在植物中表达杀真菌剂结合多肽以产生杀真菌剂耐受性的制作方法

文档序号:168980阅读:229来源:国知局
专利名称:在植物中表达杀真菌剂结合多肽以产生杀真菌剂耐受性的制作方法
技术领域
本发明涉及通过在植物中或植物器官中表达外源杀真菌剂结合多肽制备耐杀真菌剂植物的方法。本发明还涉及编码在转基因植物中有杀真菌剂结合特性的多肽、抗体或抗体部分的相应核酸及转化植物本身的用途。
已知遗传工程方法允许外源基因特异转移到植物基因组中。将这种方法称为转化,得到的植物为转基因植物。目前,转基因植物用于生物技术的许多领域。如抗昆虫植物(Vaek等,植物细胞5(1987),159-169),抗病毒植物(Powell等,科学232(1986),738-743)和抗臭氧植物(Van Camp等,生物技术12(1994),165-168)。通过遗传工程得到的改良性状的例子有改良的果实贮存期(Oeller等,科学254(1991),437-439)、土豆块茎中提高的淀粉产量(Stark等,科学242(1992),419)、淀粉组分改变(Visser等,Mol.Gen.Genet.225(1991),289-296)和脂类组分改变(Voelker等,科学257(1992),72-74)以及外源高分子的合成(Poirer等,科学256(1992),520-523)。
植物分子遗传学领域中进行的工作的重要目标是产生除草剂耐受性。除草剂耐受性的特征在于植物或植物器官与所用除草剂的相容性得到改善(就类型或水平而言)。这可通过多种途径实现。已知的方法联合应用代谢基因如pat基因和草铵膦抗性(WO8705629)或抗除草剂的靶酶如抗草甘膦的烯醇丙酮酰莽草酸-3-磷酸合酶(WO9204449),并在细胞和组织培养中使用除草剂选择耐受性植物细胞和得到的抗性植物,如在关于乙酰辅酶A羧化酶抑制剂中描述的(US5162602,US5290696)。
抗体是作为免疫系统组分的蛋白。所有抗体的共同特征是它们的立体球形结构、轻链和重链的构成及其高特异性地与分子或分子部分结构结合的基本能力(Alberts等,在Molekularbiologie,derZelle[细胞分子生物学],第2版,1990,VCH Verlag,ISBN 3-527-27983-0,1198-1237)。根据这些特征,将抗体用于多种任务。应用可分为在产生抗体的动物和人体内应用抗体,即所谓的原位应用,和ex-situ应用,即从产生抗体的细胞和生物体分离抗体后应用抗体(Whitelam und Cockburn,TIPS第1卷,8(1996),268-272)。
用体细胞杂交细胞系(杂交瘤)作为针对十分特异的抗原的抗体源的根据是Kohler和Milstein进行的工作(自然256(1975)495-97)。这种方法允许有统一的结构并由细胞融合方法产生的所谓单克隆抗体产生。免疫小鼠的脾细胞与小鼠骨髓瘤细胞融合。这可使杂交瘤细胞无限增殖。同时,细胞分泌针对免疫小鼠所用抗原的特异性抗体。脾细胞提供产生抗体的能力而骨髓瘤细胞使细胞无限生长并不断地分泌抗体。作为克隆,因为每个杂交瘤细胞来自单个B细胞,产生的所有抗体分子有相同的结构,包括抗原结合位点。因为可以无限得到有单一的、已知特异性和共同结构的抗体,所以这种方法大大促进了抗体的应用。单克隆抗体广泛应用于免疫诊断学和治疗学。
在最近几年中,所谓的噬菌体展示方法已用于制备抗体,避免了免疫系统和多次免疫动物。抗体的亲和性和特异性得到体外测量(Winter等,免疫学年评12(1994),433-455;Hoogenboom,TIBTech,第15卷(1997),62-70)。含有编码抗体可变区,即抗原结合位点序列的基因片段与噬菌体外壳蛋白基因融合。然后,用含有这样的融合基因的噬菌体感染细菌。得到的噬菌体颗粒具有含抗体样融合蛋白的外壳,抗体结合区指向外侧。这样的噬菌体展示文库可用于分离含希望的抗体片段并与某抗原特异性结合的噬菌体。通过这种方式分离到的每个噬菌体产生与单克隆抗体一致的单克隆抗原结合多肽。每个噬菌体独特的抗原结合位点基因可从噬菌体DNA中分离到并用于构建完整抗体的基因。
在农作物保护领域,抗体特别用作抗原的质量和数量检测的ex-sita分析工具。这包括在饮用水中(Sharp等,(1991)ACS Symp Ser.,446(Pestic.Residues Food Saf.)87-95)、土壤样品中(WO9423018)或植物或植物器官中植物成分、除草剂或杀真菌剂的检测,并且将抗体用作结合分子纯化的辅助。
Hiatt等,自然,342(1989),76-78首次描述了在植物中制备免疫球蛋白。范围包括单链抗体至多聚体分泌抗体(J.Ma和Mich Hein,1996,Annuals New York Academy of Sciences,72-81)。
更近期的尝试利用抗体原位保护植物免受病原体侵袭,尤其是病毒疾病,是通过在植物细胞中表达针对病毒外壳蛋白特异的抗体或其部分实现的(Tavlacloraki等,自然366(1993),469-472;Voss等,分子育种1(1995),39-50)。
相似的方法也用于保护植物免受线虫感染(Rosso等,生物化学和生物物理研究通讯,220(1996)255-263)。也存在药物学中应用的例子,其中抗体在植物中的原位表达用于口腔免疫(Ma等,科学268(1995),716-719;Mason和Arntzen,Tibtech第13卷(1996),388-392)。通过口、喉或消化道给身体提供植物形成的或来自植物或植物器官、适于消费的抗体,可产生有效的免疫保护。而且,已在植物中表达了针对低分子量植物激素脱落酸的单链抗体,由于植物中脱落酸的结合,观察到了植物激素可得到性降低(Artsaenko等,植物杂志8(5)(1995),754-750)。
农学上重要农作物中真菌的化学控制需要高选择性的无植物毒性效应的杀真菌剂。杀真菌剂的植物毒性效应可以根据植物生长的抑制、降低的光合作用和因此减少的产量。然而,在某些情况下,难以发展选择性足够的、在所有重要农作物中可以使用并且不导致任何农作物中提供产量的植物破坏的杀真菌剂。导入杀真菌剂抗性或耐受性农作物植物有助于解决这个问题并可以在至今处理还不可能或仅在产量损失可以接受时可能的情况下开发抗真菌剂在农作物中的新用途。
通过组织培养或种子诱变和自然选择发展抗杀真菌剂农作物植物受到限制。一方面,植物毒性效应必须已经是在组织培养水平上可检测到的,并且另一方面,只有这些植物可通过组织培养技术操作,从细胞培养成功再生整株植物。而且,诱变和选择后,植物可能表现出不希望的、必须通过,甚至在某些情况下重复回交才能去除的不希望特征。而且,通过杂交导入的抗性将局限于同一物种的植物。
由于上述原因,分离抗性编码基因并以靶向方式将它导入农作物植物的遗传工程方法比传统的植物育种方法优越。
到目前为止,通过分子生物学方法发展除草剂耐受性或抗除草剂农作物植物需要了解除草剂在植物中的作用机制并且发现产生对除草剂抗性的基因。目前商业上使用的许多除草剂通过阻断必需氨基酸、脂类或色素生物合成步骤的酶起作用。通过使除草剂不再受到结合的方式改变这些酶的基因并将这些改变的基因导入农作物植物产生除草剂耐受性。可选择的例子是在自然中,例如在微生物中发现表现出对除草剂有天然抗性的类似酶。从这样的微生物中克隆到此赋予抗性的基因,将它再克隆至合适的载体,然后经过成功转化,在除草剂敏感的农作物植物中表达(WO96/38567)。
本发明的目的之一是发展新型的、制备杀真菌剂耐受性转基因植物的通用遗传工程方法。
我们惊奇地发现通过在植物中表达有杀真菌剂结合特性的外源多肽、抗体或抗体的部分达到了这个目的。
本发明首先涉及制备杀真菌剂结合抗体和克隆相关基因或基因片段。
第一步是制备合适的与杀真菌剂结合的抗体。这特别是通过用抗原免疫脊椎动物,大多数情况下小鼠、大鼠、狗、马、驴或山羊实现。在此情况下,此抗原是通过功能基团与诸如牛血清白蛋白(BSA)、鸡卵白蛋白、匙孔血蓝蛋白(KLA)的高分子量载体或其它载体相关或偶联的有杀真菌活性的化合物。重复施用抗原后,用常规方法监测免疫反应,由此分离到了合适的抗血清。最初,这种方法产生含有不同特异性抗体的多克隆血清。为了定向原位应用,必需分离编码单个、特异的单克隆抗体的基因序列。多种途径可用于此目的。第一种方法利用产生抗体的细胞与肿瘤细胞融合产生持续产生抗体的杂交瘤细胞培养,最后,通过挑选得到的克隆导致产生特定单克隆抗体的均一的细胞系。
抗体或抗体的部分即,所谓的单链抗体(SCFV)的cDNA是从这样的单克隆细胞系中分离到的。这些cDNA序列克隆至表达盒并在原核和真核生物,包括植物中进行功能表达。
选择性地,可能通过噬菌体展示文库选择抗体,并且这些抗体与杀真菌剂分子结合继而将其催化转变成无杀真菌特性的产物。制备催化抗体的方法在Janda等,科学275(1997)945-948,联合抗体文库中化学选择催化作用;催化抗体,1991,Ciba Foundation Symposium159,Wiley-Interscience Publication中得到描述。理论上,克隆此催化抗体基因并在植物中表达可导致产生抗杀真菌剂植物。
本发明具体涉及编码序列编码杀真菌剂结合多肽或其功能类似物的表达盒及用这些表达盒制备杀真菌剂耐受性植物。此核酸序列可以是DNA序列或cDNA序列。适于插入根据本发明的表达盒的编码序列例如那些来自杂交瘤细胞的、编码有杀真菌剂结合特性多肽由此使宿主产生对植物酶抑制剂抗性的DNA序列。
而且,根据本发明的表达盒含控制编码序列在宿主细胞中表达的调控核酸序列。在优选的实施方案中,根据本发明的表达盒包括上游,即在编码序列的5’-端;启动子和下游即3’端聚腺苷酸化信号并且如果合适,其它与有杀真菌剂结合特性的多肽和/或转送肽的中间物编码序列可操作连接的调控元件。可操作连接应理解为指启动子、编码序列、终止子及如果合适,其它调控元件的顺序安排使得编码序列得到表达时,调控元件能按所想的发挥功能。可操作连接的优选顺序是但不限于,保证质外体、质膜、液泡、质体、线粒体、内质网(ER)、核、脂质体、或其它区室亚细胞定位的靶序列和翻译增强子,例如来自烟草花叶病毒的5’前导序列(Gallie等,核酸研究15(1987),8693-8711)。
理论上,根据本发明的表达盒的适当启动子是能保证外源基因表达的任何启动子。优选使用的启动子具体地是来自植物的启动子或来自植物病毒的启动子。特别优选的是来自花椰菜花叶病毒的CaMV35S启动子(Franck等,细胞21(1980)285-294)。此启动子含转录效应物的多个识别序列,它们的共同作用导致导入基因永久的组成型表达(Benfey等,欧洲分子生物学组织杂志,8(1989)2195-2202)。
根据本发明的表达盒也可包含化学诱导启动子,借助于它将外源多肽在植物中的表达控制在具体的时间点。这样的启动子例如PRP1启动子(Ward等,植物分子生物学22(1993),361-366,可由水杨酸诱导的启动子(WO95/1919443)、由脱落酸诱导的启动子(EP335528)或由乙酸或环己酮诱导的启动子(WO9321334)已在参考中得到描述并且可在其它中应用。
其它特别优选的启动子是那些保证在其中植物毒性杀真菌活性发挥作用的组织或植物器官中表达的启动子。保证叶特异性表达的启动子值得特别一提。必需提到土豆胞质FBPase启动子或土豆ST-LST启动子(Stockhans等,欧洲分子生物学组织杂志8(1989)2445-245)。
在种子特异启动子帮助下,可使单链抗体的稳定表达高达转基因烟草种子全部可溶种子蛋白的0.67%(Fiedler和conrad生物/技术10(1995),1090-1094)。因为播种的或发芽过程中的种子也可表达并且也是本发明目的希望的,根据本发明,这样的发芽和种子特异的启动子也是优选的调控元件。因此,根据本发明的表达盒含例如,种子特异的启动子(优选的USP或LEB4启动子),LEB4信号肽,将表达的基因和ER滞留信号。参照单链抗体(ScFV基因),在


图1中以图解的形式举例说明表达盒的构建。
根据例如T.Maniatis E.F.Fritsch和J.Sambrook,分子克隆实验室手册,冷泉港实验室,冷泉港(1989)、T.J.Silhavy,M.L,Berman和L.W.Enquist,基因融合实验,冷泉港实验室,冷泉港,NY(1984)及Ausubel,F.M.等,当代分子生物学方法,GreenePublishing Assoc and Wiley-Interscience(1987)描述的常规重组和克隆技术,根据本发明的表达盒是将合适的启动子与合适的多肽DNA及优选地,插入启动子和多肽DNA之间编码叶绿体特异的转运肽DNA和聚腺苷酸化信号融合产生的。
特别优选的序列允许定位到质外体、质体、滤泡、质膜、线粒体、内质网(FR)或没有合适的操作序列时,留在形成的区室中,即细胞溶胶中(Kermode,Crit.Rev.Plant Sci.15,4(1996),285-423)。ER和细胞壁中的定位已证明对于定量蛋白在转基因植物中的积累尤其有利(Schouten)等,植物分子生物学30(1996),781-792;Artsaenko等,植物杂志8(1995)745-750)。
本发明也涉及编码序列编码杀真菌剂结合融合蛋白,部分融合蛋白是控制多肽运输的转运肽的表达盒。特别优选的是叶绿体特异的转运肽,它是在杀真菌剂结合多肽运输到植物的叶绿体后从杀真菌剂结合多肽部分酶切下来。特别优选的来自质体转羟乙醛酶(TK)的转运肽或其功能相似物(例如,核酮糖二磷酸羧化酶-加氧酶小亚基或铁氧还蛋白NADP氧化还原酶的转运肽)。
制备根据本发明表达盒需要的多肽DNA或多肽cDNA优选地是借助于聚合酶链反应(PCR)扩增来的。已知用PCR的DNA扩增方法,例如Innis等,PCR方法,方法和应用指南,Academic Press(1990)。很方便地用序列分析检测PCR产生的DNA片段以避免将要表达的构建体中的聚合酶错误。
插入的编码杀真菌剂结合多肽的核苷酸序列可合成制备或天然获得或是含合成和天然DNA成分的混合物。总的来说,制备含植物喜爱的密码子的合成核苷酸序列。通过出现频率高的蛋白和大多数兴趣植物物种中表达的蛋白的密码子确定植物喜爱的密码子。当制备表达盒时,可操作多个DNA片段以得到在合适的有意义阅读和装备有正确的阅读框架的核苷酸序列。为了使DNA片段彼此连接,将连接物或接头加在片段上。
根据本发明的启动子和终止子区域应该以转录意义提供,并且带有含一个或多个限制位点的接头或多接头以插入这个序列。原则上,接头有1-10个,通常1-8个,优选地2-6个限制位点。调控区域内,接头的大小通常少于100bp,通常少于60bp,但甚至是5bp。根据本发明的启动子是宿主植物天生的或同源的,或与它是外源的或不同。根据本发明的表达盒包含以5’-3’的转录意义的根据本发明的启动子、任何希望的序列和转录终止区。多种终止区是可以相互交换的。
而且,可以采用提供适当的限制位点或去除多余的DNA或限制位点的操作。如果插入、删除、替代如转换和颠换可能的话,可采用体外诱变、“引物[sic]修补”、限制或连接。就合适的操作诸如限制、“chewing-back”或补平以得到“平端”而言,需要提供片段的互补末端以进行连接。
根据本发明,对于成功尤其重要的是添加使平均表达水平提高三倍至四倍的特异的ER滞留信号SEKDEL(Schuoten,A.等,植物分子生物学30(1996),781-792)。其它在植物和动物蛋白中天然存在的定位于ER的滞留信号也可用于构建此表达盒。
优选的多腺苷酸化信号是植物多腺苷酸化信号,优选的是与来自根瘤土壤杆菌的T-DNA边缘序列多腺苷酸化信号一致的,尤其是Ti质粒pTiACH5 T-DNA边缘序列的基因3(章鱼碱合酶)(Gielen等,欧洲分子生物学组织杂志3(1984)835,et seq.)或其功能类似物。
根据本发明的表达盒可包含例如,组成型启动子(优选的是CaMV35S启动子)、LeB4信号肽、将要表达的基因和ER滞留信号。参照单链抗体(scFv基因),在图2中以图解形式表示了表达盒的构建。将氨基酸序列KDEL(赖氨酸、天冬氨酸、谷氨酸、亮氨酸)优选地用作ER滞留信号。
将编码有杀真菌剂结合特性多肽的融合表达盒优选地克隆至载体,例如适于转化根瘤土壤杆菌的pBin19。用已知的方法用转化了这样载体的土壤杆菌转化植物,尤其是农作物,例如烟草,通过如将愈伤叶或叶部分浸没在土壤杆菌溶液中,随后在适当的培养基中培养。用土壤杆菌转化植物是已知的,特别是F.F.White,用于高等植物基因转移的载体,转基因植物,第1卷,工程和应用,S.D.Kung和R.Wu编辑,Academic Press,1993,第15-38页及S.B.Gelvin,从土壤杆菌至植物T-DNA边缘序列转移的分子遗传学,转基因植物,第49-78页。可以已知的方式从愈伤叶或叶片部分转化的细胞再生转基因植物,这些转基因植物含有整合到根据本发明的表达盒的表达有杀真菌剂结合特性多肽的基因。
为了用编码杀真菌剂结合多肽的DNA转化宿主植物,将根据本发明的表达盒以插入整合到重组载体中,该载体DNA含额外的功能调节信号,例如用于复制或整合的序列。合适的载体尤其在“植物分子生物学方法和生物技术”(CRC Press),(1993)第6/7章第71-119页中得到描述。
利用上述的重组和克隆技术,可将根据本发明的表达盒克隆至允许它们例如在大肠杆菌中扩增的适当的载体中。适当的克隆载体特别是pBR332、pUC系列、M13mp系列和pACYC184。尤其合适的是能在大肠杆菌和土壤杆菌中复制的双元载体,例如pBin19(Bevan等,(1980),核酸研究12,8711)。
本发明另外涉及用根据本发明的表达盒转化植物、植物细胞、植物组织或植物器官。使用的优选目的是对具有植物毒性活性的杀真菌剂抗性的调节。
根据启动子的选择,表达可特异地发生在叶中、种子中或其它植物器官中。这样的转基因植物、其繁殖材料及其植物细胞、植物组织或植物器官是本发明另外的主题。
将外源基因转入植物基因组称为转化。在此过程中,上述的转化和从植物组织或植物细胞再生植物的方法用于瞬时或稳定转化。合适的方法有由聚乙二醇介导DNA摄入的原生质体转化、用基因枪的biolistic[sic]方法、电穿孔、干胚在含DNA溶液中温育、显微注射和土壤杆菌介导的基因转移。提到的方法得到描述,如,B.Jenes等,基因转移技术在转基因植物,第1卷工程和应用,编辑S.D.Kung和R.Wu.Academic Press(1993)128-143和在Potrykus,Annu,Rev.Plant.Physiol.Plant.Molec.Biol.42(1991)205-225)中。将要表达的构建物优选地克隆至适于转化根瘤土壤杆菌的载体,例如pBin19(Bevan等,核酸研究,12(1984)8711)。
转化了根据本发明的表达盒的土壤杆菌可用已知的方法转化植物,尤其是农作物如谷物、玉米、大豆、水稻、棉花、甜菜、Canola、向日葵、亚麻、土豆、烟草、西红柿、油菜、苜蓿、莴苣及各种灌木、树、坚果和葡萄属种类,例如咖啡,水果树如苹果、梨或樱桃,坚果树如胡桃或山核桃以及尤其重要的葡萄藤,例如通过将愈伤叶或叶部分浸没在土壤杆菌溶液中,随后在适当的培养基中培养。
根据本发明,编码杀真菌剂结合多肽的功能上相当的序列仍然有希望的功能,尽管核苷酸序列不同。因此,功能类似物包括天然存在的此处所述序列的变异体及人工核苷酸序列如用化学合成得到的适合于植物密码子使用的人工核苷酸序列。
具体地,功能类似物应理解为最初分离的编码杀真菌剂结合特性多肽的自然或人工突变,此突变仍表现出希望的功能。突变包括一个或多个核苷酸残基的替代、添加、删除、交换或插入。因此,本发明也包括通过修饰此核苷酸序列得到的核苷酸序列。这种修饰的目的可以是,例如,进一步限制编码序列中或其它的,例如,插入限制性酶的多个切割位点。
其它的功能类似物是与开始基因或基因片段相比,功能减弱或更强的那些变异体。
而且,只要能诱导如上所述的希望的杀真菌剂抗性以避免对农作物植物的植物毒性效应,人工DNA序列都适合。这样的人工DNA序列可通过例如反翻译有杀真菌剂结合活性并通过分子塑形或体外选择构建的蛋白得到鉴定。特别适当的是根据宿主植物特异的密码子应用反翻译多肽序列得到的DNA编码序列。通过计算机辅助分析被转化植物其它已知基因,熟悉植物遗传学方法的专家很容易确定特定的密码子使用。
另外必需提到的根据本发明适当的类似核酸序列是编码融合蛋白的序列,其中融合蛋白部分是非植物来源的杀真菌剂结合多肽或其功能上类似部分。例如,融合蛋白的第二部分可以是另外的有酶活性的多肽,或借其辅助可以检测scFvs表达的抗原多肽序列(例如myc-tag或his-tag)。然而,它优选的是调控蛋白序列,例如,指导有杀真菌剂结合特性的多肽到达希望的作用位点的信号或转运肽。
然而,本发明也涉及根据本发明制备的表达产物和转运肽与有杀真菌剂结合特性多肽的融合蛋白。
就本发明目的而言,抗性/耐受性指人工获得的植物抵卸具有植物毒性活性的杀真菌剂的能力。它包括至少植物一代期间对抑制剂部分及尤其是完全的不敏感性。
杀真菌剂的植物毒性作用位点通常是叶组织,所以外源杀真菌剂结合多肽叶特异性的表达能提供足够的保护。然而,一个人很容易理解杀真菌剂的植物毒性作用不需限制在叶组织,也可以组织特异的方式在植物其它所有器官中实现。
另外,外源杀真菌剂结合多肽的组成型表达是有优势的。另外,可诱导表达也可取。
例如,体外通过根分生组织在含有系列浓度梯度杀真菌剂的培养基中繁殖或通过种子发芽实验确定转基因表达的具杀真菌剂结合特性表达多肽的效率。另外,可在温室实验中检测类型和水平都改变了的受试植物的杀真菌剂耐受性。
本发明另外涉及转化了根据本发明的表达盒的转基因植物、转基因细胞、组织、器官和这些植物的繁殖材料。特别优选的是转基因农作物如谷物、玉米、大豆、水稻、棉花、甜菜、Canola、向日葵、亚麻、土豆、烟草、西红柿、油菜、苜蓿、莴苣和各种灌木树、坚果和葡萄属种类,例如咖啡,水果树如苹果、梨或樱桃,坚果树如胡桃或山核桃以及尤其重要的葡萄藤。
可用抑制植物酶的具有植物毒性作用的杀真菌剂处理转基因植物、植物细胞、植物组织或植物器官,由此未成功转化的植物、植物细胞、植物组织或植物器官死亡或遭到破坏。适当的活性成分的例子是strobilurins,具体是甲基甲氧亚氨基-α-(O-甲苯氧基)-O-甲苯基乙酸酯(BAS 490F)及这些化合物的代谢物和功能衍生物。编码具有杀真菌剂结合特性多肽并插入根据本发明表达盒的DNA也可用作选择标记。
本发明具有优势,特别是就农作物而言,一旦诱导了农作物植物对具有植物毒性作用的杀真菌剂的选择抗性,这样的杀真菌剂就可甚至以更高的应用率用于这些农作物以控制有害真菌,否则就会导致植物破坏。下面群体中的化合物可提及作为这样具有植物毒性活性的杀真菌剂的例子,而不是限制硫磺;二硫代氨基甲酸酯及其衍生物如铁(III)二甲基二硫代氨基甲酸酯、锌二甲基二硫代氨基甲酸酯、锌乙烯基双二硫代氨基甲酸酯、镁乙烯基双二硫代氨基甲酸酯、锰锌乙烯基二胺双二硫代氨基甲酸酯、四甲基二烃氨基硫羰基二硫化物[sic]、锌(N,N’-乙烯基双二硫代氨基甲酸酯)的氨复合物、锌(N,N’-丙烯双二硫代氨基甲酸酯)的氨复合物、锌(N,N’-丙烯双二硫代氨基甲酸酯)、N,N’-聚丙烯双(硫代氨甲酰)二硫化物;硝基衍生物如二硝基(1-甲基庚基)苯基丁烯酸酯、2-仲-丁基-4,6-二硝基苯基-3,3-二甲基丙烯酸酯、2-仲-丁基-4,6-二硝基苯基异丙基碳酸盐、二异丙基5-硝基间苯二酸酯;杂环物质如2-十七烷基-2-咪唑啉乙酸酯、2,4-二氯-6-(O-氯苯胺基)-仲-三嗪、O,O-二乙基苯二甲酰亚氨基膦酰基硫代物、5-氨基-1-[双(二甲基氨基)磷酰基]-3-苯基-1,2,4-三唑、2,3-二氰基-1,4-二硫代蒽醌、2-硫代-1,3-二硫烃[4,5-b]喹啉、甲基-1-(丁基氨甲酰基)-2-苯并咪唑氨基甲酸盐、2-甲氧羰基氨基苯并咪唑、2-(2-呋喃基)苯并咪唑、2-(4-三唑基)苯并咪唑、N-(1,1,2,2-四氯乙基硫代)四氢邻苯二甲酰亚胺、N-三氯甲基硫代四氢邻苯二甲酰亚胺、N-三氯甲基硫代邻苯二甲酰亚胺、N-二氯氟代甲基硫代-N’,N’-二甲基-N-苯基磺基二酰胺、5-乙氧基-3-三氯甲基-1,2,3-硫代二唑、2-硫代氰氧基甲基硫代苯并噻唑、1,4-二氯-2,5-二甲氧苯、4-(2-氯苯基亚联氨基)-3-甲基-5-异噁唑酮、嘧啶-2-硫代[sic]1-氧化物、8-烃基喹啉或其铜盐、2,3-二氢-5-羧酰苯胺-6-甲基-1,4-氧硫杂环己二烯、2,3-二氢-5-羧酰苯胺-6-甲基-1,4-氧硫杂环己二烯-4,4-二氧化物、2-甲基-5,6-二氢-4H-吡喃-3-羧酰苯胺、2-甲基呋喃-3-羧酰苯胺、2,5-二甲基呋喃-3-羧酰苯胺、2,4,5-二甲基呋喃-3-羧酰苯胺、N-环己基-2,5-二甲基呋喃-3-羧酰胺、N-环己基-N-甲氧基-2,5-二甲基呋喃-3-羧酰胺、2-甲基苯甲酰苯胺,2-碘代苯甲酰苯胺、N-甲酸基-N-吗啉-2,2,2-三氯乙基乙缩醛、哌嗪-1,4-二基双-1-(2,2,2-三氯乙基)甲酰胺、1-(3,4)二氯苯胺基-1-甲酸基氨基-2,2,2-二氯乙烷;胺类如2,6-二甲基-N-三癸基吗啉或其盐类、2,6-二甲基-N-环癸基吗啉或其盐类、N-[3-(对-叔-丁基苯基)-2-甲基丙基]-顺式-2,6-二甲基-吗啉、N-[3-对-叔-丁基苯基)-2-甲基丙基]哌啶、(8-(1,1-二甲基乙基)-N-乙基-N-丙基-1,4-二噁螺旋[4.5]癸烷-2六亚甲基四胺;唑类如1-[2-(2,4-二氯苯基)-4-乙基-1,3-二氧戊环-2-基乙基]-1H-1,2,4-三唑、1-[2-(2,4-二氯苯基)-4-正-丙基-1,3-二氧戊环-2-基乙基]-1H-1,2,4-三唑、N-(正-丙基)-N-(2,4,6-三氯苯氧基乙基)-N’-咪唑基脲、1-(4-氯苯氧基)-3,3-二甲基-1-(1H-1,2,4-叠氮基-1-基)-2-丁酮、1-(4-氯苯氧基)-3,3-二甲基-1-(1H-1,2,4-叠氮基-1-基)-2-丁醇、(2RS,3RS)-1-[3-(2-氯苯基)-2-(4-氟苯基)-环氧乙烷-2-基甲基]-1H-1,2,4-三唑、1-[2-(2,4-二氯苯基)-戊基]-1H-1,2,4-三唑、2,4’-二氟-α-(1H-1,2,4-三唑基-1-甲基)二苯甲基醇、1-((双(4-氟苯基)甲基甲硅烷基)甲基)-1H-1,2,4-三唑、1-[2RS,4RS;2RS,4SR]-4-溴-2-(2,4-二氯苯基)四氢呋喃基]-1H-1,2,4-三唑、2-(4-氯苯基)-3-环丙基-1-(1H-1,2,4-叠氮基-1-基)-丁烷-2-醇、(+)-4-氯-4-[4-甲基-2-(1H-1,2,4-叠氮基-1-基甲基)-1,3-二氧戊环-2-基]苯基-4-氯苯基醚、(E)-(R,S)-1-(2,4-二氯苯基)-4,4-二甲基-2-(1H-1,2,4-叠氮基-1-基)戊-1-烯-3-醇,4-(4-氯苯基)-2-苯基-2-(1H-1,2,4-三唑基甲基)丁腈、3-(2,4-二氯苯基)-6-氟-2-(1H-1,2,4-叠氮基-1-基)喹唑啉-4(3H)-酮、(R,S)-2-(2,4-二氯苯基)-1-H-1,2,4-叠氮基-1-基)己烷-2-醇、(1RS,5RS;1RS,5SR)-5-(4-氯苯甲基)-2,2-二甲基-1-(1H-1,2,4-叠氮基-1-基甲基)环戊醇、(R,S)-1-(4-氯苯基)-4,4-二甲基-3-(1H-1,2,4-叠氮基-1-基甲基)戊烷-3-醇、(+)-2-(2,4-二氯苯基)-3-(1H-1,2,4-三唑基)丙基-1,1,2,2-四氟乙醚、(E)-1-[1-[4-氯-2-三氟甲基)苯基]亚氨基)-2-丙氧基乙基]-1H-咪唑、2-(4-氯苯基)-2-(1H-1,2,4-叠氮基-1-基甲基)己腈、α-(2-氯苯基)-α-(4-氯丙基)-5-嘧啶甲醇、5-丁基-2-二甲基氨基-4-羟基-6-甲基嘧啶、双(对-氯苯基)-3-吡啶甲醇、1,2-双(3-乙氧基羰基-2-硫脲基)苯、1,2-双(3-甲氧基羰基-2-硫脲基)苯;strobilurines如甲基-E-甲氧亚氨基-[α-(O-甲苯氧基)-O-甲苯基]乙酸酯、甲基-[E]-2-{2-[6-(2-氰基苯氧基)嘧啶-4-基氧基]苯基}-3-甲氧丙烯酸酯、甲基-E-甲氧亚氨基-[α-(2-苯氧基苯基)]乙酰胺、甲基-E-甲氧亚氨基-[α-(2,5-二甲基苯氧基)-O-甲苯基]乙酰胺;苯胺基嘧啶类如N-(4,6-二甲基嘧啶-2-基)苯胺、N-(4-甲基-6-(1-丙炔基)嘧啶-2-基)苯胺、N-[4-甲基-6-环丙基嘧啶-2-基]苯胺;苯基吡咯类如4-(2,2-二氟-1,3-苯并间二氧杂环戊烯-4-基)-吡咯-3-腈;肉桂酰胺类如3-(4-氯苯基)-3-(3,4-二甲氧基苯基)丙烯酰基吗啉;以及各种杀真菌剂如十二烷基胍乙酸酯、3-[3-(3,5-二甲基-2-氧环己基)-2-烃乙基]戊二酰亚胺、N-甲基-或N-乙基-(4-三氟甲基),-2-[3’,4’-二甲氧基苯基]苯甲酰胺[sic]、六氟苯、甲基-N-(2,6-二甲基苯基)-N-(2-呋喃甲酰)-DL-丙氨酸盐、DL-N-(2,6-二甲基苯基)-N-(2’-甲氧乙酰基)丙氨酸甲酯、N-(2,6-二甲基苯基)-N-氯乙酰基-D,L-2-氨基丁内酯、DL-N-(2,6-二甲基苯基)-N-(苯乙酰基)丙氨酸甲酯、5-甲基-5-乙烯基-3-(3,5-二氯苯基)-2,4-二氧-1,3-噁唑烷、3-[3,5-二氯苯基-(5-甲基-5-甲氧甲基)]-1,3-噁唑烷-2,4-二酮[sic]、3-(3,5-二氯苯基)-1-异丙基氨甲酰基乙内酰脲、N-(3,5-二氯苯基)-1,2-二甲基环丙烷-1,2-二甲酰亚胺、2-氰-[N-(乙氨基羰基)-2-甲氧亚氨基]乙酰胺、N-(3-氯-2,6-二硝基-4-三氟甲基苯基)-5-三氟甲基-3-氯-2-氨基吡啶。
这些杀真菌剂功能相同的衍生物如已具体提及的这些物质具有针对植物病原真菌的相同作用范围,以及更小、相等或更明显的植物毒性活性。
通过下列例子说明而不是限制本发明一般克隆方法在本发明范围内执行的步骤例如限制性切割、琼脂糖凝胶电泳、DNA片段的纯化、将核酸转移至硝酸纤维素和尼龙膜、DNA片段的连接、大肠杆菌细胞转化、细菌培养、噬菌体操作和重组DNA序列分析根据Sambrook等(1989)冷泉港实验室出版社,ISBN 0-87969-309-6描述的进行。
下文所用的细菌菌株(大肠杆菌XL-I Blue)来自Stratagene。用于植物转化的土壤杆菌菌株(根瘤土壤杆菌。含质粒pGV2260或pGV3850Kan的C58C1)由Deblaere等描述(核酸研究13(1985)4777)。选择性地,可用土壤杆菌株LBA4404(clontech)或其它合适的株系。载体pUC19(Yanish-Perron,基因33(1985)103-119)、pBluscript.SK-(Stratagene)、pGEM-T(Promega)、pZero(Invitrogen)、pBin19(Bevan等,核酸研究12(1984)8711-8720)和pBinAR(Hofgen和Willmitzer,植物科学66(1990)221-230)用于克隆目的。重组DNA的序列分析以Sanger方法(Sanger等,美国国家科学院院报74(1977),5463-5467),用pharmacia公司的激光荧光DNA测序装置测定重组DNA分子的序列。植物表达盒的制备以EcoRI-KpnI片段(相当于花椰菜花叶病毒的核苷酸6909-7437)(Franck等,细胞21(1980)285)的形式将35S CaMV启动子插入质粒pBin19(Bevan等,核酸研究12,8711(1984))。Ti质粒pTiACH5(Gielen等,欧洲分子生物学组织杂志3(1984)835)T-DNA边缘序列的基因3的多腺苷酸化信号;核苷酸11749-11939以PvuII-HindIII片段分离到,加上SphI接头后;克隆到载体的SphI-HindIII切割位点之间的PvuII位点。产生了质粒pBinAR(Hofgen和Willmitzer,植物科学66(1990)221-230)。应用实施例实施例1因为杀真菌剂无免疫原性,它们必需与载体材料偶联,例如KLH。如果分子有反应基,则可直接偶联;如果没有,在合成杀真菌剂时引入功能基或在合成过程中选择反应前体以在简单的反应步骤将这些分子偶联到载体分子上。在Miroslavic Ferencik的“免疫化学手册”,1993,Chapman & Hall,抗原一章第20-49页发现偶联反应的例子。
反复注射此修饰的载体分子(抗原)用于免疫,例如,Balb/c小鼠。一旦用ELISA(酶联免疫吸附测定)检测到足够量的与抗原结合的抗体,就取出这些动物的脾细胞并与骨髓瘤细胞融合以培养杂种。另外用“杀真菌剂修饰的BSA”作为ELISA中的抗原以区分针对半抗原的免疫反应和针对KLH的免疫反应。
用与已知方法相似的方法制备单克隆抗体,例如在“实用免疫学”Leslie Hudson和Frank Hay,Blackwell Scientific Publications,1989或在“单克隆抗体理论和实践”James Goding,1983,AcademicPress,Inc,或在“单克隆抗体实用指南”,J.Liddell和A.Cryer,1991 John Wiley & Sons;或Achim Moller和Franz Emling″Monoklonale Antikorper gegen TNF und deven Verwendung″[针对TNF的单克隆抗体及其应用]所述的方法。欧洲专利说明书EP-A260610。实施例2本研究的起始点是特异性地识别杀真菌剂BAS 490F且有高亲和性的单克隆抗体。所选的杂交瘤细胞系的特征在于分泌的针对杀真菌剂抗原BAS 490F的单克隆抗体有高亲和性并且可得到此免疫球蛋白的特异序列(Berek,C.等,自然316,(1985)412-418)。该针对BAS 490F的单克隆抗体是单链抗体片段(scFv-抗BAS 490F)构建的起始点。
首先,从杂交瘤细胞中分离mRNA并转录成eDNA。此cDNA作为扩增可变免疫球蛋白基因VH和VK的模板,其中重链的特异性引物为VHlBACK和VH FOR-2,轻链引物为VK2BACK和MJK5 FONX(Clackson等,自然352,(1991)624-628。分离的可变免疫球蛋白是单链抗体片段(scFv-抗BAS 490F)构建的起始点。在随后的融合PCR中,三个成分VH、VK和接头片段在PCR反应中联合起来,从而ScFv-抗BAS 490F得到扩增(图3)。
在细菌体系中表达后对构建的scFv-抗BAS 490F基因进行功能鉴定(抗原结合活性)。为了达到这个目的,用Hoogenboom,H.R.等核酸研究19(1991),4133-4137的方法,在大肠杆菌中以可溶抗体片段合成scFv-抗BAS 490F。以ELISA测定检测构建的抗体片段的活性和特异性(图4)。
为了允许抗体片段在烟草中种子特异性表达,将scFv-抗BAS490F基因克隆在LeB4启动子的下游。从Vicia fqba中分离的LeB4启动子表现出多种外源基因在烟草中严格的种子特异性表达(Baumlein,H.等,Mol.Gen.Genet.225,(1991)121-128)。scFv-抗BAS 490F多肽转运至内质网导致大量抗体片段的稳定积累。为了达到这个目的,scFv抗BAS 490F基因与信号肽序列融合以保证其进入内质网,与ER滞留信号SEKDEL融合以保证多肽保留在ER中(Wandelt等,1992)(图5)。
将构建的表达盒克隆至双元载体pGSGLUC1(Saito等,1990)并通过电穿孔转移至土壤杆菌株系EHA101中。重组土壤杆菌克隆用于随后的烟草转化。每个构建体再生出70-140株烟草。自花传粉后,从再生的转基因烟草植物上收获不同发育阶段的种子。抽提后从这些种子中获得处于水缓冲体系中的可溶性蛋白。分析转基因植物表明scFv-抗BAS 490F基因与ER滞留信号SEKDEL的融合允许成熟种子中得到的scFv-抗BAS 490F蛋白最大积累为1.9%。
构建的scFv-抗BAS 490F基因大小约为735bp。可变结构域以VH-L-VL顺序彼此融合。
用直接ELISA鉴定成熟烟草种子抽提物中特异的选择性。得到的值清楚地表明蛋白抽提物含功能上有活性的抗体片段。实施例3在USP启动子控制下,单链抗体片段在转基因烟草种子细胞内质网中种子特异性表达和积聚。
此研究的起始点是针对杀真菌剂BAS 490F的单链抗体片段(scFv-抗BAS 490F)。在细菌体系中表达后和在烟草叶子中表达后进行该构建的scFv-抗BAS 490F基因的功能鉴定(抗原结合活性)。用ELISA测定检测构建的抗体片段的活性和特异性。
为了允许抗体片段在烟草中种子特异性表达,将scFv-抗BAS490F基因克隆在USP启动子的下游。从Vicia faba中分离的USP启动子表现出多种外源基因在烟草中严格的种子特异性表达(Fiedler,U.等,植物分子生物学22,(1993)669-679)。scFv-抗BAS 490F多肽转运至内质网导致大量抗体片段的稳定积累。为了达到这个目的,scFv-抗BAS 490F基因与信号肽序列融合以保证其进入内质网,与ER滞留信号SEKDEL融合以保证多肽保留在ER中(Wandelt等,1992)(
图1)。
将构建的表达盒克隆至双元载体pGSGLUC1(Saito等,1990)并通过电穿孔转移至土壤杆菌株系EHA101中。重组土壤杆菌克隆用于随后的烟草转化。自花传粉后,从再生的转基因烟草植物上收获不同发育阶段的种子。抽提后从这些种子中获得处于水缓冲体系中的可溶性蛋白。分析转基因植物表明scFv-抗BAS 490F基因与ER滞留信号SEKDEL的DNA序列的融合在USP启动子的控制下导致与BAS 490F有结合亲和性的单链抗体片段早在种子发育的第10天就合成了。实施例4
为了得到抗体片段在植物中的广泛表达,尤其是在叶中,将scFv-抗BAS 490F基因克隆在CaMV35S启动子下游。该强组成型启动子介导外源基因在所有植物组织中的表达(Benfey和Chaua,科学250(1990),956-966。scFv-抗BAS 490F蛋白到内质网的转运允许要得到的大量抗体片段稳定积累在叶中。首先,将scFv-抗BAS 490F基因与保证进入内质肉的信号肽序列和保证产物保留在ER中的ER滞留信号KDEL融合(Wandelt等,植物杂志2(1992),181-192)。将构建的表达盒克隆至双元载体pGSGLUC1(Saito等,植物细胞繁殖8(1990),718-721)并通过电穿孔转移入土壤杆菌菌株EHA101。重组土壤杆菌克隆用于随后的烟草转化。再生出约100株烟草植株。从再生的转基因烟草植株上取下处于不同发育阶段的叶。抽提后从这些种子中获得处于水缓冲体系中的可溶性蛋白。随后的分析(Western印迹分析和ELISA测定)表明从叶中获得的有生物学活性的抗原结合scFv-抗BAS 490F多肽最大积累为2%以上。在完全生长的绿色叶中鉴定了高表达值,但是在衰老叶材料中也检测到了抗体片段。实施例5借助于合成的寡核苷酸,编码针对BAS 490F的单链抗体的cDNA片段得到PCR扩增。
单链抗体cDNA的PCR扩增在Perkin Elmer公司的DNA热循环仪上进行。反应混合物含8ng/μl单链模板cDNA、0.5μM相关寡核苷酸、200μM核苷酸(pharmacia)、50mM KCl、10mM Tris-Hcl(25℃时pH8.3,1.5mM Mgcl2)及0.02μ/nl Taq聚合酶(Perkin Elmer)。反应条件设置如下退火温度45℃变性温度94℃延伸温度72℃循环数 40结果得到约735个碱基对的片段,并将它连接到载体pBluescript中。连接混合物用于转化大肠杆菌XL-I Blue,质粒得到扩增。关于聚合酶链反应的应用和最优化,参见Innis等,1990,PCR方法,方法和应用指南,Academic Press。实施例6表达编码有杀真菌剂结合特性的单链抗体cDNA的转基因烟草的制备将质粒pGSGLUC1转化到根瘤土壤杆菌C58C1pGV2260中。用在含2%蔗糖的Murashige-Skoog培养基(2MS培养基)中培养的转化阳性的土壤杆菌克隆的过夜培养物1∶50稀释液转化烟草植株(烟草栽培品种Samsun NN)。在培养皿中,无菌植物的叶片(每个约1cm2)在1∶50土壤杆菌稀释液中温育5-10分钟。然后在含0.8%Bacto-Agar的2MS培养基上避光培养2天。在16小时光照/8小时黑暗下继续培养2天后,在含500mg/l头孢噻肟(cefotaxim-Sodium)、500mg/l卡那霉素、1mg/l苄氨基嘌呤(BAP)、0.2mg/l萘乙酸和1.6g/l葡萄糖的MS培养基上以每周节律继续培养。将生长的枝条转移至含2%蔗糖、250mg/l头孢噻肟和0.8%Bacto-Agar的MS培养基上。实施例7针对杀真菌剂BAS 490F的单链抗体片段在内质网中的稳定积累本研究的起始点是在烟草植物中表达的针对杀真菌剂BAS 490F的单链抗体(scFv-抗BAS 490F)。用Western印迹分析和ELISA测定鉴定合成的scFv-抗BAS 490F多肽的数量和活性。
要表达的外源基因与LeB4信号肽(N-末端)和ER滞留信号KDEL(C-末端)以翻译融合的形式在CaMV35S启动子的控制下表达使scFv-抗BAS 490F基因有可能在内质网中表达。scFv-抗BAS 490F多肽向内质网中的转运允许大量的活性抗体片段稳定积累。收获叶材料后,将其冻存于-20℃(1)、冻干(2)或在温室下干燥(3)。从待检叶片中通过抽提获得处于水缓冲液中的可溶性蛋白并以亲合层析纯化scFv-抗BAS 490F多肽。等量的纯化的scFv-抗BAS 490F多肽(冻的、冻干的和干燥的)用于鉴定抗体片段的活性(图6)。图6A表示从新鲜(1)、冻干(2)和干燥(3)叶片纯化的scFv-抗BAS 490F多肽的抗原结合活性。图6B表示由Western印迹分析测定的用于ELISA测定的scFv-抗BAS 490F蛋白的代表量(约100ng)。左侧表示了蛋白分子量标准的大小。发现抗原结合活性基本相同。实施例8为了验证产生有杀真菌剂结合特性多肽的转基因烟草植物的杀真菌剂耐受性,用各种量的BAS 490F处理这些烟草植物。在温室中,所有实验都证明与对照相比,表达scFv-抗BAS 490F基因的植物表现对杀真菌剂BAS 490F的更高耐受性和更不明显的植物毒性效应。
权利要求
1.一种通过在植物中表达外源杀真菌剂结合多肽制备杀真菌剂耐受性植物的方法。
2.根据权利要求1所述的方法,其中外源杀真菌剂结合多肽是单链抗体片段。
3.根据权利要求1所述的方法,其中外源杀真菌剂结合多肽是完全抗体或其片段。
4.根据权利要求1所述的方法,其中杀真菌剂是甲基甲氧亚氨基-α-(O-甲苯氧基)-O-甲苯基乙酸酯(BAS 490F)。
5.根据权利要求1-3中任意一项所述的方法,其中植物是单或双子叶植物。
6.根据权利要求5所述的方法,其中植物是烟草。
7.根据权利要求1-6中任意一项所述的方法,其中外源多肽在植物中组成型表达。
8.根据权利要求1-6中任意一项所述的方法,其中诱导外源多肽在植物中的表达。
9.根据权利要求1-6中任意一项所述的方法,其中外源多肽在植物叶中表达。
10.根据权利要求1-6中任意一项所述的方法,其中外源多肽在植物种子中表达。
11.一种植物表达盒,由启动子、信号肽、编码外源杀真菌剂结合多肽的基因、ER滞留信号和终止子组成。
12.根据权利要求11所述的表达盒,其中所用的组成型启动子是CaMV35S启动子。
13.根据权利要求11所述的表达盒,其中要表达的基因是单链抗体片段的基因。
14.根据权利要求11所述的表达盒,其中以与其它功能蛋白如酶、毒素、生色团和结合蛋白翻译融合形式使用的杀真菌剂结合多肽的基因或基因片段用作要表达的基因。
15.根据权利要求11所述的表达盒,其中要表达的多肽基因从杂交瘤细胞或借助其它重组方法如抗体噬菌体展示方法获得。
16.根据权利要求11所述的表达盒的用途,用于双子叶或单子叶植物的转化使植物种子或叶特异性地组成型表达外源杀真菌剂结合多肽。
17.根据权利要求16所述的用途,其中将表达盒转入细菌菌株并将所得的重组克隆用于转化双子叶或单子叶植物使植物种子或叶特异性地组成型表达外源杀真菌剂结合多肽。
18.根据权利要求11所述的表达盒的用途,用作选择标记。
19.根据权利要求17或18获得的转化植物的用途,用于制备杀真菌剂结合多肽。
20.一种通过将编码杀真菌剂结合多肽的基因序列导入植物细胞、愈伤组织、完整植物和植物细胞原生质体转化植物的方法。
21.根据权利要求20所述的方法,其中转化借助土壤杆菌、具体地根瘤土壤杆菌进行。
22.根据权利要求20所述的方法,其中转化借助电穿孔进行。
23.根据权利要求20所述的方法,其中转化借助微粒轰击方法进行。
24.杀真菌剂结合多肽的生产方法,通过在植物或植物细胞中表达编码这样的多肽的基因,然后分离多肽。
25.含有根据权利要求11所述的表达盒的植物,其中的表达盒赋予杀真菌剂耐受性。
26.根据权利要求25所述的植物,对甲基甲氧亚氨基-α-(O-甲苯氧基)-O-甲苯基乙酸酯(BAS 490F)有耐受性。
27.一种在转基因杀真菌剂抗性农作物植物中控制植物病原真菌的方法,包括针对形成杀真菌剂结合多肽或抗体的农作物植物使用杀真菌剂。
28.对甲基甲氧亚氨基-α-(O-甲苯氧基)-O-甲苯基乙酸酯(BAS 490F)有高结合亲和性的杀真菌剂结合多肽或抗体,根据权利要求24所述的得到制备。
全文摘要
本发明公开的是通过在植物中表达杀真菌剂结合抗体制备杀真菌剂耐受性植物的方法。
文档编号A01H5/00GK1254381SQ98804679
公开日2000年5月24日 申请日期1998年4月16日 优先权日1997年4月30日
发明者E·阿默曼, E·布特菲尔德, J·勒克尔, G·洛伦佐, A·莫勒, U·拉比, R-M·施米德, U·康拉德 申请人:巴斯福股份公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1