从而消除了一个腐蚀不良的因素。进而,也不需要腐蚀成形品,在由腐蚀形成薄壁的状态下反复进行浸渍工序和干燥工序,从而能防止腐蚀成形品的破损,并能提高合格率。
作为具体的掩模层适用例揭示如下。首先,在被成形物中,在需要腐蚀量多的部位,适用由腐蚀度高的材料形成的掩模层,反之,在被成形物中,需要腐蚀量少的部位,适用由腐蚀度低的材料形成的掩模层。此处所说的腐蚀度高的材料,是指易溶于腐蚀液的材料。反之,所谓腐蚀度低的材料,是指难溶于腐蚀液的材料。根据腐蚀液的种类,例如,作为腐蚀液使用氢氟酸+氟化铵溶液等,将Cr和无电解镀的Ni用作掩模层时,Cr就是比无电解镀的Ni腐蚀度低的材料。
掩蔽被成形物各处的掩模层以彼此相同的材料形成,在被成形物需要腐蚀量多的部位,设定掩模层的厚度尺寸,要小于被成形物需要腐蚀量少的部位上掩模层的厚度尺寸。
进而,掩蔽被成形物各处的掩模层以彼此相同的材料形成时,对于被成形物需要腐蚀量少的部位上掩模层的构成材料,也可实施降低腐蚀度的处理,作为这时的处理,例如公开有氧化处理,或在掩模层的整个表面进行氧化处理后,对被成形物需要腐蚀量多的部位掩模层的构成材料,进行还原处理,以提高该部分的腐蚀度,等等。
这样,在使掩模层的厚度尺寸不同并对掩模层进行处理时,例如,即使需要腐蚀度极低的掩模层时,构成掩模层的材料选择也不受约束。例如,作为腐蚀度极低的掩模层(抗蚀膜)构成材料,已知有Au,根据本发明,通过掩模层或形成厚尺寸或进行降低腐蚀度的处理,不使用高价Au,仍能得到腐蚀度极低的掩模层,从而可减少腐蚀成形品的制造成本。
对被成形物的各处,根据各掩模层的各自腐蚀度大小进行相互不同腐蚀量的腐蚀处理后,在不存在掩模层的状态下,对大致整个被成形物进行均等的腐蚀,由于对整个被成形物进行形成薄壁化的工序,可形成更加薄型化。特别是适用石英振子和石英滤波器等压电振动器件时,可获得更高的频率。
在将被成形物的正反面利用腐蚀度相互不同的掩模层形成掩蔽的状态,通过对被成形物进行腐蚀处理,根据各掩模层的腐蚀度大小,也可使被成形物的正面侧腐蚀量和反面侧腐蚀量相互不同。例如,腐蚀加工前对被成形物进行抛光加工时,其正反面上存在某种程度的加工变形层。这样,正反面中有一个面的加工变形层很厚时,从正反面两侧进行同样的腐蚀,此面的加工变形层有可能不能完全去除。对此,利用本发明,可将加工变形层厚侧的腐蚀量特别设定多些,能在将作为被成形物整体的腐蚀量抑制到必要最小限度下,也将正反各面的加工变形层完全去除。
作为可将腐蚀成形品形成任意形状的方法,揭示如下。即,在将被成形物进行腐蚀形成规定形状之前,对被成形物的一部分进行薄壁化加工,对该薄壁化部分不用掩模层进行掩蔽,通过进行上述腐蚀工作,可将该薄壁化部分形成贯通孔。
据此,不仅可以利用掩模层的腐蚀度差在被成形物表面上形成任意的凹凸形状,而且也可以伴随着腐蚀工序的进行在特定部位形成贯通孔的成形工序。
作为利用上述各腐蚀方法形成腐蚀成形品的形状,揭示有设定中央部分的厚度尺寸小于外缘部厚度尺寸的反台面型、和设定中央部分的厚度尺寸大于外缘部厚度尺寸的台面型,进而,在这些反台面型和台面型中,在中央部分和外缘部之间形成阶梯状的台阶部。特别是在反台面型的腐蚀成形品中,在中央部分和外缘部之间形成阶梯状的台阶部时,可提高腐蚀成形品的机械强度,并能延缓外力向中央部分传播,最适宜作石英振子和石英滤波器等压电振动器件。在台面型的腐蚀成形品中,在中央部分和外缘部之间形成阶梯状的台阶部时,厚度滑动模式和厚度弯曲模式的结合变小,可提高模式间结合的抑制效果。这时,由于可任意设定振动区域的边比尺寸和台阶差尺寸,所以能很容易进行设计,改善压电振动器件的电特性。
同样,将这些腐蚀成形品适用作构成压电振动器件的石英晶片时,可以高效率制造高精度的极薄型石英晶片,并能获得更高的高频化,从而可提供高性能的压电振动器件。
作为这样的压电振动器件,在形成压电振动器件振动区域中央部分的外周侧,形成框形状的外框部,通过在外框部和振动区域之间采用抑制应力传播的结构,所以可减小应力对振动区域的影响。在形成振动区域的中央部分本身也采用了获得高机械强度的构成。
具体讲,利用压电材料将具有主振动部的中央部、与该中央部的外缘以规定间距围绕该中央部形成框形状的外框部、和将这些中央部和外框部进行部分连接的连接部形成一个整体,构成压电振动器件。这样,将该压电振动器件的中央部以反台面型结构或台面型结构构成。
上述中央部以台面结构或反台面结构构成,其本身具有很高的机械强度,所以能抑制外力等对主振动部产生影响。在中央部的外周侧,通过连接部与外框部连接。由此,可将压电振动器件的由粘合剂粘接的部位作为外框部,即使粘合剂因固化收缩产生应力,该应力的影响到达外框部也就截止,所以对中央部的主振动部几乎不产生影响。即使有外力作用于外框部时,这种外力几乎不可能传递到中央部的主振动部位。因此,压电振动器件的共振频率受应力等影响而发生变动的状况得到避免,并能确保所要求的频率特性。
作为压电振动器件的具体构成细节,上述中央部具有在该中央形成的薄壁主振动部,和在该主振动部外周围形成的,而且比主振动部厚的外缘部。据此,在主振动部的外围侧存在外缘部和外框部的二重框材,所以可获得极高的机械强度。由于在主振动部和外缘部之间形成阶梯状的台阶部,所以,即使应力作用于外缘部时,台阶部也能很容易将其缓和,从而避免了局部应力集中。进而,该构成中,若台阶部的台阶差设定很小并沿着该台阶部的表面形成引出电极时,不仅避免了引出电极断线(电极膜切断),而且电极膜能获得薄膜化。
作为中央部的具体构成,首先,设定中央部的厚度尺寸小于外框部的厚度尺寸,使该中央部的上下各面比外框部上下各面位于厚度方向的中央侧。设定中央部的厚度尺寸大于外框部的厚度尺寸,使该中央部的上下各面比外框部的上下各面位于厚度方向的外侧。若根据前者的构成,将压电振动器件装在外壳内时,由于仅外框部与外壳内面直接相接,能以中央部露出的状态载置,所以主振动部能进行良好的振动。而根据后者的构成,例如,将多个压电振动器件彼此重叠装入外壳内时,相互邻接的外框部彼此相接,通过适当调整这种相接区域的高度,可将多个压电振动器件的整体高度尺寸限制到必要的最小限度(尽可能使中央部彼此不接触,将高度尺寸减小),并能获得小型化的外壳。
在中央部的应力感度为“0”的部位,形成由连接部将中央部和外框部连接的结构时,外力作用于外框部,即使传播到中央部,几乎不会对主振动部的振动特性产生影响。
作为阻止振动波从外框部传播到中央部的构成,揭示如下。首先,作为一种方法,在外框部表面和连接部表面之间,和中央部表面和连接部表面之间的至少一方存在不连续部分。作为另一种方法,设定连接部的厚度尺寸小于外框部的厚度尺寸。根据前一构成,可阻止从外框部表面向连接部表面传播的,或从连接部表面向中央部表面传播的表面波。即,可避免该表面波经过外框部和连接部向主振动部传播,对该主振动部的振动产生恶劣影响的状况。而后一种构成,由于从外框部经过连接部向中央部分传播的整体波的传播路径变得狭窄,所以可抑制该整体波的传播,据此,也就除去了对主振动部的振动造成恶劣影响的因素。
将中央部形成反台面型结构,在将主振动部形成在外缘部分厚度方向的大致中央部分上时,由于压电振动器件以正反对称形状形成,所以在向外壳内安装时,无需一边识别压电振动器件的正反一边作业,从而提高了向外壳上组装的作业性。
在中央部的主振动部和外缘部之间,形成具有与主振动部厚度尺寸大致一样的厚度尺寸并连接主振动部和外缘部的缓冲部时,主振动部能在不受外缘部约束力约束下进行振动。由此,在使压电器件小型化时,即使是没能充分确保主振动部和外缘的间距的状况,主振动部也不会因受到外缘部的约束力而使共振特性恶化。
在使中央部的主振动部和外缘部之间部分分离时,主振动部可在不受外缘部约束力约束下进行振动,所以共振特性也不会恶化。
作为上述各腐蚀方法的应用技术揭示如下。即,利用腐蚀从被成形物原板选取规定形状的被成形物样品时,对在利用连接片使被成形物外缘的一部分与被成形物原板连接的状态形成被成形物的腐蚀方法,在形成上述连接片的部分被成形物原板适用腐蚀度比其他部分使用的掩模层高的掩模层时,利用上述腐蚀方法进行腐蚀过程,形成的该连接片壁厚要比其他部分薄。
这种技术,例如可适用于从1块石英原板上同时形成多个(所谓多个采样)音叉型石英振子的石英晶片时,等等。即,适用在由连接部将各石英晶片与石英原板连接的状态将各个石英晶片形成规定的形状,随后,通过断开连接部将石英晶片从石英原板上分离的场合。这时,连接部由于利用腐蚀,使形成的连接片比其他部分壁薄,所以很容易断开,除了连接部以外,其他部分不会断开,从而得到所要形状的石英晶片。在断开时,石英片破片发生的可能性很低,所以也避免了因存在石英片破片而对振动特性造成的恶劣影响。
本发明通过对石英基片等被成形物同时进行外形腐蚀工序和沟部腐蚀工序,所以可在一次腐蚀工序中形成外形和沟部。这时,外形腐蚀工序所需要的腐蚀量与对沟部腐蚀工序所需要的腐蚀量相互不同。即,形成沟部时的腐蚀量要少于形成外形时的腐蚀量。因此,对于外形腐蚀过程的开始时刻要比沟部腐蚀过程的开始时刻迟缓,所以在沟部形成区域的表面上预先存在腐蚀迟缓膜。
具体讲,为了通过对被成形物进行腐蚀处理而形成具有规定外形形状和沟部的腐蚀成形品,对于上述被成形物,将实行如下腐蚀工序的腐蚀方法作为前提,即,利用腐蚀除去要成形的腐蚀成形品外缘更外侧区域的“外形腐蚀过程”和利用腐蚀使被成形物上的形成沟部区域凹陷的“沟部腐蚀过程”。对于这种腐蚀方法,首先,仅在沟部形成区域的表面上预先存在腐蚀迟缓膜。在此状态下,实施对被成形物的腐蚀处理,“外形腐蚀过程”开始后,在该外形腐蚀进行的同时,腐蚀延迟膜进行溶融,在该腐蚀延迟膜溶融去除后,上述“沟部腐蚀过程”开始进行。这时,作为腐蚀迟缓膜,可“沟部腐蚀过程”开始时,与“外形腐蚀过程”并行的方式(设定材料和膜厚),也可形成为使“沟部腐蚀工序”开始时,“外形腐蚀工序”已经结束的方式。
作为在沟部成形区域的表面上存在上述腐蚀延迟膜的具体方法,揭示如下。首先,将腐蚀度高的材料(对腐蚀液容易溶融的材料)作为下层,将腐蚀度低的材料(不容易溶融的材料)作为上层,将这样的涂层形成在比要成形的腐蚀成形品外缘的内侧区域。这样,在沟部形成区域中,通过只除去上述上层,将露出的下层用作腐蚀迟缓膜,实施对被成形物的腐蚀处理。
作为其他方法,揭示出作为腐蚀延迟膜的材料,采用比在要成形的腐蚀成形品的外缘的内侧区域,而且,在沟部形成区域以外区域形成膜的材料腐蚀度高的材料。
根据这些特定事项,在对被成形物开始腐蚀处理的时刻,在被成形物上不存在腐蚀延迟膜的区域,即,在要成形的腐蚀成形品外缘的再外侧区域直接开始腐蚀工作(开始外形腐蚀过程)。与其相反,在被成形物上存在腐蚀迟缓膜的区域,即,在形成沟部区域,只开始腐蚀延迟膜的溶融,在该部分的被成形物腐蚀工作还未开始。
使这种状态持续规定时间,在沟部形成区域存在的腐蚀延迟膜完全溶融去除后,在该沟部形成区域被成形物的腐蚀也就开始(开始沟部腐蚀工序)。即,沟部腐蚀工序与外形腐蚀工序同时进行。也有时沟部腐蚀工序开始时,外形腐蚀工序已经结束。在该沟部形成区域内的腐蚀量达到规定量的时刻,腐蚀处理也就结束。
据此,在沟部形成区域中,形成规定深度的沟部,在比先行于沟部腐蚀工序的开始腐蚀的腐蚀成形品外缘的更外侧区域,可以所要求的形状得到具有充分腐蚀量的腐蚀成形品的外形。
如上述,利用2种腐蚀度不同的材料时,例如,作为腐蚀度高的材料使用Cr,作为腐蚀度低的材料使用Au。即,在使用上述2层的涂布层时,在比想要成形的腐蚀成形品外缘更内侧区域(应形成腐蚀成形品的部分),形成Cr和Au的2层结构,在沟部形成区域只形成Cr的1层结构。其结果,在该2层结构部分不进行腐蚀,在1层结构部分,在Cr溶融后,利用沟部腐蚀工序进行规定量(仅沟的深度部分)的腐蚀。这里作为可使用的材料,不限于此。
作为利用上述腐蚀方法形成的成形品,具体有音叉型石英晶片。这种情况,沟部形成在其主面中央部。
在这种音叉型石英晶片的主面上形成沟部时,使用该音叉型石英晶片制作的音叉型石英振动片,即使形成小型化,也能有效控制脚部的振动损失,并有效地能将CI值抑制到很低。
上述各解决方法中,任何一种腐蚀方法形成的腐蚀成形品都在本发明的技术思想范畴以内。
进而,本发明,在对石英基片等被成形物进行腐蚀处理时,对于进行该腐蚀处理的区域,至少实施2阶段的腐蚀工序。首先,对进行该腐蚀处理区域的一部分外缘(例如,进行腐蚀处理区域的两侧部分)实施腐蚀处理后,或者在迟于该腐蚀处理的定时内,对其余部分进行腐蚀处理。即,根据前者的腐蚀处理,预先确定腐蚀区域的形状和腐蚀深度等,随后,再对该腐蚀区域的全部进行腐蚀。
具体讲,是将对被成形物表面的规定腐蚀区域进行腐蚀的腐蚀方法作为前提。对于该腐蚀方法,包括外缘腐蚀工序,和比其晚开始的中央腐蚀工序。在外缘腐蚀工序中,在上述腐蚀区域内,仅对该区域的外缘部分的至少一部分进行腐蚀处理。在中央腐蚀工序中,在上述腐蚀区域内,对外缘腐蚀工序中已腐蚀部分以外的区域进行腐蚀。
根据该特定事项,利用外缘腐蚀工序,首先对腐蚀区域的一部分(腐蚀区域的外缘部的至少一部分),仅以对规定的腐蚀量进行腐蚀处理。随后,利用中央腐蚀工序,对腐蚀区域整体进行腐蚀处理,完成所要求的腐蚀加工。即,在外缘腐蚀工序中,对比较窄的区域进行适当腐蚀量的预腐蚀处理,在其后的中央腐蚀工序中,根据在上述外缘腐蚀工序中适当的腐蚀量,对腐蚀区域全部进行规定量的腐蚀。由此,对其整体适当设定最终所得腐蚀区域的腐蚀量,这样可提高腐蚀成形品的加工精度。
作为中央腐蚀过程的开始定时,可在外缘腐蚀工序开始后,而且在其结束前即开始。
腐蚀区域内,只在利用中央腐蚀工序进行腐蚀区域的表面上预先存在腐蚀延迟膜的状态,对被成形物实施腐蚀处理,外缘腐蚀工序开始后,溶融去除腐蚀延迟膜后,开始上述中央腐蚀工序。这种成形方法的情况是可消减对石英基片的腐蚀次数,不会导致石英晶片表面出现粗糙面等弊端。
在该成形方法中,可同时进行将石英基片形成音叉型形状的工序、外缘腐蚀工序、和中央腐蚀工序,这种情况,对石英基片的腐蚀工序只进行一次,就能将音叉型石英晶片的外形加工成规定的形状(音叉型形状),同时在其主面上可形成沟部,并能防止石英晶片表面产生粗糙和使成形过程的简单化。
在该腐蚀方法所成形的腐蚀成形品中,在腐蚀区域的腐蚀面上出现结晶面,也属于本发明技术思想的范畴。即,只要见到在腐蚀成形品的腐蚀面上出现结晶面的状态,就可判断是利用上述制造方法制造的腐蚀成形品。
本发明通过将压电振动基片表面的主面和边缘部分的周边形成不连接面,可降低该部分产生的表面张力,并能充分确保边缘部的抗蚀液的涂布量。
具体讲,是将利用光刻技术,通过压电振动基片上的边缘部形成相邻面相互连续的电极的压电振动器件的制造方法作为对象。对于该制造方法,在向压电振动基片涂布抗蚀液的工序之前,在靠近上述相邻面中至少一个面的边缘部位置上,进行形成张力降低手段的基片表面前处理工序,以降低抗蚀液产生的表面张力。
作为利用该基片表面前处理工序形成的张力降低手段,具体揭示出,将边缘部附近位置的压电振动基片的表面,作为部分不连续面的凹陷部而形成,或者,将边缘部附近位置的压电振动基片的表面,形成部分不连续面,而且以一部分向边缘部的棱角线开放的凹陷部而形成。
根据这些特定事项,在压电振动基片上边缘部周边的面不具有连续性,会降低涂布在压电振动基片上的抗蚀液产生的表面张力。因此,边缘部可获得充分的抗蚀液涂布量,并能使电极得到准确的形成位置,因此可大幅度减小不合格品的发生率。
作为实施基片表面前处理工序的定时,具体揭示如下。即,利用腐蚀加工将压电振动基片形成规定形状后,对于在该压电振动基片上形成电极,使上述基片表面前处理工序与该压电振动基片的腐蚀加工同时进行,形成张力降低手段。例如,对于压电振动原板,形成规定形状(例如,在音叉型石英振动片中形成音叉形状)的金属图形时,通过在应形成张力降低手段的位置上不设有抗蚀剂,对压电振动原板进行腐蚀加工时,形成规定形状的压电振动基片,同时在该压电振动基片的规定区域形成张力降低手段。因此,不需要专门形成张力降低手优的工序,从而可提高作业效率。
在基片表面前处理工序中张力降低组件的位置,可根据光刻加工法中所用光抗蚀剂的类型进行选择。具体讲,根据使用由负型光抗蚀剂形成抗蚀膜的光刻加工法形成电极时,可在压电振动基片上的与电极非形成部相对应的位置上,形成张力降低手段。
即,使用由负型光抗蚀剂形成抗蚀膜时,在蒸镀电极材料之前的压电振动基片表面上涂布抗蚀剂膜,只在规定的曝光部位保留抗蚀剂膜,其他部位蒸镀电极材料。由此压电振动基片上与电极非形成部相对应的位置上形成张力降低组件,而在不需要蒸镀电极材料的部位上可充分确保抗蚀剂膜,并可避免在不需要的部位蒸镀电极材料。这对于利用卸下(liftoff)法除去不要的电极材料时特别有效,确实能避免在不需要部位因残留电极材料而引发电极间短路(特别是在音叉型石英振动片中各脚部的基端连续部位发生短路)的弊端。
根据上述各压电振动器件的制造方法制造的压电振动器件也属于本发明的技术思想范畴。
附图的简单说明图1是实施例的石英晶片斜视图。
图2(a)~(d)是第1实施例的石英晶片腐蚀成形工序示意图。
图3(a)~(d)是第2实施例的石英晶片腐蚀成形工序示意图。
图4(a)~(d)是第3实施例的石英晶片腐蚀成形工序示意图。
图5(a)~(d)是第3实施例的变形例示意图。
图6(a)~(e)是第4实施例的CrO层形成工序的说明图。
图7(a)、(b)是利用激光照射形成掩模层的工序的示意图。
图8(a)~(e)是利用研磨形成掩模层时的工序的示意图。
图9(a)~(d)是利用蒸镀Cr形成掩模层的工序的示意图。
图10(a)~(d)是利用金属腐蚀形成掩模层的工序的示意图。
图11(a)~(f)是利用卸下法形成掩模层的工序示意图。
图12是第6实施例的石英晶片平面图。
图13是沿图12中A-A线的剖面图。
图14(a)~(d)是第6实施例的掩模层形成工序的示意图。
图15(a)~(d)是第6实施例的预备腐蚀工序的示意图。
图16(a)~(c)是第6实施例的除去Au工序的示意图。
图17(a)~(c)是第6实施例的卸下工序的示意图。
图18(a)、(b)是第6实施例的主腐蚀工序的示意图。
图19(a)~(d)是第6实施例的电极形成工序的示意图。
图20是第6实施例的变形例的石英晶片剖面图。
图21是第7实施例的石英晶片剖面图。
图22(a)、(b)是第8实施例的石英晶片剖面图。
图23是第9实施例的石英晶片剖面图。
图24是第10实施例的石英晶片剖面图。
图25(a)、(b)是为说明第11实施例要解决课题的石英晶片剖面图。
图26是从下面一侧观察第11实施例的石英晶片的斜视图。
图27是第11实施例的石英晶片的主振动部和增强部连接部分的剖面图。
图28是从下面一侧观察第11实施例的变形例石英晶片的斜视图。
图29是从下面一侧观察第11实施例的其他变形例石英晶片的斜视图。
图30是第11实施例的其他变形例的相当于图27的图。
图31是第12实施例的石英原板平面图。
图32是第12实施例的石英晶片加工工序示意图。
图33是第12实施例的变形例石英晶片加工工序示意图。
图34是利用第12实施例的加工技术制作第6实施例石英晶片时相当于图31的图。
图35(a)是第13实施例的音叉型石英振动片示意图。(b)是沿(a)中B-B线的剖面图。
图36(a)~(m)是第13实施例的音叉型石英晶片成形工序的示意图。
图37(a)~(j)是第14实施例的音叉型石英晶片成形工序中前半工序的示意图。
图38(a)~(d)是第14实施例的音叉型石英晶片成形工序中后半工序的示意图。
图39是一般的音叉型石英振动片的示意图。
图40(a)~(f)是在石英晶片中形成电极工序的示意图。
图41(a)是第15实施例的石英晶片示意图,(b)是沿(a)中III-III线的剖面图。
图42(a)是第16实施例的石英晶片示意图,(b)是沿(a)中IV-IV线的剖面图。
图43(a)是第16实施例中第1变形例的石英晶片示意平面图,(b)是沿(a)中V-V线的剖面图。
图44是第16实施例中第2变形例的石英晶片平面图,(b)是沿(a)中VI-VI线的剖面图。
图45是第16实施例中第3变形例的石英晶片平面图。
图46是第16实施例中第4变形例的石英晶片平面图。
图47是第16实施例中第5变形例的石英晶片平面图。
图48(a)是第17实施例的石英振动片平面图,(b)是沿(a)中X-X线的剖面图。
图49(a)是第18实施例的石英振动片平面图,(b)是沿(a)中XI-XI线的断面图。
图50(a)、(b)是已有例的音叉型石英振子的石英晶片破裂状态例的示意图。
图51是已有例的石英晶片斜视图。
图52(a)~(g)是现有的反台面型石英晶片的加工工序示意图。
图53(a)~(g)是现有的台面型石英晶片的加工工序示意图。
图54(a)~(l)是现有技术的音叉型石英晶片成形工序示意图。
图55(a)、(b)是现有技术的音叉型石英晶片成形过程中的石英基片示意斜视图。
图56(a)~(f)是现有例中相当于图40的图。
图57是现有例的石英晶片上抗蚀液涂布状态的示意图。
具体实施例方式
以下根据


本发明的实施例。在以下各实施例中,作为腐蚀成形品,对构成AT切割石英振动子的石英晶片适用本发明的情况进行说明。
(第1实施例)首先,对第1实施例进行说明。图1是本实施例中成形的石英晶片1斜视图,图2是石英晶片1腐蚀成形工序的示意图。
如图1所示,在石英晶片1的中央部分形成为形成电极22的凹部2。该凹部2的中央部分形成极薄壁的压电振动区域21,在其正反面上形成激振电极22(反面未示出),利用未图示的引出电极使激振电极22与外部连接。石英晶片1的外缘部,形成与压电振动区域21比较具有数倍厚度尺寸的增强部3。进而在压电振动区域21和增强部分3之间,形成阶梯状(本实施例的是由内侧和外侧2个台阶部41,42形成)的台阶部4。该台阶4是为,或充分确保压电振动区域21的机械强度,或缓和外力影响而设置的。
作为各部分厚度的一例,在获得600MHz的基本振动频率时,形成压电振动区域21的厚度为3μm,增强部3的厚度约10μm,压电振动区域21的面积约0.5mm2,激振电极22的面积约0.2mm2的细微构成。这样的凹部2的压电振动区域21按下述湿式腐蚀方法进行成形。激振电极22利用真空蒸镀法等形成,作为各电极材料使用铝或银等。
虽然未图示,但将这样的压电振动器件装入由氧化铝等陶瓷形成的外壳内,进行将各引出电极引出到外部的电连接,用盖板与外壳上面形成密封接合,得到表面安装型的石英振子。
以下对本实施例特征的上述石英晶片1的成形工序进行说明。
如图2(a)所示,将作为被成形物的加工前的石英晶片1利用抛光加工使上下面形成镜面,在其上下面上形成作为本实施例特征的规定形状的掩模层R1、R2、R3。形成该掩模层R1、R2、R3的工序以下讲述。这样,将在该石英晶片1的上下面上形成的掩模层R1、R2、R3作为掩蔽层,将石英晶片1在氢氟酸+氟化铵溶液等腐蚀液中进行浸渍,进行湿式腐蚀。以下对该湿式腐蚀工序进行详述。
首先,对湿式腐蚀前的石英晶片1进行说明。该石英晶片的整个下表面,由Cr下层和Au上层的2层结构形成的下面掩模层R1所覆盖。而石英晶片1的上表面,在形成上述压电振动区域21的部分上不形成掩模层,而在与其外周侧的内侧台阶部41的上面相对应的部分上,形成只由1层Cr形成的内侧掩模层R2。在该Cr层的外侧,与外侧台阶部42的上面(石英晶片的外缘部分上面)相对应部分上,形成由以Cr层为下层和以Au层为上层的2层结构构成的外侧掩模层R3。内侧掩模层R2和外侧掩模层R3的各Cr层形成连续层。这样,通过在与内侧台阶部41的上面相对应的部分上,形成具有腐蚀度的Cr层,而且在与外侧台阶部42的上面相对应的部分上,形成没有腐蚀度的Au层(下层具有Cr层),设定石英晶片1上面中各处具有互不相同的腐蚀量。
这样,在石英晶片1上形成掩模层R1、R2、R3的状态,将该石英晶片1在氢氟酸+氟化铵溶液等腐蚀液中浸渍。这样,在没有形成掩模层的区域(形成压电振动区域21的部分)直接开始石英晶片1的腐蚀。与其相反,在其外周侧的内侧掩模层R2上Cr层开始溶解,待该内侧掩模层R2完全溶解后,开始石英晶片1的腐蚀。即,在与该内侧台阶部41的上面相对应的部分,由于Cr层溶解所需要时间,所以腐蚀开始的时间迟于形成压电振动区域21的部分。图2(b)示出了内侧掩模层R2的Cr层完全溶解时刻的石英晶片1剖面形状。从此时刻,内侧梯部41的上面腐蚀开始。在外侧掩模层R3中,Cr层的上层上存在Au层,由于该Au层不具有腐蚀度,所以在该部分不进行腐蚀。
这样的腐蚀工序继续进行到压电振动区域21达到规定厚度尺寸为止。图2(c)示出了压电振动区域21达到规定厚度尺寸时刻的石英晶片1的剖面形状。在这样形成压电振动区域21的部分达到规定厚度尺寸的时刻,将石英晶片1从腐蚀液中取出,洗净、干燥,除去残留在石英晶片1上下面上的掩模层R1、R3。据此,如图2(d)所示剖面,形成在压电振动区域21和增强部3之间形成阶梯状台阶部41,42的石英晶片1成形。
对于使如此成形为规定形状的石英晶片1的符合基频,在上述腐蚀工序结束后,利用干腐蚀加工等进行。另外,若只在上述腐蚀工序中就可以合乎基频,那该腐蚀过程结束时,石英晶片1同时也就完成。
这样,根据本实施例的腐蚀方法,通过在石英晶片1的表面各部设定腐蚀度不同的掩模层,利用1次腐蚀工序,即可形成具有台阶部4的石英晶片1,因此,可防止石英晶片1产生粗面,避免了腐蚀不良现象发生,并能防止薄壁部分及其周边部发生破损,从而可提供稳定的高质量石英晶片1。根据各掩模层的设置部位和腐蚀度的设定,也可形成任意形状的石英晶片1。
本实施形态中,虽然将上述外侧掩模层R3形成了Cr层和Au层的2层结构,但也可以只形成Au层的单层结构。
(第2实施例)以下对本发明的第2实施例进行说明。在上述第1实施例中,作为掩模层使用了Cr层和Au层,但本实施例,如图3(a)所示,只利用Cr层形成掩模层,同时利用1次腐蚀工序仍能形成和上述一样具有台阶部4的石英晶片1。
首先,对湿式腐蚀前的石英晶片1进行说明。该石英晶片1的整个下表面,用比较厚的Cr层(在形成石英晶片1压电振动区域21所需要的时间内,不完全溶解的厚度的层)形成的下面掩模层R1所覆盖。而石英晶片1的上面,在形成上述压电振动区域21的部分上不形成掩模层,在其外周侧与内侧台阶部41的上面相对应的部分,形成由比较薄的Cr层形成的内侧掩模层R2。进而,在该内侧掩模层R2的外侧,与外侧台阶部42的上面相对应的部分,形成由和上述石英晶片1的下面一侧同样比较厚的Cr层构成外侧掩模层R3。这些内侧掩模层R2和外侧掩模层R3形成一个整体化的层。这样,通过在与内侧台阶部41的上面相对应的部分上形成薄的Cr层,而且,与外侧台阶部42的上面相对应的部分上形成厚的Cr层,设定石英晶片1的上面各处的腐蚀开始定时为相互不同。
这样,在石英晶片1形成掩模层R1、R2、R3的状态下,将该石英晶片1在腐蚀液中浸渍。由此,在没有形成掩模层的区域(形成压电振动区域21的部分)内直接开始石英晶片的腐蚀。与其相反,其外周侧的内侧掩模层R2和外侧掩模层R3 Cr层同时开始溶解。这种情况,由于内侧掩模层R2比外侧掩模层R3薄,所以该内侧掩模层R2的Cr层首先完全溶解,在该部分Cr层完全溶解后,石英晶片1的腐蚀开始。即,在与该内侧梯部41相对应部分,由于该薄壁的Cr层溶解需要时间,所以腐蚀开始的时间迟于形成压电振动区域21的部分。在此时刻,由于还残留着外侧掩模层R3,所以该部分不进行腐蚀。图3(b)示出了内侧掩模层R2的Cr层完全溶解时刻的石英晶片1的剖面状态。即,从此时刻,对内侧台阶部41上面的腐蚀开始。
这样的腐蚀工序继续进行到压电振动区域21达到规定的厚度尺寸为止。图3(c)示出了在压电振动区域21达到规定厚度尺寸时刻的石英晶片1的剖面形状。这样,在形成压电振动区域21的部分达到规定厚度尺寸时,取出石英晶片1,洗净、干燥,除去石英晶片1上下面上残留的掩模层R1、R3。由此,如图3(d)所示,形成在压电振动区域21和增强部3之间形成阶梯状台阶部41、42的石英晶片1。
这样,根据本实施例的腐蚀方法,虽然石英晶片1的表面各部的掩模由同一种材料(Cr)形成,但通过使该掩模层的厚度互为不同,可变更腐蚀度,利用1次腐蚀工序,即可形成具有台阶部4的石英晶片1。因此,能防止石英晶片1产生粗面,避免了腐蚀不良现象,并能防止薄壁部分及周边部产生破损。
在本实施例中设定各掩模层R1、R3的厚度尺寸,以便在压电振动区域21达到规定厚度尺寸时,仍处于残留掩模层R1、R3的状态,即,在石英晶片1的上面外缘部和下面,不能对石英晶片进行腐蚀。本发明并不限于此,如设定各掩模层R1、R2、R3的厚度尺寸,可使压电振动区域21达到规定厚度尺寸的时刻,与掩模层R1、R3完全溶解的时刻大致一致,这样就不需要去除残留掩模层的作业。
进而设定的各掩模层R1、R3厚度尺寸,使在压电振动区域21达到规定厚度尺寸之前,掩模层R1、R3即完全溶解,在石英晶片1的上面外缘部分和下面进行某种程度的腐蚀,可使石英晶片1整体获得薄型化。如果这样,利用抛光加工可使石英晶片1整体获得比薄型化时的极限尺寸更薄的薄型化。
(第3实施例)以下对第3实施例进行说明。本实施例是关于利用腐蚀将平板状石英晶片1形成规定厚度时可从石英晶片1的上下两面侧进行腐蚀的情况。
例如,对腐蚀加工前的石英晶片1进行抛光加工时,在其上下面上存在某种程度的加工变形。这样,在上下面中的一个面的加工变形层厚时,从上下两面侧进行同样的腐蚀,该面的加工变形层有可能不会完全去除。本实施例就是鉴于这点,以下作具体说明。
考虑抛光加工的石英晶片1上下面中,上面的加工变形层比下面的加工变形层厚的情况。图4中,加工变形层以斜线示出。这种情况下,优选使上面的腐蚀量比下面的腐蚀量大,就能完全除去上面的加工变形层。
本实施例中,如图4(a)所示,石英晶片1在腐蚀加工时的掩模层R4、R5只由Cr层形成,而且,欲使腐蚀量增大的面(上面)掩模层R4比其他面(下面)掩模层R5薄。
这样,在石英晶片1上形成掩模层R4、R5的状态下,将该石英晶片1在腐蚀液中浸渍。据此,如图4(b)所示,在掩模层R4薄的上面侧,掩模层R4先于下面一侧完全溶解,该上面的Cr层完全溶解后,开始石英晶片1的腐蚀。
这样,并行进行该石英晶片1的上面腐蚀和下面Cr层的腐蚀后,从下面的Cr层完全溶解的时刻,开始该下面的石英片1的腐蚀(图4(c))。
这样的腐蚀工序继续进行到规定时间,如图4(d)所示,在石英晶片1达到规定厚度尺寸时,将石英晶片1取出洗净,干燥,得到规定形状的石英晶片1。据此,可使上面侧比较厚的加工变形层比下面的加工变形层多除去,得到各加工变形层完全除去的石英晶片1。
作为上下两面腐蚀的作用效果,由于通过减小各自的腐蚀深度,很难发生石英的各向异性引起的腐蚀残留部分(斜嵌入部分),所以很难减少有效振动区域(平坦面)。
如本实施例那样使用了上下面掩模层厚度互为不同的方法,所以可如图5(a)~(d)所示利用1次腐蚀工序形成复杂形状的石英晶片1。图5(a)、(b)是在石英晶片1的中央部形成不存在台阶部的电压振动区域21,图5(c)、(d)是在石英晶片1的中央部分上下两面上形成台阶部4,在该台阶部4的内侧上形成压电振动区域21。
在本实施例中,虽然在上下两面上形成掩模层R4、R5,但在欲使腐蚀量增大的面(上述情况为上面)上不需要掩模层。在本实施例中,也可适用于只单面抛光加工的石英晶片1。
(第4实施例)以下对第4实施例进行说明。本实施例作为掩模层使用了Cr层和氧化Cr层(以下称为CrO层)。一般CrO层的腐蚀度比Cr层低(难溶于腐蚀液),利用这些的腐蚀度差得到规定形状的石英晶片1。以下对各层的形成工序进行具体说明。
图6(a)、(b)示出了在石英晶片1上相邻形成Cr层和CrO层情况的工序实例。首先,如图6(a)所示,在石英晶片1的规定区域上蒸镀Cr形成Cr层。只对要腐蚀度低的区域照射受激准分子UV,对该部分的Cr进行氧化处理,变成CrO层(图6(b))。由此,只使该部分的腐蚀度降低,作为取代上述第1实施例中Au层的层而发挥功能。即,被该CrO层覆盖的部分上石英晶片1不进行腐蚀,或者延迟石英晶片1的腐蚀开始定时。
作为将Cr层变成CrO层的方法,也可采用UV-O3干洗机和O2等离子体等方法。对上述CrO层全部进行氧化处理,使整个掩模层形成CrO层后,可以只对想要提高腐蚀度区域进行还原处理部分恢复到Cr层。进而,在石英晶片1上喷溅蒸镀Cr形成Cr层时,向室内供入氧,一边对Cr进行氧化,一边在石英晶片1进行蒸镀,也可形成CrO层。具体讲,在喷溅蒸镀时,向室内导入Ar-O2气即可实现。
这样,在本实施例中,不使用Au,只使用Cr,就可形成腐蚀度不同的2种掩模层。因此,作为成膜材料,不需要Au,从而也就不需要腐蚀后的除去Au工序。由此,可减少石英晶片1的制造成本和成膜工序。特别是,只在Cr层上要形成和上述Au层同等的掩模层时,需要数千(例如4000)的膜厚。与其相反,根据本实施例,即使和Au层同等的膜厚(膜厚数百,例如300),仍能充分确保作为腐蚀度低的掩模层的性能,可使成膜材料少量化。伴随着该掩模层的薄壁化,可提高形成掩模层形状的尺寸精度,在利用腐蚀形成石英晶片1的外形时,也可提高其外形的精度。
形成CrO层并在迟延该部分的腐蚀开始定时的情况下,设定各掩模层的厚度尺寸,使该CrO层完全溶解的定时与上述压电振动区域21达到规定厚度尺寸的时刻大致一致,这样就不需要除去残留掩模层的作业。
本实施例中,虽然对相邻形成Cr层和CrO层的情况作了说明,但如图6(c)、(d)、(e)所示,掩模层的一部分也可由Cr层和CrO层二层结构形成。
只要是利用氧化处理能改变腐蚀度的材料就可以,并不仅限于Cr,利用Ni等其他材料形成掩模层时,同样也能适用。
此外,作为改变腐蚀度的处理,对上述氧化处理没有限制,也可采用以数种金属的合金层形成一部分掩模层(改变腐蚀度的部分)等方法。
(第5实施例)以下对第5实施例进行说明。上述第4实施例利用Cr层和对该Cr层进行氧化处理后的CrO层,虽然废除了Au层,但使掩模层具有腐蚀度差异。本实施例作为掩模层,使用腐蚀度不同的材料,废除了Au层。
作为具体材料的组合是Cr和Ni(镍)。使Ni层在石英晶片1的表面上成膜时,其腐蚀度低于Cr层。即,难以溶于腐蚀液中。由此,使用除Au以外相互不同的材料,仍能使掩模层具有腐蚀度差异。也可组合使用3种以上的材料。例如,Cr、CrO和Ni。
作为形成掩模层的成膜材料,并不限于这些,可使用各种材料。
在使用互不相同的材料形成掩模层时,可适用上述第4实施例的方法。即,通过对由互不相同材料形成的掩模层实施有选择地氧化等处理,可改变腐蚀度。
以下,对如上述各实施例那样形成掩模层R方法的具体实例进行说明。作为本发明中可适用的成膜方法揭示如下。在以下说明中,虽然对只以Cr层形成掩模层的情况进行说明,但对于使用其他材料和多种材料形成掩模层时,也同样适用。
<激光照射>
掩模层R的形成方法之一,是利用激光照射有选择地除去掩模层,只在规定区域内残留掩模层的方法。例如,如图7(a)所示,该方法是在石英晶片1的上下整个面上蒸镀了Cr的状态,对该Cr层的规定区域(要促进石英晶片1腐蚀的区域)照射激光,有选择地只除去该区域中的Cr的方法。由此,如图7(b)所示,可在部分区域内除去Cr层,或者很容易地形成使该Cr层薄壁部分。
<研磨>
作为掩模层R的形成方法,也可示出研磨法。例如,图8所示,该方法是在研磨器件上具有可动罩M,如图8(a)所示,在石英晶片1的上下整个面上蒸镀了Cr的状态,一边从外侧间断地移动该可动罩M,一边对Cr层进行研磨,有选择地只除去规定区域(要促进石英晶片1腐蚀的区域)的方法。在图8(b)~(e)所示过工序中,示出了一边向外侧间断移动上下各一对可动罩M,一边进行研磨形成阶梯状Cr层(图8(e))的情况。
<蒸镀>
接着,对利用蒸镀法形成掩模层的情况进行说明。图9(a)所示,在石英晶片1的规定区域内配置掩蔽材料M,在此状态进行蒸镀Cr。由此形成规定厚度的第1层Cr膜(图9(b))。随后,如图9(c)所示,对于该第1层Cr层的一部分配置掩蔽材料M,在此状态再次进行Cr蒸镀。由此,对于没有掩蔽部分形成第2层的Cr。即,只形成该部分作为厚度尺寸大的Cr层。随后,通过除去掩模材料M,通过只由第1层Cr形成的层和由第1层和第2层Cr形成层形成阶梯状Cr层(图9(d))。
<金属腐蚀>
作为利用金属腐蚀形成掩模层的方法,例如,图10(a)所示,在石英晶片1的上下整个面上蒸镀Cr的状态,在该Cr层的一部分上配置抗蚀材料R,在此状态进行金属腐蚀。由此,只除去一部分(图中的中央部分)规定的厚度的Cr层(图10(b))。随后,在Cr层的其他部分上配置抗蚀材料R,在此状态进行金属腐蚀。由此再除去一部分规定厚度Cr层(图10(c))。随后通过除去抗蚀材料R,由除去厚度不同的多个层形成阶梯状的Cr层(图10(d))。
<卸下>
作为利用卸下形成掩模层的方法,例如图11(a)所示,在石英晶片1的规定区域上配置卸下用的抗蚀材料R,在此状态下进行Cr蒸镀(图11(b))。由此,在石英晶片1和抗蚀材料R的各上面全部形成规定厚度的Cr层膜。之后,利用卸下法,从石英晶片1上除去抗蚀材料R和一部分Cr层(图11(c))。随后,对于残留Cr层的一部分配置卸下用的抗蚀材料R(图11(d)),在此状态,再次进行蒸镀Cr(图11(e))。由此,在石英晶片1和抗蚀材料R的各上面全部形成规定厚度的Cr层膜。之后,和上述一样,利用卸下法,从石英晶片1除去抗蚀材料料R和一部分Cr层(图11(f))。由此,通过只由第1层Cr形成的层和由第1层和第2层Cr形成的层,形成阶梯状的Cr层。
(第6实施例)以下对第6实施例进行说明。上述各实施例的石英晶片1为平片状。本实施例的石英晶片1,其构成是利用多个桥将振动部和围绕该振动部的框部连接起来的结构。以下对其构成和腐蚀方法进行说明。
图12是本实施例的石英晶片1平面图,图13是沿图12中A-A线的剖面图。如这些图所示,振动部5由和上述实施例的石英晶片1大致相同的反台面结构构成。具体讲,在上下面上具有台阶部54,在其中央部形成的压电振动区域51上安装激振电极52。
而框部6围绕该振动部分5的外周围那样形成,同时,通过4个桥7,7……与振动部5连接。根据该构成,位于振动部5中央部的压电振动区域51,不仅支撑在振动部5的外缘部的增强部分53上,而且通过桥7,7……也由框部6支撑,从而可确保很高的机械强度。框部6是利用粘合剂支撑在石英振子的外壳的部分,该部分和振动部53只由桥7,7……连接,所以即使框部6受粘合剂的凝固收缩等影响而发生弯曲变形等,其构成也很难使其变形的影响波及到振动部5。进而,由桥7,7……连接振动部5和框部6的位置,相对于振动部5的Z轴(图12中在左右方向延伸的轴),设定存在30°角度的应力感度为“0”的位置上。因此,即使外力作用于框部6并传递到振动部5上,也几乎不会对振动特性产生任何影响。
以下对本实施例的石英晶片1的加工方法进行说明。图14~图19,示出了该石英晶片1的加工工序。作为该石英晶片1的加工工序,包括抗蚀膜形成工序(图14)、预备腐蚀工序(图15)、Au除去工序(图16)、卸下工序(图17)、主要腐蚀工序(图18)、电极形成工序(图19)。以下对各个工序进行说明。
<抗蚀膜形成过程>
在该工序中,首先,对石英晶片1的上下整个面上蒸镀由Cr和Au的二层结构形成的抗蚀膜R(图14(a))。随后,为形成上述桥7,7……,除了其间形成贯通孔71的部位,对其余整个面上形成正型的抗蚀膜PR(以下称正型抗蚀膜)(图14(b))。在此状态下,利用Au腐蚀液和Cr腐蚀液分别进行腐蚀,除去不存在上述正型抗蚀膜PR部分的Au层和Cr层(图14(c))。随后,除去正型抗蚀膜PR(图14(d)),该掩模层形成工序结束。
<预备腐蚀工序>
在该工序中,在上述抗蚀膜形成工序中除去Au和Cr的部分(桥7,7彼此间形成贯通孔71的部位)和石英晶片1除去中央部分(形成压电振动区域21的部分)的上下面整体上形成正型抗蚀膜PR(图15(a))。之后,将该石英晶片1在石英腐蚀液中浸渍并进行腐蚀。由此,如图15(b)所示,只在桥7,7彼此间形成贯通孔71的部位上腐蚀到规定量。接着,利用Au腐蚀液和Cr腐蚀液分别进行腐蚀,除去不存在上述正型抗蚀膜PR部分的Au和Cr(图15(c))。之后,除去正型抗蚀膜PR(图15(d)),该预备腐蚀过程结束。
<Au除去过程>
在该过程中,针对形成框部6的部分上下整个面上形成负型抗蚀膜NR(以下称负型抗蚀膜)(图16(a))。之后,利用Au腐蚀液进行腐蚀,除去不存在上述负型抗蚀膜NR部分的Au(图16(b))。之后,除去负型抗蚀膜NR(图16(c)),该Au去除过程结束。
<卸下过程>
该工序是用于在振动部5的中央处形成应使阶梯状凹部成形的阶梯状Cr层的工序。即,在上述Au除去工序结束时刻,对残留在石英晶片1上残留Cr层的一部分蒸镀Cr,形成阶梯状的Cr层。为此,首先,除了需要追加蒸镀Cr的区域外,对其整个区域形成负型抗蚀膜NR(图17(a))。在此状态,对石英晶片1的上下面上蒸镀Cr,只对不存在负型抗蚀膜NR部分的Cr层形成厚壁层(图17(b))。之后,利用卸下法除去负型抗蚀膜NR(图17(c)),结束本卸下过程Au。由此,形成为进行本发明的腐蚀工序的掩模层。
<主要腐蚀工序>
该工序与上述第2实施例中说明的凹部形成工序一样进行。即,石英晶片1的上下面中,在无Cr层的部分早期开始腐蚀,在Cr层厚度薄的部分腐蚀稍迟开始。在Cr层厚度薄的部分上几乎不进行腐蚀。为此,在压电振动区域51腐蚀达到规定厚度尺寸的状态,如图18(b)所示,只在振动部5和框部分6之间残留桥7,7……,并在振动部5上形成阶梯状的梯部54。
<电极形成工序>
在该工序中,利用和以前一样的工序形成电极。即,如图19(a)所示,对石英晶片1的上下整个面蒸镀电极材料(Al或Ag)后,将压电振动区域51的电极形成部分和引出电极部分(图示省略)用负型抗蚀膜NR覆盖(图19(b))。之后,如图19(c)所示,利用腐蚀等除去电极材料,进而,如图19(d)所示,通过除去负型抗蚀膜NR,只在压电振动区域51上残留电极材料,由此形成规定形状的激振电极52。
通过以上工序,形成如图12和图13所示的具有振动部5和围绕该部分配设且由桥7,7……与振动部5连接的框部6的石英晶片1。
这样,在该石英晶片1的腐蚀方法中,通过使在石英晶片1表面各部形成的掩模层的腐蚀度(Cr层的厚度)不同,可利用1次腐蚀工序,就能形成具有台阶部54的石英晶片1,因此可防止石英晶片1形成粗面,避免了腐蚀不良发生,并能防止薄壁部分及其周边部分产生破损,从而可提供稳定的高质量石英晶片1。通过使用由互不相同材料形成的掩模层,也可使各掩模层形成不同的腐蚀度。
对于使这样形成规定形状的石英晶片1的符合基本频率,在上述腐蚀工序结束后,可利用干腐蚀加工等进行。在仅用上述腐蚀工序就能符合基本频率时,该腐蚀工序结束的同时,石英晶片1也就完成。
同样,本实施例的石英晶片1,如上述,中央部分56由反台面型结构形成。因此,该中央部分56本身具有很高的机械强度。所以能抑制外力等对压电振动区域51的影响。在该中央部分56的外周侧,通过桥7,7……连接外框部6。因此,对于石英振子的外壳,可将石英晶片1的连接部位形成外框部6,即使因粘合剂固化收缩产生应力,该应力影响及于外框部分6而终止,几乎不会影响到中央部56的压电振动区域51。即使有外力作用于外框部6时,该外力几乎不会传达到中央部56的压电振动区域51。因此可避免石英晶片1的共振频率受应力等影响下发生变动的状况,能确保所要求的频率特性。在压电振动区域51的外侧上,形成存在由增强部53和外框部6形成的双重框材料的构成,所以可获得极高的机械强度。
进而,由于在压电振动区域51和增强部53之间形成阶梯状的台阶部54,所以,即使在应力作用于增强部53时,这种情况很容易缓和,从而可避免应力局部集中。此外,例如,图20所示,如果设定多个台阶部25,而且各台阶差很小,在沿着该台阶部25的表面形成引出电极时,不仅可避免引出电极断线(切断电极膜),而且能获得电极膜的薄膜化。
(第7实施例)以下对第7实施例进行说明。本实施例是中央部32形状的变形例,其他构成和上述第6实施例一样。因此,此处只对与第6实施例的不同点进行说明。
图21是本实施例的石英晶片1的剖面图。如该图所示,设定本实施例的石英晶片1,其中央部32的厚度尺寸小于外框部33的厚度尺寸。该中央部32的上下各面比外框部33上下面更位于厚度方向的中央侧上。即,将中央部32的上下各面的位置,设定在比外框部33上下各面的位置后缩的位置上。
根据该构成,将石英晶片1安装在组件内时,只有外框部33与外壳内面接触,能以悬浮状态载置中央部32。因此,不会发生因外壳阻碍主振动部21振动的状况,可使主振动部21进行良好的振动。
(第8实施例)以下对第8实施例进行说明,上述各实施例将中央部32形成反台面型结构。本实施例是将该中央部32形成台面型结构。即,如图22(a)所示,作为设定中央厚度尺寸大于外缘部厚度尺寸的形状构成中央部32。本实施例中,中央部32的外周部分上形成阶梯状的台阶部25,即使应力作用于中央部32时,利用台阶部25也很容易缓和这种情况,可避免应力局部集中。进而,在该构成中,若将台阶部25的台阶差设定很小,沿该台阶部25的表面形成引出电极时,不仅避免引出电极断线(电极膜切断),而电极膜也能获得薄膜化。在图22(a)所示中,和上述第2实施例的情况一样,设定石英晶片1的中央部32厚度尺寸小于外框部33的厚度尺寸,同时,该中央部32的上下各面比外框部33上下各面更位于厚度方向中央侧。即,中央部32的上下各面的位置,设定在比外框部33上下各面位置的更后缩位置上,将石英晶片1安装在外壳内时,只有外框部33与组件内面接触。
在作为本实施例的变形例的图22(b)中所示石英晶片1中,将中央部32作为台面型结构,而且,在中央部32的外周部分上形成阶梯状的台阶部25,设定石英晶片1的中央部32厚度尺寸大于外框部33的厚度尺寸。这样,该中央部32的上下各面比外框部33上下各面更位于厚度方向的外侧。根据这种构成,例如,将多个石英晶片1,1彼此重合并装载在外壳中时,使相互邻接外框部33,33彼此接触,但通过适当调整该接触区域的高度,可将多个石英晶片1,1的总体高度尺寸控制在需要的最小限度(使中央部分32,32彼此不接触且尽量减小高度尺寸),从而可获得小型化组件。
(第9实施例)以下对第9实施例进行说明。本实施例是为阻止振动波从外框部33向中央部32传递而采用的构成,其他构成和上述第6实施例一样。因此,此处只说明和第6实施例的不同点。
图23是本实施例的石英晶片剖面图(设置桥44处的剖面图)。如该图所示,本实施例的石英晶片1,是在外框部33表面和桥44表面之间,及中央部32表面和桥44表面之间分别形成不连续部分的凹部46,46。根据这种构成,由该凹部46,46可阻止表面波的传播,从而避免了该表面波从外框部33表面向桥44表面传播,或从桥44表面向中央部32表面传播。即,避免了该表面波经由外框部33和桥44传播到主振动部21上,对该主振动部21的振动产生恶劣影响的状况。
在上述各实施例中,由于外框部33表面和桥44表面之间,和中央部32表面和桥44表面之间形成不连续面(利用台阶部形成不连续),所以在此构成中,也能在某种程度上阻止表面波振动的传播。
在图23所示构成中,在使外框部33表面和桥44表面的高度位置,以及中央部32表面和桥44表面的高度位置相互不同,在其中形成上述凹部46,46。但并不限于此,也可使外框部33表面和桥44表面的高度位置,以及中央部32表面和桥44表面的高度位置处于同一高度位置上,即形成连续面中,形成上述凹部46,46时,也能阻止表面波的传播。
进而,在图23所示中,设定桥44的厚度尺寸远远小于外框部33和中央部32的增强部24各厚度尺寸。根据该构成,通过设定很小剖面积的桥44,使从外框部33经桥44向中央部32传播的整体波传递途径变得狭窄,所以可抑制该整体波的传播,由此,也除去了对主振动部21的振动产生恶劣影响的因素。利用桥44的高度位置与主振动部21的高度位置不同,也能抑制整体波从桥44向主振动部21传播。进而,利用将桥44的宽度尺寸设定的非常小,使整体波的传递径途变得非常狭窄,也能除去对主振动部分21的振动产生恶劣影响的因素。
(第10实施例)以下对第10实施例进行说明。图24是本实施例的石英晶片1的剖面图。如图所示,本实施例的石英晶片1是将中央部分32形成反台面型结构,使主振动部分21位于增强部分24的厚度方向大致中央部分。根据这种构成,由于石英晶片1形成正反对称形状,所以在向外壳内安装时,无需边识别石英晶片1的正反边进行作业,从而提高了向外壳的组装作业性。
(第11实施例)
以下对第11实施例进行说明。在利用上述腐蚀加工形成反台面型石英晶片1时,在腐蚀量较大的情况下,利用图25(a)所示的腐蚀形成的凹部23纵向壁23a,会形成向中央部32的中心呈倾斜的面。由此,如图25(b)所示,在获得石英晶片1小型化时,不能充分确保主振动部21的振动面积,主振动部21受到来自增强部分24的约束,导致共振特性低劣。本实施例就是为解决此类问题。
图26是本实施例从下面一侧观察石英晶片1的中央部32的斜视图,图27是表示主振动部21和增强部24的连接部分的剖面图。如这些附图所示,本实施例的石英晶片1,在中央部32的主振动部21和增强部24之间,具有将主振动部21和增强部24连接的缓冲部分45,其厚度尺寸与主振动部21的厚度尺寸大致一样。
具体讲是对于主振动部21和增强部24的连接部分,在整个中央部32的周围形成向其下面一侧开放的沟55,这样,从主振动部21向增强部24形成沿斜上方延伸的缓冲部45。根据该构成,由于主振动部21能不受增强部24的约束力那样进行振动,所以不会导致共振特性低劣。
作为本实施例的变形例,如图28所示,也可在石英晶片1的纵向上形成沟55。
进而如图29(从下面一侧观察石英晶片1的斜视图)和图30(主振动部21和增强部24的连接部分剖面图)所示,也可形成贯通孔47,取代上述沟51。即,使主振动部21和增强部24形成部分分离,主振动部21可不会受增强部24的约束力那样进行振动。
也可将上述各种构成进行组合。即,其构成是将主振动部21和增强部24连接部分的一部分形成缓冲部分45,其他部分形成分离的结构。
(第12实施例)以下对第12实施例进行说明,本实施例是如上述各实施例那样,利用掩模层的腐蚀度差能任意设定石英晶片1各部厚度尺寸这样的技术应用实例。
此处,对将本发明的技术思想适用于音叉型石英振子生产技术中的情况进行说明。
如图31所示,音叉型石英振子的石英晶片,从1个石英原片8上同时形成多个。这种情况下,在从石英原片8上切割各个音叉型石英晶片1,1,……时,将其两者的连接部分即石英晶片1的基部断开。这时,如图50(a)、(b)所示,这种断开位置偏移情况下,都不能将该石英晶片100装入外壳内,即使能装入,也会产生不能在规定位置载置的弊端。以前的石英晶片,在断开时很容易产生石英碎片,这种石英碎片附着在石英晶片100表面上,有可能对振动特性产生恶劣影响。在本实施例中,在将该石英晶片100的基部断开时,由于只在适当的位置上产生碎片,所以适用本发明的技术。以下进行详细说明。
图32(a)是利用腐蚀加工石英原片8制作音叉型石英晶片1的前阶段剖面图,示出了音叉型石英晶片1的基部(沿图31中B-B线的剖面图)。如该图32(a)所示,在音叉型石英晶片1的基部上,预先形成不存在掩模层RR的部分,和存在由阶梯状Cr层形成掩模层RR的部分。其他部分,在利用腐蚀可形成规定音叉型形状的区域内,形成由Cr和Au二层形成的掩模层(抗蚀层)。
这样,如图32(b)所示,在石英原片8的腐蚀加工时,在不存在掩模层RR的部分上进行腐蚀,石英晶片1的厚度尺寸变得非常薄,而在由阶梯状的Cr层形成掩模层RR的部分上,在阶梯状石英晶片1的厚度尺寸变厚。因此,如图32(c)所示,除去掩模层RR后,从石英原片8上切割各个音叉型石英晶片1,1,……时,该基部的薄壁部分断开良好,不产生碎片。因此,可很好地将石英晶片安装在外壳内,而且也避免了因存在石英碎片对振动特性产生恶劣影响。
图33是将在音叉型石英晶片1的基部形成阶梯状的Cr层形成在石英原片8的上下面上,由此,从上下两侧进行基部腐蚀,形成局部的薄壁部。也由此,基部的薄壁部分能很好地断开,而不产生碎片。
本实施例中,对将本发明适用于从石英原片8切割音叉型石英晶片1的技术中的情况进行说明。例如,将该技术思想适用于上述第6实施例的石英晶片1的制作中时,如图34所示,和上述音叉型石英晶片1的基部一样,形成使石英晶片1与石英原板8连接的连接部分11。即,残留形成薄壁的连接部分11,可很容易分离,利用腐蚀可将石英晶片1外围的石英原片8除去。这种情况,在将连接部分11形成薄壁的同时,利用上述第6实施例的加工方法,也可将压电振动区域51、增强部分53、桥7、框部6等各部分的厚度尺寸,形成任意的尺寸。
以上说明的各实施例,对利用湿式腐蚀将石英晶片1形成规定形状的情况都作了说明。本发明并不限于这些,对于利用干腐蚀将石英晶片形成规定形状的情况也能适用。
上述各实施例对将本发明适用于反台面型石英晶片加工的情况都作了说明,即使对于台面型的石英晶片加工也能适用。
进而,在上述各实施例中,对作为被成形物采用石英晶片的情况作了说明。本发明并不限于这些,对于其他的压电材料、玻璃、金属、半导体等各种材料也能适用。
此外,如上述第7实施例,在从1块石英原片8上同时形成多个石英晶片1,1,……的所谓多个采样的情况下,对于各个石英晶片1,1,……的成形部分,设定各不相同的腐蚀度,取代掩模层的材料和膜厚,也能同时形成基本振动频率互不相同的多种石英晶片1,1,……。
(第13实施例)本实施例适用于是音叉型石英振子和构成该音叉型石英振子的音叉型石英晶片的利用腐蚀成形方法的实例。
—音叉型石英振子的构成说明—在说明利用腐蚀形成音叉型石英晶片的方法之前,首先,对音叉型石英振子的结构进行说明。
图35(a)是本形态的音叉型石英振子中具有的音叉型石英振动片10的示意图。图35(b)是沿图35(a)中B-B线的剖面图。
该音叉型石英振动片10具有2个脚部61,62,在各脚部61,62上形成第1和第2激振电极13,14。图35(a)中,对这些激振电极13,14的形成部分以斜线示出。
本音叉型石英振动片10,在形成各脚部61,62的各个正反面的主面61a,62a的中央部分上,形成矩形状的沟部61c,62c。对加工这些沟部61c,62c的腐蚀工序后面讲述。
在各脚部61,62的正反面上形成沟部61c,62c时,即使小型化的音叉型石英振动片10,也能有效地抑制脚部61,62的振动损失,并能有效地将CI值(晶体阻抗)控制到较低。
上述第1激振电极13,设在一个脚部61的正反面(主面)61a上形成沟部61c的内部和另一脚部62的侧面62b上,并分别连接。同样,第2激振电极14,设在另一脚部62的正反面(主面)62a上形成沟部62c的内部和另一脚部61的侧面61b上,并分别连接。这些激振电极13,14是利用铬(Cr)和金(Au)的金属蒸镀形成的薄膜,其膜厚,例如设定为2000。
虽然未图示,但该音叉型石英振动片10支撑在基座上,该基座的外周部分安装罩子,覆盖住音叉型水型振动片10,从而构成音叉型石英振子。
以下利用图36对利用腐蚀形成音叉型石英晶片的方法进行说明。该图36示出了沿图35中II-II线的剖面加工状态。
首先,如图36(a)所示,将石英基片60加工成片状。这时,利用抛光加工将石英基片60的正反各面形成镜面。
利用未图示的喷溅器件,进行蒸镀,在石英基片60的正面和反面上形成Cr膜63,及在其表面上形成Au膜64。如图36(c)所示,在这样形成的金属膜63,64上,形成光抗蚀剂层65,65。
接着,如图36(d)所示,除去一部分光抗蚀剂层65,分别在与要制作音叉型石英片形状(音叉型形状)一致的振动片形成区域A,和石英基片60的外缘部框部C上分别残留下光抗蚀剂层65,65,进行外形图形形成。
接着,如图36(e)所示,利用Au腐蚀液和Cr腐蚀液,除去上述图36(d)中没有形成光抗蚀剂层65部分的各金属膜63,64。由此,在除去金属膜63,64的部分露出石英基片60。
随后,如图36(f)所示,将图36(e)中残留的光抗蚀剂层65全部除去。
随后,如图36(g)所示,在石英基片60的整个正反面上形成光抗蚀剂层66。
同样,如图36(h)所示,除去一部分光抗蚀剂层66。具体讲,除去相当于沟部61c,62c部分的光抗蚀剂层66,以形成沟部图形。
接着,如图36(i)所示,利用Au腐蚀液,只去除上述图36(h)中没有形成光抗蚀剂层66部分的Au膜64。据此,在相当于沟部61c,62c的部分,形成作为金属膜只残留Cr膜63的状态。
之后,如图36(i)所示,将图36(i)中残留的光抗蚀剂层66全部去除。据此,在相当于沟部61c,62c的部分,作为金属膜,只存在本发明中所说的作为腐蚀延迟膜而发挥功能的Cr膜63,在相当于沟部61c,62c部分以外的区域内,作为金属膜,存在Cr膜63和Au膜64的二层。
将Cr和Au作比较时,Cr的腐蚀度很高。即,是利用腐蚀液(本形态的情况中,氢氟酸+氟化铵溶液)很容易溶融的材料。与其相反,Au是利用腐蚀液几乎不溶融的材料。
继续,利用石英腐蚀液进行外形腐蚀。即,对不存在金属膜63,64,露出石英基片60的部分进行腐蚀。此时,在相当于沟部61c,62c的部分上,作为金属膜只存在Cr膜63,该Cr膜63利用石英腐蚀液也能进行腐蚀(溶融除去)。图36(k)是该外形腐蚀过程中的状态,呈现出相当于沟部61c,62c部分的Cr膜63完全去除的状态。这时,外形腐蚀工序没有完成,部分石英基片60仍以薄板状态残留下来。
经过这种状态,进一步利用石英腐蚀液进行腐蚀时,在相当于Cr膜63完全除去的沟部61c,62c的部分中,石英基片60的腐蚀也开始。即,石英晶片的外形腐蚀工序和沟部腐蚀工序并行进行。
该腐蚀过程继续到规定时间,在沟部61c,62c的腐蚀量达到规定量的时刻时,腐蚀工序结束。由此,如图36(1)所示,在脚部的两面上形成沟部61c,62c,该脚部的断面形状大致成H型。这样在规定的外形形状中,形成主面上具有沟部61c,62c的石英晶片1A,利用Au腐蚀液和Cr腐蚀液除去残留的各金属膜63,64,完成具有如图36(m)所示的断面大致呈H型脚部的音叉型石英晶片1A。
另外,在图36(1)所示状态下,残留在石英晶片1A上的金属膜63,64,没有去除,用作随后进行的形成电极时布线图形的一部分,也可用作在音叉型石英振子的频率调整时用于部分除去(例如,为调整频率的研磨)重用的附加电极。
在这样形成的音叉型石英晶片1A的各脚部61,62上,形成上述第1和第2激振电极13,14,制作成音叉型石英振动片10,并将其支撑在基座上,在该基座的外周部安装罩子,制作成音叉型石英振子。作为如此制作的音叉型石英振子的共振频率,例如有20kHz、64kHz、40kHz、60kHz、75Hz、77.5kHz等。也可以制作这些频率以外的音叉型石英振子。也可制作表面安装型的音叉型石英振子等。
如以上说明,本形态中,对于石英基片60,只进行一次腐蚀工序,就能将音叉型石英晶片1A的外形加工成规定的音叉型形状,同时,在其主面上也能形成沟部61c,62c。即,对于石英基片60不必进行多次腐蚀,所以能避免加工作业的繁杂化和加工时间的冗长化,同时,不会导致石英晶片1A表面粗糙等弊端,并能制作出高质量的音叉型石英晶片1A。
在以上说明的实施例中,在相当于沟部61c,62c的部分上只存在Cr膜63,在相当于沟部61c,62c部分以外的区域内存在Cr膜63和Au膜64二层。本发明并不限于此,也可在相当于沟部61c,62c的部分上存在Cr膜,在相当于沟部61c,62c部分以外的区域内存在氧化Cr膜。一般是,与Cr(非氧化)膜比较,氧化Cr膜的腐蚀度低(难溶于腐蚀液中),通过利用这些腐蚀度之差,也可只对相当于沟部61c,62c的部分进行腐蚀,形成沟部61c,62c。对于该Cr膜,作为部分氧化的方法,有受激准分子UV照射、UV-O3干洗、O2等离子体等。
作为在相当于沟部61c,62c的区域、和其以外的区域上形成的各膜设定腐蚀度差异的方法,例如有在各区域上形成同一材料的膜(例如Cr膜),同时,对前者区域内形成的膜厚,设定后者区域内形成膜的厚度更厚。
以上说明的实施例是将本发明适用于利用腐蚀形成音叉型石英晶片方法的情况。本发明并不限于此,也能适用于在其他石英晶片(AT切割石英晶片等)上形成沟部的情况。
本发明并不仅限于石英晶片,也可适用于使用铌酸锂和钽酸锂等的压电振动片,和其他各种电子零件的制造。进而,作为被成形物,不限于压电材料,对玻璃、金属、半导体等各种材料都可适用。
若是腐蚀延迟膜的材料不限于Cr,也可适用腐蚀度比较高的各种材料。另外,也可适用Ni膜,以取代上述Au膜。
(第14实施例)本实施例是适用于音叉型石英振子及构成该音叉型石英振子的音叉型石英晶片的利用腐蚀的其他成形方法的实例。
以下对第14实施例进行说明。本实施例的音叉型石英晶片的成形方法,通过以下工序进行,即,第1次成形工序,将作为被成形物的石英基片,除沟部61c,62c外,形成规定的形状(音叉型形状);第2次成形工序,在第1次成形工序之后进行,形成沟部61c,62c。
在第1成形工序中,首先,如图37(a)所示,将石英基片60加工成板状。这时,利用抛光加工将石英基片60的正反面形成镜面。
接着,利用未图示的喷溅器件,在石英基片60的正面和反面蒸镀上Cr、Au的金属膜63、64。如图37(c)所示,在这样形成的金属膜63、64上,形成光抗蚀剂层65,65。
接着,如图37(d)所示,除去一部分光抗蚀剂层65,分别在与要制作的音叉型石英晶片形状一致的振动片成形区域F,和石英基片60的外缘部框部C上残留下光抗蚀剂层65,65,以便形成外形图形。
作为在沟部61c,62c的形成区域一部分上残存的光抗蚀剂层65,65,在相当于沟部61c,62c的部分和上述第1实施形态的图3(a)所示沟部侧图形形成一样,仅对沟部61c,62c的两侧,即,图37(d)中沟部61c,62c的左右两侧部分除去光抗蚀剂层65。
接着,如图37(e)所示,利用Au腐蚀液和Cr腐蚀液,除去图37(d)中没有形成光抗蚀剂层65部分的金属膜63。由此,在除去金属膜63部分上,露出石英基片60。
之后,如图37(f)所示,将图37(e)中残留的光抗蚀剂层65全部去除。
之后,如图37(g)所示,在石英基片60的整个面上形成光抗蚀剂层66。这时,由于石英基片60上还未形成侧沟部61d,62d,所以利用旋转涂布法可在整个石英基片60的面上形成均匀的光抗蚀剂层66。由此,可获得很高的图形形成精度。
随后,如图37(h)所示,除去一部分光抗蚀剂层66。具体讲,在相当于沟部61c,62c部分的中央腐蚀工序中,只在腐蚀区域(以下将该区域叫作沟中央区域)除去光抗蚀剂层66,形成图形。
接着,如图37(i)所示,利用Au腐蚀液仅除去图37(h)中没有形成光抗蚀剂层66部分的金属膜63中的Au。由此,在相当于沟中央区域的部分,形成只残留本发明中所说的作为腐蚀迟缓膜发挥功能的Cr膜的状态。
这样,如图37(j)所示,除去一部分光抗蚀剂层66。具体讲,只残留覆盖位于沟部61c,62c两侧金属膜63的光抗蚀剂层66,将除此之外的光抗蚀剂层66除去。
接着,如各脚部61,62的放大的图38(a)所示,利用石英腐蚀液进行外形腐蚀。即,只残留振动片成形区域F和框部C,进行外形腐蚀。这时,沟部61c,62c的两侧也被腐蚀,开始形成侧沟部61d,62d。这时,在相当于沟中央区域的部分,作为金属膜63只存在Cr膜,所以该Cr膜也由石英腐蚀液腐蚀(溶融除去)。图38(b)表示在该外形腐蚀工序中的状态中相当于沟中央区域部分的Cr膜完全被去除的状态。此时,外形腐蚀工序和侧沟部61d,62d的腐蚀工序(外缘腐蚀工序)还没有完成。
经过此状态,利用石英腐蚀液进一步进行腐蚀时,如图38(c)所示,相当于Cr膜完全除去的沟中央区域部分,也开始石英基片60腐蚀。即,石英晶片外形腐蚀工序、外缘腐蚀工序和中央腐蚀工序同时进行。
当该腐蚀过程继续到规定时间时,石英基片60形成规定的音叉型。在沟部61c,62c的成形中,首先,外缘腐蚀工序由上述腐蚀停止作用而完成。由此,形成侧沟部61d,62d。之后,在中央腐蚀工序的腐蚀量达到上述侧沟部61d,62d的深度时刻,腐蚀不再进行,形成规定深度的沟部61c,62c(图38(d))。
本实施例中,和上述各实施例的情况一样,可提高沟部61c,62c的加工精度,并能抑制CI值和抑制振动频率的偏差。通过利用腐蚀停止技术也可获得控制工序的简化。进而,本实施例中,由于石英晶片外形腐蚀工序、外缘腐蚀工序和中央腐蚀工序同时进行,所以对石英基片60的腐蚀,只进行1次就能完成,确实能阻止石英晶片产生粗面等弊端。也能简化加工作业和缩短加工时间。
在本第14实施形态中,具有只存在Cr膜63的区域,和存在Cr膜63和Au膜32的二层区域,只在仅存Cr膜63的区域内延迟腐蚀工作的开始。并不仅限于此,具有存在Cr膜的区域和存在氧化Cr膜的区域,也可只在存在Cr(非氧化)膜的区域内延迟腐蚀工序的开始。作为对该Cr膜进行部分氧化的方法,有受激准分子UV照射、UV-O3干洗、O2等离子体等。
(第15实施例)本实施例中,进一步对本发明适用于音叉型石英振子的情况进行说明。
图39是本实施例的音叉型石英振子中具有的音叉型石英振动片10的示意图。该音叉型石英振动片10具有2个脚部61,62,在各脚部61,62分别形成激振电极13,14。图39中,这些激振电极13,14的形成部分以斜线示出。
激振电极13设在一侧脚部61的正反面(主面)61a和另一脚部62的侧面62b上,相互连接。同样,激振电极14设在另一侧脚部62的正反面(主面)62a和一脚部61的侧面61b上,相互连接(关于各侧面61b,62b的电极图示省略)。这些激振电极13,14是利用铬(Cr)和金(Au)的金属蒸镀形成的薄膜,其膜厚,例如设定为2000。这些激振电极13,14的形成工序以下讲述。
虽然没有图示,但该音叉型石英振动片1支撑在基座上,该基座的外周部安装罩子,覆盖住音叉型石英振动片10,构成音叉型石英振子。
本实施例的音叉型石英振动片10的特征,如图41所示,在石英晶片1A的主面61a,62a的正反两侧规定区域内,形成作为降低张力组件的针孔82,82……。具体讲,沿着各脚部61,62宽度方向两侧的边缘部A和石英晶片1A基部16的宽度方向两侧的边缘部A,形成大量的针孔82,82,……。图41(b)是沿图41(a)的III-III线剖切的剖面图。
通过设置这些针孔82,82、……,在各脚部61,62和基部16的边缘部A处,正反面的各面61a,62a不存在连续性,在石英晶片1A上形成激振电极13,14的工序中,可降低涂布在石英晶片1A的正反面61a,62a上的抗蚀液所产生的表面张力。即,可充分确保各边缘部A处抗蚀液的涂布量。
这些针孔82,82……的形成工序(本发明中称作基片表面的前处理工序),在利用腐蚀加工等将石英原片形成音叉型时,同时进行。即,对石英原片形成音叉型的金属图形时,在要形成该针孔82,82、……的位置上不设抗蚀层,在石英原片腐蚀加工时,形成音叉型的石英晶片1A的同时,在该石英晶片1A的规定区域内形成针孔82,82、……。
另外,利用腐蚀加工将石英原片形成音叉型得石英晶片1A后,通过在该石英晶片1A的规定位置上照射激光,也可形成针孔82,82、……。
以下利用图40(沿图39中II-II线的剖面部分示意图),对在具有上述针孔82,82、……的石英晶片1A上形成激振电极13,14的工序进行说明。
首先,与以前电极的形成的工序一样,对于形成音叉型的石英晶片1A(图40(a)),在其整个面上利用真空蒸镀法等形成由铬和金等材料构成的电极膜15(图40(b))。随后,利用由正型光抗蚀剂液构成的抗蚀剂膜31涂覆石英晶片1A的整个面,(图40(c))。利用这种抗蚀膜31进行涂覆的作业,是将石英晶片1A在抗蚀液槽中浸渍,或将抗蚀液喷淋在石英晶片1A上进行涂布的。这种情况,在以前的石英晶片1A中,涂布在主面61a,62a上的抗蚀液产生很大的表面张力,在边缘部得不到充分的抗蚀液涂布量,有些情况下,在边缘部周围有可应完全不存在抗蚀液。与其相反,在本实施例中,由于边缘部A处形成针孔82,82,……(图40中图示省略),所以石英晶片1A的主面61a,62a没有连续性,可降低涂布在石英晶片1A主面61a,62a上的抗蚀液产生的表面张力。因此,边缘部A可获得充分的抗蚀液涂布量。
随后,对利用该光抗蚀剂液形成的抗蚀膜31进行规定的曝光、显像处理,在应腐蚀电极膜15区域的抗蚀膜31上形成开口部75(图40(d))。对该开口部分75处露出的电极膜15进行腐蚀处理,部分除去电极膜15后(图40(e)),除去上述抗蚀膜31(图40(f))。由此,得到只在石英晶片1A的规定区域内形成激振电极13,14的音叉型石英振动片10。
如以上说明,本实施例中,通过在石英晶片1A上边缘部A的周边上设有针孔82,82、……,使其周边部的主面61a,62a没有连续性,可降低涂布在石英晶片1A上的抗蚀液产生的表面张力。因此,边缘部A可获得充分的抗蚀液涂布量,从而可准确地获得激振电极13,14的形成位置,并能大幅度减小不合格品的发生率。
(第16实施例)以下对第16实施例进行说明。对该实施例也是将本发明适用于音叉型石英振子情况的说明。
图42(a)是本实施例的音叉型石英振动片10的示意图。如该图所示,在该音叉型石英振动片10中,沿着各脚部61,62根部连接部分的边缘部分B的圆弧状,在存有小间隙的位置上形成3个针孔82,82、……。图42(b)是该针孔82形成部分的剖面图,是沿图42(a)中IV-IV线的剖面图。这样,在由形成正反面的主面61a,62a彼此相对的位置上形成针孔82,82、……。
通过在这样的位置设置针孔82,82、……,在各脚部61,62根部连接部的边缘部B周边的面连续性消失,可降低涂布在石英晶片1A主面61a,62a上的抗蚀液产生的表面张力。因此,边缘部B可获得充分的抗蚀液涂布量。特别是在各脚部61,62根部连接部的边缘部B上设有针孔82,82,……的结构,在用由负型光抗蚀剂液构成抗蚀剂膜涂布石英晶片1A的情况下使用。即,由于该边缘部B获得充分的抗蚀剂液涂布量,伴随着曝光、显像处理,在各脚部61,62的根部连接部处充分确保形成的抗蚀剂层(保护膜),在该部分可不附着所不需要的蒸镀膜。
例如,因上述表面张力的影响在各脚部61,62的根部连接处不存抗蚀膜时,蒸镀电极时,该部分也就不可能存在抗蚀膜,激振电极13和激振电极14会以短路的形状形成。本实施例中可避免这种状况发生。
—第16实施例的变形例—以下对第16实施例的降低张力器件的变形例进行说明。
图43(a)是第1变形例的石英晶片1A平面图。如该图43(a)所示,在本变形例的石英晶片1A中,在各脚部61,62根部连接处的边缘部B形成多个向边缘部B开放的矩形状沟74,74,74(图43中为3个),以取代上述第16实施例的针孔。图43(b)是沿图43(a)中V-V线的剖面图。
图44(a)是第2变形例的石英晶片1A平面图。如该图44(a)所示,在本变形例的石英晶片1A中,沿着边缘部B,在各脚部61,62根部连接处的边缘部B的附近形成沿边缘部B延伸的圆弧状凹部5。图44(b)是沿图44(a)中VI-VI线的剖面图。
图45是第3变形例的石英晶片1A平面图。如该图45所示,本变形例的石英晶片1A是变更针孔82形成位置的实例。即,沿着边缘部B以圆弧状配置锯齿形针孔82,82、……。
图46是第4变形例的石英晶片1A平面图。如该图46所示,本变形例的石英晶片1A,是并用上述图43所示的沟74,74,74,和图45所示的锯齿形配置针孔82,82、……的实例。
图47是第5变形例的石英晶片1A平面图。如该图47所示,本变形例的石英晶片1A,是并用上述图43所示的沟74,74,74,和图44所示凹部76的实例。
通过以上图43~图47所示的降低张力组件也可以使石英晶片1A的主面61a,62a没有连续性,可降低涂布在石英晶片1A主面61a,62a上的抗蚀剂液产生的表面张力。因此,边缘部分B可获得充分的抗蚀剂液涂布量,并能准确地获得激振电极13,14的形成位置,同时也能大幅度减少不合格品的发生率。
(第17实施例)以下对第17实施例进行说明。本实施例是对将本发明适用于厚度滑移型石英振子的情况进行说明。
图48(a)是本实施例的石英振动片80平面图。图48(b)是沿图48(a)中X-X线的剖面图。如这些图所示,本实施例的石英振动片80是反台面型的,其表面侧具有底面部81,上面部86,在这些底面部81和上面部86之间延续的壁部83。
这样,在本石英振动片80中,在上面部分86的内侧边缘部附近的位置,在其整个周围形成针孔82,82、……。
通过设置这些针孔82,82、……,在上面部86的内侧边缘部附近,没有连续性的面,从而可降低涂布的抗蚀剂液产生表面张力。结果,可使由壁部83开始在整个上面部86上形成的电极形成在准确的位置上。这种针孔82,82、……也没有必要在上面部86内边缘位置附近的整个周围形成。例如,从壁部83开始在整个上面部分86上形成引出电极时,可只在形成该引出电极的区域内形成针孔82,82,……。
(第18实施例)以下对第18实施例进行说明。本实施例也是将本发明适用于厚度滑移型石英振子的情况,降低张力的组件构成与上述第17实施例的不同。因此,这儿只对降低张力器件的构成进行说明。
图49(a)是本实施例的石英振动片平面图。图49(b)是沿图49(a)中XI-XI线的剖面图。如这些图所示,本实施例的石英振动片80中,在上面部86的内侧边缘部形成向壁部83开放的沟84。这些沟84平面看呈三角形状。根据本实施例,在上面部86的内侧边缘部附近,没有面的连续性,从而可降低涂布抗蚀液产生的表面张力,结果是从壁部83开始在整个上面部分86上形成的电极,可形成在准确的位置上。
在第15实施例中,只在石英晶片1A的主面61a,62a上形成针孔82,82,……。本发明并不限于此,在石英晶片1A的侧面61b、62b上也可形成针孔82,82、……。上述针孔82,82、……的大小和深度最好在不会大幅度降低石英晶片1A的强度或不使电特性恶化的范围内大量设定。这是因为对石英晶片1A抗蚀剂液的涂布量过多时,多余的抗蚀剂液由针孔82,82,……回收掉,减小了抗蚀剂液产生的表面张力。
在第15实施例的构成中,和第16实施例的变形例(图46,图47)的情况一样,也可并用多种凹陷部。
进而,在第15实施例中,通过使用正型光抗蚀剂液的光刻法形成电极时,在与形成电极部相对应的位置上形成降低张力组件(针孔)。本发明并不限于此,通过用正型光抗蚀剂液的光刻加工法形成电极时,也可在与非电极形成部相对的位置上形成降低张力的组件。据此,由于在电极形成部上不进行针孔等加工,所以不会因形成降低张力组件对电极形成部产生恶劣影响。
在第16实施例中,作为降低张力组件,沿边缘部B的圆弧形状形成3个针孔82,82、……。这种针孔82的形状和个数并不限于此。该针孔82的一部分也可在向边缘部B开放的位置上形成。
进而,在第17实施例的构成中,和上述第16实施例的变形例(图43~图47)的情况一样,或形成沟,或形成以锯齿形状配置的针孔,也可并用多种凹陷部。
本发明并不限于石英振子,也适用于使用铌酸锂和钽酸锂等的压电振子和其他各种电子零件的制造。
权利要求
1.一种压电振动器件,其特征是所述器件由压电材料构成,是由具有主振动部的中央部,和与该中央部的外缘存在规定间距并围绕中央部形成框形状的外框部,和将这些中央部和外框部进行部分连接的连接部一体形成而构成的,并且中央部是用台面型结构或反台面型结构构成。
2.根据权利要求1记载的压电振动器件,其特征是中央部具有在其中央处形成薄壁的主振动部,和该主振动部的外周围形成且比主振动部壁厚的外缘部,在上述主振动部和外缘部之间形成阶梯状的台阶部。
3.根据权利要求1或2记载的压电振动器件,其特征是设定中央部的厚度尺寸小于外框部的厚度尺寸,中央部分的上下各面比外框部上下各面更位于厚度方向的中央侧。
4.根据权利要求1或2记载的压电振动器件,其特征是设定中央部的厚度尺寸大于外框部的厚度尺寸,中央部的上下各面比外框部的上下各面更位于厚度方向的外侧。
5.根据权利要求1~4中任一项记载的压电振动器件,其特征是连接部在中央部的应力感度为“0”的位置,将该中央部和外框部连接。
6.根据权利要求1~5中任一项记载的压电振动器件,其特征是在外框部表面和连接部表面之间,及中央部表面和连接部表面之间,至少一处存在不连接部。
7.根据权利要求1~6中任一项记载的压电振动器件,其特征是设定连接部的厚度尺寸小于外框部的厚度尺寸。
8.根据权利要求2记载的压电振动器件,其特征是中央部是反台面型结构,主振动部形成在外缘部的厚度方向的大致中央部上。
9.根据权利要求2或8记载的压电振动器件,其特征是在中央部的主振动部和外缘部之间,形成具有与主振动部厚度尺寸大致一样厚度尺寸并将主振动部和外缘部连接的缓冲部。
10.根据权利要求2、8或9记载的压电振动器件,其特征是中央部的主振动部和外缘部之间,形成部分分离。
11.一种腐蚀方法,通过对被成形物进行腐蚀处理,为形成具有规定外形形状和沟部的腐蚀成形品,对上述被成形物实行以下腐蚀工序,即,利用腐蚀除去比想要腐蚀成形品的外缘更外侧的区域的“外形腐蚀工序”,和利用腐蚀使被成形物上的沟部形成区域形成凹陷的“沟部腐蚀工序”,其特征是只在上述沟部形成区域的表面上预先存在腐蚀延迟膜,在此状态下对被成形物实行腐蚀处理,在“外形腐蚀工序”开始后,与外形腐蚀的同时,腐蚀延迟膜溶融,在溶融除去该腐蚀延迟膜后,开始上述“沟部腐蚀工序”。
12.根据权利要求11记载的腐蚀方法,其特征是将腐蚀度高的材料作为下层,将腐蚀度低的材料作为上层,将这种涂覆层形成在比想要腐蚀成形品外缘更内侧的区域,在沟部形成区域中,通过只除去上述上层,将露出的下层用作腐蚀延迟膜,对被成形物实行腐蚀处理。
13.根据权利要求11记载的腐蚀方法,其特征是腐蚀延迟膜材料是,在比在想要形成腐蚀成形品的外缘内侧的区域、而且在沟部形成区域以外区域内形成的膜材料腐蚀度高的材料。
14.根据权利要求11、12或13记载的腐蚀方法,其特征是腐蚀成形品为音叉型石英晶片,沟部形成在其主面中央部上。
15.一种腐蚀成形品,其特征是利用权利要求11~14中任一项记载的腐蚀方法形成。
16.一种腐蚀方法,在对被成形物表面规定的腐蚀区域进行腐蚀,其特征是包括上述腐蚀区域中,只对该区域外缘部的至少一部分进行腐蚀处理的外缘腐蚀工序;和比该外缘腐蚀工序迟开始的、上述腐蚀区域的外缘腐蚀工序中,对腐蚀部分以外的区域,进行腐蚀处理的中央腐蚀工序,中央腐蚀工序,在外缘腐蚀过程开始后且其结束前开始,同时,腐蚀区域中,只在被腐蚀区域的表面预先存在腐蚀延迟膜的状态,利用中央腐蚀工序对被成形物实行腐蚀处理,外缘腐蚀工序开始后,溶融除去腐蚀延缓膜后,开始上述中央腐蚀工序。
17.一种腐蚀成形品,其特征是利用权利要求29记载的腐蚀方法形成的腐蚀成形品,在腐蚀区域的腐蚀面上呈现结晶面。
18.一种压电振动器件的制造方法,其中,在压电振动基片上的通过边缘部彼此邻接的整个面上,利用光刻技术形成连续电极,其特征是在向上述压电振动基片上涂布抗蚀液工序之前,在上述彼此邻接面的至少一个面的边缘部附近位置,进行形成降低抗蚀剂液产生表面张力的降低张力手段的基片表面的前处理工序。
19.根据权利要求18记载的压电振动器件制造方法,其特征是在上述基片表面的前处理工序中,使边缘部附近位置的压电振动基片的表面作为形成部分不连续面的凹陷部,从而形成降低张力手段。
20.根据权利要求19记载的压电振动器件制造方法,其特征是在上述基片表面的前处理工序中,使边缘部分的位置的压电振动基片的表面形成部分不连续的面、而且一部分形成向边缘部的棱线开放的凹陷部,从而形成降低张力手段。
21.根据权利要求18、19或20记载的压电振动器件制造方法,其特征是压电振动基片,在利用腐蚀加工形成规定形状后,形成电极而成,基片表面的前处理工序,与该压电振动基片的腐蚀加工同时进行,形成降低张力手段。
22.根据权利要求18~21中任一项记载的压电振动器件制造方法,其特征是通过用由负型光抗蚀剂液形成的抗蚀剂膜的光刻加工法形成电极时,在压电振动基片上与电极非形成部分相对应的位置上形成降低张力手段。
23.一种压电振动器件,其特征是利用上述权利要求18~22中任一项记载的压电振动器件制造方法制造的。
全文摘要
在利用腐蚀度互为不同的多种掩模层R2、R3将石英晶片1各处形成掩蔽的状态,对该石英晶片1进行腐蚀处理。在利用腐蚀度高的掩模层形成掩蔽的部分,腐蚀工作早期开始,所以腐蚀量多。反之,在利用腐蚀度低的掩模层形成掩蔽的部分上,腐蚀工作的开始延迟,腐蚀量少。由此,可将石英晶片1形成任意的形状。
文档编号H03H3/00GK1933326SQ20061010688
公开日2007年3月21日 申请日期2002年8月30日 优先权日2001年8月31日
发明者佐藤俊介, 中田穗积 申请人:株式会社大真空
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1