细胞培养微槽的制作方法

文档序号:426234阅读:243来源:国知局
专利名称:细胞培养微槽的制作方法
技术领域
本发明涉及一种细胞培养微槽(micro-chamber),更具体地,本发明涉及一种细胞培养微槽,通过其在显微镜下观察细胞状态时可以将细胞培养在一个细胞单位中。
背景技术
到目前为止,对于细胞状态变化以及细胞对某些化学制剂的反应的观察通常是观测基于一群细胞的某些数值的平均值,假设这群细胞来自于同一个细胞。但是实际上,一群细胞的细胞周期通常并不一致。因而各个细胞在不同周期发现了蛋白质。
为了解决这些问题,研发了诸如同步培养方法(synchronousculture process)等技术。但是,由于培养的细胞不是来自于一个完全相同的细胞,使得在蛋白质发现上的差异可能是由于在培养前衍生的各个细胞的基因不同所导致的。这样,在分析对于刺激的反应时,很难判断反应的差别到底是细胞本身反应机制的一般应答还是由于细胞存在差异(即基因信息上的差异)。
同样地,对于细胞系也很难断定对刺激反应的再现性的差异是否是由于每个细胞基因不同而造成的,因为通常其不是由一个完全相同的细胞培养出来的。
而且,由于对于细胞的刺激(信号)通常有两种类型,一种是通过细胞周围溶液中含有的信号物质、营养物及溶解的气体的量给予,另一种是通过细胞间的物理接触提供,所以也造成了难于判断差异的情形。
另一方面,到目前为止,在生物技术领域观察细胞时,通常是从一个大的培养容器中取出一部分培养的细胞群放在显微镜下观察,或者是通过将整个显微镜装入一个塑料容器中控制温度,然后将一个小容器放入大容器中并调节二氧化碳浓度和湿度进行观察。然后设计成在培养细胞时可以用新鲜培养液更换已经使用的培养液,从而维持所述溶液条件恒定。
例如,有一种通过一种机制维持营养条件恒定的方法,其中一个循环泵根据基质表面,在高于基质上缘水平和低于基质下缘水平之间向上和向下操纵培养基的水平,由此当水平降低到较低水平时,培养基就被注入;当水平升高到较高水平时,培养基就被排出(日本专利申请公开(Kokai)Hei 10-191961)。
另外,一种维持培养容器营养条件恒定的方法是将进口管的一端插入培养容器以向培养容器中导入新鲜培养基,将出口管的一端插入培养容器以从培养容器中排出培养基和将气体管的一端插入培养容器以通过泵交换培养容器中的气体部分,其中进口管、出口管和气体管在其各自管道上都安装上过滤器以防止细菌侵入培养容器(日本专利申请公开(Kokai)Hei 8-172956)。
然而,这两种方法都不能在控制要培养的细胞的溶液环境以及细胞间的物理接触时培养所述培养细胞。
因此,本发明人解决了这些问题,本发明人发明了可以只选择一个特异的新的细胞并且培养这个细胞形成细胞系的一种技术,其中在观察细胞的时候可以控制细胞的溶液环境条件并维持容器中细胞浓度恒定的一种技术,以及在研究细胞间相互作用时观察培养物的一种技术(日本专利申请公开(Kokai)2002-153260)。
本发明要解决的问题但是,上述专利申请(日本专利申请公开(Kokai)2002-153260)中所使用的光夹(photo pincette)技术,其捕获能力的范围在pN(piconewton)的程度,其足以捕获悬浮细胞但不足以捕获自迁移的细胞。而且,它也很难在培养时从培养区中选择性回收迁移细胞。
因此,本发明人对上述微槽进行了很多研究,并发明了一种新的微槽,其中在培养时能够在微槽中选择性回收迁移细胞的通路可以通过可逆改变微槽的形状来开启或关闭。
解决问题的方法本发明的细胞培养微槽包括一个细胞培养区,至少2个连接细胞培养区与外界的通路,开启或关闭通路的装置(means)以及光学观察细胞培养区及开启或关闭通路的装置,其中一个通路是通过它可以将可能含有细胞的培养液注入到细胞培养区内的流体通路,而另外一个通路是通过它可以将可能含有细胞的培养液从细胞培养区排出的流体通路,所述通路的至少一部分由弹性材料包围,且所述开启和关闭装置用于通过基本垂直于光学观察装置的观察方向从外部挤压或牵拉所述通路来开启或关闭通路或改变通路的宽度。
这里用到的光学观察装置包括光学显微镜、录影设备、照相机等等。它们可以连接个人电脑等进行图像处理。为了观察方便,它们也可以同时与照明装置一起使用。
优选在没有操纵开启和关闭装置的时候通路的宽度与靶细胞的大小是相同的程度。因此,根据靶细胞大小的不同,合适的通路宽度也可以变化。当在没有操纵开启和关闭装置的时候通路的宽度小于靶细胞大小时,细胞在正常状态下不能够通过通路,只有在通路打开时才能通过。因此,这个结构适于分离细胞。
开启和关闭装置可以是通过外力作用于通路来开启或关闭通路或改变通路的宽度。其可以是任何应用机械力量的装置或者是引起空间体积变化的装置等。
优选开启和关闭装置在邻近通路处有一空隙,所述空隙充入气体或液体,空隙的大小通过改变气体或液体的压力来改变,从而开启或关闭通路或改变通路宽度。最常用的方法是这个空隙充入空气,这样形成的充入空气的空隙可以用作空气池(reservoir),从而通过气压来控制通路的开启或关闭。
通路可以完全用弹性材料包围,或者也可以只用弹性材料制造其开启和关闭装置。优选空隙和通路采用相同的包围材料,这样空隙大小的改变可以直接影响通路的宽度。
弹性材料可以是任何弹性材料。通常使用对细胞的培养物无有害作用的合成聚合物。具体地,优选弹性材料是硅氧烷型树脂。
为了光学观察细胞培养区并开启或关闭细胞培养微槽的通路,优选仅用透明材料制造必需的部分。整体可以用透明弹性材料制造。
附图简述

图1为本发明的基本构造一个实例的示意图。
图2为通路开启或关闭方法的一个实例的示意图。
图3为细胞培养微槽制作方法的一个实例的显微照片。
图4为本发明细胞培养微槽制造方法中使用的模具和聚合物细胞培养微槽的一个实例的显微照片。
图5为细胞培养微槽通路开启和关闭状态的显微照片。
图6为一个细胞通过打开的细胞培养微槽的通路的显微照片,图中箭头所指的为细胞。
图中所示数字说明如下101,102连接空气压力控制区的接合处(connecting joint)103,104空气通路(passage)105,106,202空气池107溶液流(含有细胞的培养液)108,109,111,201,204通路110细胞培养区112,302,304玻璃基板(glass base plate)113,303聚合物(硅氧烷型树脂)203细胞301模具305气压控制区连接器(connector)本发明的实施方案以下阐述本发明细胞培养微槽的细节。然而,本发明不以任何方式限制这种细胞培养微槽。
图1显示本发明细胞培养微槽的基本构造。如图1a的水平视图(B-B)和图1b的纵向视图(A-A)所示,本发明的细胞培养微槽100包括一个在可视区光学透明的弹性聚合物上形成的细胞培养区110,空气池105、106以通过膨胀或者压缩来控制位于所述细胞培养区两端的通路108、109、111的开启或关闭状态,空气通路103、104用于压缩或减压空气池,及与空气控制区连接的接合处101、102,所有这些都安置在光学透明的基板112上,如载玻片等,从而溶液(含有细胞的培养液)可以连续流向流体107的方向。
如图1所示,根据两个通路108、109的开启或关闭状态,可以从培养区110中捕获或者排出培养的细胞。这里,开启或关闭通路指的是通过控制空气池内空气的压力来扩张或收缩通路周围的聚合物壁表面而调节通路111的宽度。通路水平安置在平面上,与光学显微镜的光轴垂直,因此通路的宽度可以通过光学仪器测量。因此,例如在使用光学显微镜的时候,可以仅通过观察来确定通路的宽度,即开启或关闭状态,而不需要流动样品。因此,在这种开放状态的目测证实下,可以控制空气池105、106中的气压。而且,利用图像处理自动测量这种开放状态,可以对预先确定的开放状态设置一种反馈控制。
接下来,开启或关闭通路如图2所示。图2a和b分别是水平视图和横截面视图,显示了在适度关闭通路时,只有溶液可以通过通路而细胞203不能通过。往空气池202中导入空气加压,关闭通路204,所以可以根据其压力程度来控制能够通过其的细胞大小。
另一方面,图2c和d分别示出通路开放时的水平视图和横截面视图,所以溶液和细胞都能通过通路201。将空气池202中的空气排出,使得通路204开放,这样根据其减压程度所有的细胞都能够通过。
图3阐述了制作细胞培养微槽的方法的实例。首先,利用如光刻法等精细加工技术制作模具(图3-1)。例如,可以在玻璃片302上光固化可以光固化的、厚壁抗蚀材料SU-8以在形成模具301。然后,光学透明的弹性聚合物可以倒入并在模具中固化以将聚合物成形为模具的形状(图3-2)。此处可以使用在可视区域内光学透明的弹性聚合物材料,例如硅氧烷树脂(聚二甲基硅氧烷等)。聚合物固化后,用打孔器在其上打孔形成贯通孔以用于空气和溶液流动,然后将聚合物从模具上剥离(图3-2)。最后,该精细构造的聚合物被粘到玻璃基板304上,其进一步具有一个与气压控制区连接的连接器,以及溶液的进口和出口。如此形成的最终产品就可以用作细胞培养的微槽。
图4为光学显微镜图,显示了一个用可光固化的树脂SU-8根据图3的方法制作的细胞培养微槽模具(图4a)和用模具成形后聚合物精细结构(图4b)的实例。由该光学显微镜图中可以看出模具的精细结构被精确地转移给聚合物。
图5为一系列的显微镜图,显示了本发明细胞培养微槽通路的功能。图5a显示当通过用空气压缩空气池而关闭通路的时候,细胞和溶液都不能通过。图5b显示,通过用负压抽气空气池的时候,通路开放到一定程度使细胞不能通过。从这个显微照片可以看出,细胞被溶液流带向通路但是不能通过。通路开放的程度可以通过光学显微镜目测观察。这样可以仅用肉眼观察来控制通路的开放程度,而不需要流动细胞。图5c显示当通路进一步打开的时候,细胞可以流出。
图6是显示细胞通过通路的过程的显微照片。细胞(箭头)从通路的左边(图6-1)通过通路(图6-2)转移到通路的右边(图6-3)。
本发明的优点本发明的细胞培养微槽有以下特点细胞培养区只通过通路与外界相连,因此,细胞不会与开启和关闭设备等接触,这样不会对细胞产生额外负荷。
因为开启和关闭装置是在与观察通路开启或关闭的方向基本垂直的方向,所以通路的开启或关闭不会影响观察。而且,在观察细胞是否通过通路的同时,通路开启或关闭的状态也能被观察到。
由于以上特性,其可以从细胞培养液中分离出单个细胞。
因此,其可以培养迁移细胞等并且控制容器中细胞的数量,这到目前为止还被认为是不可能的。而且,它还可以在容器内选择性回收细胞。
权利要求
1.一种细胞培养微槽,其包括一个细胞培养区、至少2个将所述细胞培养区与外界相连的通路、开启或关闭通路的装置以及对细胞培养区及通路的开启或关闭进行光学观察的装置,其中一个通路是通过它可以将可能含有细胞的培养液注入到细胞培养区内的流体通路,而另一个通路是通过它可以将可能含有细胞的培养液排出细胞培养区的流体通路,所述通路的至少一部分由弹性材料包围,并且开启和关闭装置用于通过与光学观察装置的观察方向基本垂直的方向从外部挤压或牵拉通路来控制通路的开启或关闭或者改变通路的宽度。
2.权利要求1的细胞培养微槽,其中通路的宽度在没有操纵开启和关闭装置的时候和靶细胞的大小相同。
3.权利要求1或2的细胞培养微槽,其中开启和关闭装置在邻近通路处有一空隙,该空隙中充入气体或液体且该空隙大小通过改变气体或液体的压力而改变,从而控制通路开启或关闭或者改变通路的宽度。
4.权利要求1-3中任一项的细胞培养微槽,其中弹性材料为硅氧烷型树脂。
全文摘要
本发明提供了一种在培养中通过可逆改变微槽的形状来开启或关闭能够选择性回收微槽中迁移细胞的通路的新的微槽。该微槽包括都放置在光学透明的基板112如载玻片上的一个在可视区域光学透明的、在弹性聚合体中形成的细胞培养区110,位于所述培养区两端的通路108、109,通过膨胀和压缩控制通路开启或关闭状态的空气池105、106,为空气池增压和减压的空气通路103、104,以及与气压控制部分连接的接合处101、102,从而含有细胞的培养液向流体107的方向连续流动。
文档编号C12M1/34GK1791666SQ20048001388
公开日2006年6月21日 申请日期2004年4月30日 优先权日2003年5月19日
发明者安田贤二, 高桥一宪 申请人:独立行政法人科学技术振兴机构
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1