一种光热转化材料及其制备方法与应用与流程

文档序号:19990439发布日期:2020-02-22 02:12阅读:473来源:国知局
一种光热转化材料及其制备方法与应用与流程

本发明涉及属于海水淡化技术领域,更为具体地,涉及一种光热转化材料及其制备方法与应用。



背景技术:

世界上三分之一的人口,特别是发展中国家和偏远地区的人口,仍然处于难以获得足够淡水的困境,即面临着提供安全和可持续用水的挑战。在生产清洁淡水的各技术中,太阳能吸收光热转化技术以其对环境影响小,以及对可再生的、取之不尽的太阳光的利用,成为新兴的、最有应用前景的技术之一。各种太阳能吸收剂,包括悬浮金属纳米颗粒、碳材料和等离子体吸收剂等,已经被开发出来用于太阳能蒸发。遗憾的是,到目前为止高太阳能蒸汽效率(>80%)一般只能在高强度太阳光照射下实现的,这限制了该技术的在实际应用当中的可行性。此外,由于往往需要复杂、苛刻的制造工艺和昂贵的原材料(如贵金属和石墨烯)来实现复合材料的性能优化,使得其在实际应用中的成本高和可扩展性低。因此,研发低成本、高效的以及可规模化生产的光热转化材料的工作仍亟待发展。

本发明首次提出了一种在普通聚氨酯(pu)海绵表面涂覆聚多巴胺(pda)一步法制备具有双层结构的光热蒸发材料的方法。通过设计多巴胺单体聚合过程不受干扰,一种上光热层组成的自浮双层结构,实现了高效的光吸收和热管理。聚氨酯海绵和pda均具有良好的经济效益和环境友好性,表明该方法具有低成本的特点。黑色素样pda几乎可以通过多巴胺的自聚合很容易地覆盖在所有的底物上,证明了这种策略的易用性,最重要的是,仅在1.0kw/m2太阳照射下,就获得了87%的太阳能蒸汽效率。在增强光照强度下,观察到pda包覆海绵表面的爆炸蒸发现象,其效率可达90.00%以上(如1.5kw/m2下91.94%,1.5kw/m2下92.90%,2.5kw/m2下93.04%)。这项工作提出了一种新的和有效的策略,这一涉及能源转换系统的双层结构是一项有前途的应用。



技术实现要素:

本发明的目的在于克服上述技术不足,提出一种光热转化材料及其制备方法与应用,解决了现有技术中的光热转化材料成本高、太阳能光热转化效率低的技术问题。

为达到上述技术目的,本发明的技术方案包括一种光热转化材料,所述光热转化材料为聚多巴胺非均匀改性的聚氨酯海绵,所述聚多巴胺非均匀改性的聚氨酯海绵为双层结构,所述双层结构的顶层的聚多巴胺的浓度高于所述双层结构的底层的聚多巴胺的浓度,所述双层结构的顶层为深黑色,所述顶层的厚度为0.5mm~2.0mm,所述双层结构的总厚度10mm~25mm。

进一步地,所述聚氨酯海绵的密度为0.2g/cm3,孔隙率为70%,孔径为50μm,比表面积为2.48m2/g。

进一步地,所述聚多巴胺的负载量为15mg/g~30mg/g。

本发明还提供了一种所述的光热转化材料的制备方法,该方法包括以下步骤:

s1、净化聚氨酯海绵;

s2、负载聚多巴胺

将所述s1中净化后的聚氨酯海绵浸入盛有含有多巴胺的tris-hcl缓冲溶液的容器中,并用手指并排反复按压海绵多次,优选为采用三个手指并排反复按压海绵50次~100次;

将所述容器转移至水中,在25℃~80℃的水浴条件下保温4h~24h,水浴过程中没有任何扰动且所述容器不封盖,获得双层结构改性的海绵;优选为在80℃的温度条件下保温4h。

s3、将所述s2中获得的双层结构改性的海绵烘干,得到所述光热转化材料。

与现有技术相比,先将普通聚氨酯海绵用乙醇溶液处理以除去海绵中的有机杂质;再将海绵浸入缓冲溶液中,用手指并排反复按压海绵50次~100次,使得多巴胺单体与多孔海绵内部能有效接触,有助于pda对海绵进行有效修饰改性。在没有任何搅动且容器不封盖,使得溶液与空气充分接触,在有充分氧气的氧化作用下,溶液中的海绵与空气接触的一面集聚了更多的多巴胺,形成了具有双层结构的改性海绵。所述双层结构的改性海绵的上表层为深黑色,其他区域均为均匀棕色的双层结构的改性海绵。具有双层结构的改性海绵,其深黑色的一面集聚了大量的多巴胺,可吸收更多的太阳光能,转换为热能,蒸发更多的水,可用于海水/废水的淡化生产淡水。

进一步地,所述s3具体为:将s2中获得的双层结构改性的海绵在40℃~80℃条件下烘干8h~24h;烘干后,将所述黑色海绵在去离子水下反复按压冲洗,直到没有剥离物脱落;冲洗后,将所述海绵放入40℃~80℃条件下烘干8h~24h,获得所述光热转换材料。

进一步地,所述的tris-hcl缓冲溶液的ph为8.5,所述的tris-hcl缓冲溶液的ph为8.5,所述多巴胺的tris-hcl缓冲溶液的浓度为2g/l。

进一步地,所述s1具体为:将普通聚氨酯海绵浸泡在乙醇溶液中6h~12h后烘干。

先将普通聚氨酯海绵浸泡在乙醇溶液中约6h后烘干,除去海绵中的有机杂质。浸泡时间应小于12h,以免海绵体积膨胀过大,造成结构损坏。

本发明还提供给了一种所述光热转化材料的应用,其特征在于,所述光热转化材料用于海水/废水的淡化。

与现有技术相比,本发明的有益效果包括:

本发明提供了一种光热转化材料,为双层式结构,多孔聚氨酯海绵是一种成本较低的多孔材料,在保持较多通孔的同时具有较好的机械强度和稳定的物理性质。多巴胺(da)是一种含有酚羟基和脂肪氨基的小分子,在碱性和氧化性条件下可自发形成聚合物,即聚多巴胺(pda),并可粘附在多孔聚氨酯海绵的骨架上形成表面涂层。由于pda具有一定量的交联结构,使多孔聚氨酯海绵上的涂层具有良好的稳定性。另一方面,pda保留有很多活泼官能团,构成了一个多功能改性平台。

具有双层结构的改性海绵,所述改性海绵的上表层上集聚了大量的多巴胺,可吸收更多的太阳光能,转换为热能,蒸发更多的水,可用于海水/废水的淡化生产淡水,提高了太阳能蒸汽光热转化效率。

本发明中的光热转化材料的制备方法,制备流程简易,且在制备时,不需要任何搅动与盖上制备器皿,更加有助于溶液中的多巴胺在碱性和有氧的条件下,在海绵顶部与空气的接触面发生聚合,更多的多巴胺在海绵的顶部集聚,形成双层结构。海水或者废水从海绵的底部抽入并不断地往顶部输水,水在海绵顶部的光热层不断地被蒸发从而吸水,循环往复,形成一个循环的光热蒸汽系统。

本发明还提供了一种所述光热转化材料的应用,为淡水供应非常有限的地区提供了采用蒸发海水/废水以获取淡水的方法,提高了水的蒸发效率。

附图说明

图1为本发明中的聚多巴胺非均匀改性的聚氨酯海绵的结构示意图;

图2是本发明提供的三种蒸发器的光学与sem形貌,其中图(a)为纯聚氨酯海绵的图像;图b为制备时振荡过的均匀全棕色改性海绵的图像;图c为制备时无任何干扰的双层结构改性海绵的图像;

图3为太阳光照为1kw/m2的条件下不同材质蒸发器的重量减小情况;

图4为不同材质蒸发器在不同太阳照射(solarirradiation)下的光热转化效率线性图;

附图标记说明:

1-聚多巴胺非均匀改性的聚氨酯海绵、2-顶层、3-底层。

具体实施方式

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。

以下实施例和对比例中太阳能转换效率(evaporationefficiency)的计算公式为:

其中:η代表太阳能转换效率,代表一个太阳辐射下的稳定蒸发率,hlv代表液-汽转换阶段的焓变,qi代表标准一个太阳强度,copt代表标准一个太阳光强度的倍数。

对比例1:

将装有150ml,3.5wt%盐水的烧杯,放在由太阳能模拟器提供的宽频带太阳辐射下,配备可调组件,控制为1.0个太阳(1.0kw/m2)。用光辐射计测量了太阳强度,用电子校准天平实时测量了烧杯中水的质量变化(masschange)。

如图3所示,通过换算得到在1.0kw/m2太阳光照射下,光热转化效率仅为17.6%。

对比例2

如图2中图(a)所示,将没有改性的纯聚氨酯海绵(记为pu)放入装有150ml,3.5wt%盐水的烧杯中,该纯聚氨酯海绵为浅黄色,在纯水中按压海绵,使整块海绵完全吸水,并且使海绵的顶面与水面相齐,然后再由太阳能模拟器提供的宽频带太阳辐射下,配备可调组件,光照控制为1.0kw/m2。用光辐射计测量了太阳强度,用电子校准天平实时测量了烧杯中水的质量变化。

如图3所示,通过换算得到在1.0kw/m2太阳光照射下,pu蒸发器的光热转化效率为28.3%。

对比例3

如图2中图(b)所示,一种聚多巴胺均匀改性聚氨酯海绵的光热转化材料(记为ppu-1),包括聚氨酯海绵,以及均匀及吸附在所述聚氨酯海绵上的聚多巴胺。

其中,所述多孔聚氨酯海绵的密度为0.2g/cm3,孔隙率为70%,孔径为50μm,比表面积为2.48m2/g。

其中,所述聚多巴胺的负载量为23.4mg。

所述光热转化材料采用如下方法制备而成:

s1、净化聚氨酯海绵:

将普通聚氨酯海绵浸泡在乙醇溶液中约6h;

s2、负载聚多巴胺:将所述s1中净化后的聚氨酯海绵浸入含有200ml,浓度为2g/l多巴胺的三羟甲基氨基甲烷溶液(tris-hcl缓冲溶液)的容器中,并用三手指并排,反复按压海绵50次;

将所述容器转移至水中,在80℃的水浴条件下保温4h,水浴过程中用有孔锡纸盖上容器口,剧烈搅拌,直至所述海绵沉没于溶液中,得到各面颜色均匀的改性海绵;

s3、将所述均匀改性的海绵在80℃条件下烘干12h;烘干后,再将所述黑色海绵在去离子水下反复按压冲洗,直到没有剥离物脱落;冲洗后,再放入80℃条件下烘干12h,得到所述聚多巴胺均匀改性聚氨酯海绵的光热转化材料。

所述s2中,所述的tris-hcl缓冲溶液为碱性缓冲溶液,所述的tris-hcl缓冲溶液的ph为8.5。

所述s2中,在海绵浸入多巴胺溶液时,用三手指并排,反复按压海绵50次,使多巴胺单体与多孔海绵内部骨架能够有效接触,有助于pda对海绵进行有效修饰改性。

一种所述均匀改性的聚氨酯海绵作为光热转换材料的应用,将颜色均匀的改性海绵(ppu-1)放入装有150ml,3.5wt%盐水烧杯中,在纯水中按压海绵,使整块海绵完全吸水,并且使海绵的顶面与水面相齐,然后再由1个太阳能模拟器提供的宽频带太阳辐射下,配备可调组件,控制为1.0个太阳(1.0kw/m2)。用光辐射计测量了太阳强度,用电子校准天平实时测量了烧杯中水的质量变化。

如图3所示,通过换算得到在1.0个太阳1.0kw/m2照射下,太阳能蒸汽光热转化效率为61.3%。

实施例1

如图1和图2中图(c)所示,所述光热转化材料为聚多巴胺非均匀改性的聚氨酯海绵1,所述聚多巴胺非均匀改性的聚氨酯海绵1为双层结构,所述双层结构的顶层2的聚多巴胺的浓度高于所述双层结构的底层3的聚多巴胺的浓度,所述双层结构的顶层2为深黑色,所述顶层2的厚度为1.0mm,所述双层结构1的总厚度20mm。

其中,所述聚氨酯海绵的密度为0.2g/cm3,孔隙率为70%,孔径为50μm,比表面积为2.48m2/g。

其中,所述聚多巴胺的负载量为24.6mg。

所述的光热转化材料的制备方法,包括以下步骤:

s1、净化聚氨酯海绵:

将普通聚氨酯海绵浸泡在乙醇溶液中约6h;

s2、负载聚多巴胺:将所述s1中净化后的聚氨酯海绵浸入含有200ml,浓度为2g/l含有多巴胺的tris-hcl缓冲溶液的容器中,并用三手指并排反复按压海绵50次;

将所述容器转移至水中,在80℃的水浴条件下保温4h,水浴过程中没有任何扰动,所述容器不封盖,获得表面覆盖一层厚度为1mm的聚多巴胺层的改性海绵;

s3、将所述改性海绵在80℃条件下烘干12h;烘干后,再将所述黑色海绵在去离子水下反复按压冲洗,直到没有剥离物脱落;冲洗后,再放入80℃条件下烘干12h,得到所述双层结构改性海绵。

所述s2中,所述的tris-hcl缓冲溶液为碱性缓冲溶液,所述的tris-hcl缓冲溶液的ph为8.5;

所述s2中,在海绵浸入多巴胺溶液时,用三手指并排反复按压海绵50次,使多巴胺单体与多孔海绵内部骨架能够有效接触,有助于pda对海绵进行有效修饰改性;

将双层改性海绵(ppu-2)放入装有150ml,3.5wt%盐水的烧杯中,在纯水中按压海绵,使整块海绵完全吸水,并且使海绵的顶面与水面相齐,然后在由太阳能模拟器提供的宽频带太阳辐射下,配备可调组件,控制为1.0个太阳(1.0kw/m2)。用光辐射计测量了太阳强度,用电子校准天平实时测量了烧杯中水的质量变化。

如图3所示,通换算得到在1.0个太阳照射下,太阳能蒸汽光热转化效率为86.1%。

对比例4

将装有150ml,3.5wt%盐水的烧杯,分别放在由太阳能模拟器提供的宽频带太阳辐射下,配备可调组件,控制1.0、1.5、2.0、2.5个太阳(1.0,1.5,2.0,2.5kw/m2)。用光辐射计测量了太阳强度,用电子校准天平实时测量了烧杯中水的质量变化。

如图4所示,观测到在不同太阳照射下,太阳能蒸汽光热转化效率分别为17.6%、23.4%、25.3%、27.6%。

对比例5

将没有改性的纯聚氨酯海绵(pu)放入装有150ml,3.5wt%盐水的烧杯中,在纯水中按压海绵,使整块海绵完全吸水,并且使海绵的顶面与水面相齐,然后在由太阳能模拟器提供的宽频带太阳辐射下,配备可调组件,控制1.0、1.5、2.0、2.5个太阳(1.0,1.5,2.0,2.5kw/m2)。用光辐射计测量了太阳强度,用电子校准天平实时测量了烧杯中水的质量变化。

如图4所示,通过换算得到在不同太阳照射下,太阳能蒸汽光热转化效率分别为28.3%、34.2%、35.1%、36.3%。

对比例6

将均匀的改性海绵(ppu-1)放入装有150ml,3.5wt%盐水的烧杯中,在纯水中按压海绵,使整块海绵完全吸水,并且使海绵的顶面与水面相齐,然后在由太阳能模拟器提供的宽频带太阳辐射下,配备可调组件,控制1.0、1.5、2.0、2.5个太阳(1.0,1.5,2.0,2.5kw/m2)。用光辐射计测量了太阳强度,用电子校准天平实时测量了烧杯中水的质量变化。

如图4所示,观测到在不同太阳照射下,太阳能蒸汽光热转化效率分别为61.3%、67.2%、68.0%、68.6%。

实施例7

将双层的改性海绵(ppu-2)放入装入150ml,3.5wt%盐水的烧杯中,在3.5wt%盐水中按压海绵,使整块海绵完全吸水,并且漂浮于水面,然后在由太阳能模拟器提供的宽频带太阳辐射下,配备可调组件,控制1.0、1.5、2.0、2.5个太阳(1.0,1.5,2.0,2.5kw/m2)。用光辐射计测量了太阳强度,用电子校准天平实时测量了烧杯中水的质量变化。

如图4所示,观测到在不同太阳照射下,太阳能蒸汽光热转化效率分别为86.1%、91.3%、92.2%、93.3%。

与现有技术相比,没有任何搅动且容器不封盖,使得溶液与空气充分接触,在有充分氧气的氧化作用下,溶液中的海绵与空气接触的一面集聚了更多的多巴胺,形成了具有双层结构的改性海绵。所述双层结构的改性海绵的上表层为深黑色,其他区域均为均匀棕色的双层结构的改性海绵。具有双层结构的改性海绵,其深黑色的一面集聚了大量的多巴胺,可吸收更多的太阳光能,转换为热能,蒸发更多的水。

该双层改性海绵具有低导热性和高稳定性,并且可在空气与水的接触面产生有效的区域热管理,有效提高了水的蒸发效率,太阳能发热效率可达93.04%,是自然蒸发过程的16.3倍以上,可作为光热转化材料使用。此光热转化材料可为淡水供应非常有限的地区提供一种蒸发海水/废水获取淡水的新的方法。

以上所述本发明的具体实施方式,并不构成对本发明保护范围的限定。任何根据本发明的技术构思所做出的各种其他相应的改变与变形,均应包含在本发明权利要求的保护范围内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1