具有改良的连合支撑的人工心脏瓣膜的制作方法

文档序号:13223477阅读:373来源:国知局
具有改良的连合支撑的人工心脏瓣膜的制作方法

本申请是分案申请,原申请的申请日为2012年12月7日、申请号为201280069407.9(pct/us2012/068568)、发明名称为“具有改良的连合支撑的人工心脏瓣膜”。

本公开涉及人工心脏瓣膜的实施方式,和用于植入人工心脏瓣膜的递送系统。



背景技术:

人类心脏可遭受多种瓣膜疾病。这些瓣膜疾病可导致重大的心脏机能障碍,并最终需要用人造瓣膜替换天然瓣膜。有许多已知的人造瓣膜和许多已知的在人类中植入这些人造瓣膜的方法。

多种外科技术可用于替换或修补患病的或被损坏的天然瓣膜。由于狭窄和其他心脏瓣膜疾病,每年有成千上万的患者进行其中通过人工瓣膜替换有缺陷的天然心脏瓣膜的手术。用于治疗有缺陷的瓣膜的另一种较不激烈的方法是通过修补或重建,其典型地用在轻微(minimally)钙化瓣膜上。外科疗法的问题是它施加于这些慢性病患者的与外科修补相关的高发病率和死亡率的重大风险。

当替换天然瓣膜时,典型地,人工瓣膜的外科植入需要开胸手术,在所述开胸手术期间,使心脏停止并且将患者置于心肺分流术(所谓的“心肺机”)上。在一个常见的外科手术中,切除患病的天然瓣膜瓣叶,和将人工瓣膜缝合到天然瓣膜环处的周围组织上。由于与该过程相关的创伤和伴随的体外血液循环的持续时间,一些患者不能幸存通过外科手术过程或在不久之后死亡。众所周知,患者的风险随着体外循环需要的时间量而增加。由于这些风险,许多具有有缺陷的天然瓣膜的患者被认为是不能动手术的,因为他们的状况太脆弱而不能经受手术。通过一些估计,不能对超过50%的遭受瓣膜狭窄的大于80岁的对象进行瓣膜替换手术。

由于与传统的开心手术相关的缺点,经皮的和微创的侵入手术方法获得强烈的关注。在一个技术中,人工瓣膜经配置用于经由导管插入以更小侵入过程植入。例如,美国专利no.5,411,522和6,730,118——其通过引用并入本文——描述了可塌缩(collapsible)的经导管的人工心脏瓣膜,其可经皮在导管上以压缩状态被引入和通过球囊充胀或通过利用自膨胀框架或支架在期望的位置膨胀。

经导管的人工心脏瓣膜的重要设计参数是折叠的或卷曲的轮廓的直径。卷曲的轮廓的直径是重要的,因为它直接地影响医师前进经导管的人工心脏瓣膜通过股动脉或静脉的能力。更具体地,较小的轮廓允许治疗更宽的患者群,具有增强的安全性。



技术实现要素:

本公开涉及基于导管的人工心脏瓣膜的实施方式。根据本公开的人工心脏瓣膜包括径向可塌缩的和可膨胀的环形框架和包括安装在框架内的多个瓣叶的瓣叶结构。在具体的实施方式中,框架可具有连合附着部分,其经配置用于在相对于限制瓣叶的可移动部分的框架部分,朝向人工瓣膜纵向流动轴径向向内隔开的位置处支撑瓣叶的连合。当瓣叶在流经人工瓣膜的血液的压力下打开时,将瓣叶的可移动部分保持在从框架的内表面向内隔开的位置处,以免于瓣叶摩擦。

在一个代表性的实施方式中,人工瓣膜包括径向可塌缩的和可膨胀的环形框架。框架具有多个成角度地隔开的连合附着部分和在连合附着部分之间延伸的多个有叶部分。框架也具有入口端和出口端。瓣叶结构包括多个瓣叶,每一个瓣叶包括相对的侧边部分和在侧边部分之间延伸的上边缘。将每一个侧边部分固定到另一个瓣叶的相邻侧边部分上,以形成瓣叶结构的连合,每一个连合被附着到框架的连合附着部分之一上。瓣叶经配置在允许血液从入口端流动通过人工瓣膜到出口端的打开位置和抑制血液从出口端流动通过人工瓣膜到入口端的闭合位置之间移动,其中当瓣叶在打开位置时,瓣叶的上边缘从框架的有叶部分径向向内隔开。

在另一个代表性的实施方式中,人工瓣膜包括径向可塌缩的和可膨胀的环形框架。框架包括入口部分和出口部分,出口部分包括朝向人工瓣膜的纵向流动轴径向向内延伸的多个成角度地隔开的悬臂式连合附着支柱(commissureattachmentpost)。瓣叶结构包括多个瓣叶,每一个瓣叶包括相对的侧边部分,在侧边部分之间延伸的圆齿状的上边缘,和在侧边部分之间延伸的圆齿状的下边缘。将每一个侧边部分固定到另一个瓣叶的临近侧边部分上,以形成瓣叶结构的连合,每一个连合被附着到连合附着支柱之一上。瓣叶经配置在允许血液从入口部分流动通过人工瓣膜到出口部分的打开位置和抑制血液从出口部分流动通过人工瓣膜到入口部分的闭合位置之间移动,其中当瓣叶在打开位置时,瓣叶的上边缘从框架径向向内隔开,使得在每一个瓣叶的上边缘和框架之间形成间隙。

在另一个代表性的实施方式中,人工瓣膜包括径向可塌缩的和可膨胀的环形框架。框架具有多个成角度地隔开的连合附着支柱,每一个连合附着支柱包括至少两个彼此间隔开的悬臂式撑杆,以限定瓣叶接收间隙。瓣叶结构包括多个瓣叶,每一个瓣叶包括相对的侧边部分,和在侧边部分之间延伸的上边缘。将每一个侧边部分固定到另一个瓣叶的临近侧边部分上,以形成瓣叶结构的连合。每一个连合延伸通过各自的连合附着支柱的瓣叶接收间隙,和相对压缩连合附着支柱的撑杆,以夹紧撑杆之间的连合。

在另一个代表性的实施方式中,人工瓣膜包括径向可塌缩的和可膨胀的环形框架,其是可塑地膨胀的。框架包括多个成角度地隔开的连合附着支柱。瓣叶结构包括多个瓣叶,每一个瓣叶包括相对的侧边部分,其中将每一个侧边部分固定到另一个瓣叶的临近侧边部分上,以形成瓣叶结构的连合,每一个连合被附着到连合附着支柱之一上。连合附着支柱经配置当就在植入人工瓣膜之后,首次经受瓣叶的闭合力时,朝向人工瓣膜的纵向流动轴径向向内偏斜,并且然后在人工瓣膜的随后的闭合和打开循环期间保持在偏斜位置。

根据下面的具体实施方式,将更加明显地从下面具体实施方式看到本发明的前述和其他目标、特征、和优势,将参考附图进行具体实施方式。

附图说明

图1是根据一个实施方式的人工心脏瓣膜的透视图。

图2是图1的人工心脏瓣膜的俯视图,其显示打开位置的瓣叶。

图3是图1的人工心脏瓣膜的俯视图,其显示闭合位置的瓣叶。

图4是图1的人工心脏瓣膜的框架的平展图(flattenedview),如同从管状构件激光切割的。

图5是图4的框架的透视图,如同从管状构件激光切割的。

图6显示图1的人工心脏瓣膜的瓣叶,用于比较的目的,在已知的瓣叶之上显示。

图7是根据另一个实施方式的人工心脏瓣膜的透视图。

图8显示根据一个实施方式的人工心脏瓣膜的裙状部分(skirt)的平展图。

图9和10显示用于将人工心脏瓣膜植入在主动脉环中的两个位置。

图11是根据一个实施方式的递送装置的球囊组合件的侧视图,该组合件可被用于植入人工心脏瓣膜。

图12是图11的球囊组合件的俯视图。

图13是根据另一个实施方式的人工心脏瓣膜的侧视图。

图14是图13中示出的人工瓣膜的俯视图,其显示闭合位置的瓣叶。

图15是图13中示出的人工瓣膜的框架的平展图。

图15a是图15中示出的框架的一部分的放大图。

图16是图13的人工瓣膜的俯视图,其显示打开位置的瓣叶。

图17是图13的人工瓣膜的瓣叶和框架的一部分的透视图,其显示在相对于瓣膜的纵向流动轴大约60度的角处支撑的瓣叶的连合。

图18是类似于图17的透视图,其显示在相对于人工瓣膜的纵向流动轴大约15度的角处支撑的瓣叶的连合。

图19是图13的人工瓣膜的瓣叶的平展图。

图20-25是图示将连合连接到图13的人工瓣膜的框架的多个图。

图26是可用于图13的人工瓣膜的框架的另一个实施方式的平展图。

图27是根据另一个实施方式的人工心脏瓣膜的透视图。

图28是图27的人工瓣膜的部分的放大图,其显示连合到瓣膜框架的连接。

图29是可用于图27的人工瓣膜的框架的另一个实施方式的透视图,其显示就在通过球囊部署之后以膨胀状态的框架。

图30是图29的框架的透视图,其显示在通过瓣叶的闭合力移置连合支柱之后的框架。

图31是图30的框架的侧正视图。

图32是图31的框架的横截面图。

图33是图32中显示的框架的连合支柱的削弱部分的放大图。

图34是图29中显示的框架的可选实施方式的透视图。

具体实施方式

本公开涉及基于导管的人工心脏瓣膜的实施方式。本文公开了人工心脏瓣膜的几个示例性实施方式,并且在附图中显示。这些实施方式不应该以任何方式被解释为限制性的。相反,单独的和以与彼此的多个组合和亚组合,本公开涉及多个公开的实施方式的所有新的和非显而易见的特征和方面。

图1是根据一个实施方式的人工心脏瓣膜10的透视图。图示的人工瓣膜适于被植入天然主动脉环,尽管在其他实施方式中,它可适于被植入心脏的其他天然瓣环。人工瓣膜10可具有三个主要的部件:支架或框架12、瓣膜结构14和内裙状部分16。人工瓣膜10经配置被径向压缩成用于递送到患者体内的卷曲状态,并且在被放置在体内期望的植入位置后,从卷曲状态可径向膨胀为膨胀的状态。

瓣膜结构14可包括三个瓣叶40,共同地形成瓣叶结构,可安排所述瓣叶结构以便以三尖瓣安排塌缩(collapse),最好如图3显示的。瓣叶40可由心包组织(例如,牛心包组织)、生物相容的合成材料或本领域已知的和在美国专利no.6,730,118——其通过引用并入本文——中描述的多种其他适当的天然或合成材料形成。

图4显示裸框架12的平展图,和图5显示在形成任何形状之前,如从管状构件激光切割的裸框架的透视图。框架12可形成具有多个圆周隔开的连合支撑18(图示的实施方式中为三个),每一个连合支撑18包括限定各自的狭槽的两个轴向撑杆34,或适于将瓣膜结构14的连合安装到框架上的其间的连合窗口20,如下面更详细描述的。框架12可由本领域已知的多种适当的可塑地膨胀的材料(例如,不锈钢等)或自膨胀的材料(例如,镍钛诺)制造。当用可塑地膨胀的材料构造时,可在递送导管上将框架12(和因而人工瓣膜10)卷曲成径向压缩的状态,和然后通过可充胀球囊或等效膨胀机构在患者体内膨胀。当用自膨胀的材料构造时,可将框架12(和因而人工瓣膜10)卷曲成径向压缩的状态,和通过插入递送导管的鞘或等效机构被限制在压缩状态。在身体内后,人工瓣膜可从递送鞘前进,其允许人工瓣膜膨胀到它的功能大小。

可用于形成框架12的适当的可塑地膨胀的材料包括但不限于不锈钢、镍基合金(例如,钴-镉或镍-钴-镉合金)、聚合物、或其组合。在具体的实施方式中,框架12由镍-钴-镉-钼合金制造,如mp35ntm(sps科技的商标名),其等同于unsr30035(astmf562-02包括)。mp35ntm/unsr30035包括按重量计35%镍、35%钴、20%镉、和10%钼。已经发现了,使用mp35n形成框架12比不锈钢提供优越的结构结果。具体地,当mp35n被用作框架材料时,需要较少的材料来在径向和抗粉碎力、抗疲劳性和抗腐蚀性中实现相同的或更好的性能。此外,因为需要较少的材料,可减小框架的卷曲轮廓,从而提供较小轮廓的人工瓣膜组合件,用于经皮递送至身体中的治疗位置。

框架12也包括从框架的流出端延伸的多个轴向延伸支柱22。支柱22用于在人工瓣膜10和在递送导管的远端处的相应部件之间形成可释放的连接,以便将人工瓣膜保持在递送导管的末端,直到将人工瓣膜适当地放置在体内其目标部署位置上。当框架是自膨胀的框架时,典型地使用支柱22,这是因为在部署期间没有将人工瓣膜保持在适当位置的球囊。如果框架是利用球囊或类似膨胀器件部署的可塑地膨胀的框架,则典型地不提供支柱22。在美国专利申请公开no.2010/0049313——其通过引用并入本文——中公开了经配置用于经由支柱22保持自膨胀的人工瓣膜的递送器件的细节。

参考图1,框架12包括流入端24、流出端26、下部部分28和上部部分30。最好如图2和3示出的,至少当框架在它的膨胀状态时,上部部分30在垂直于人工瓣膜的纵轴a的平面中具有三叶横截面形状。上部部分30限定模拟主动脉根的窦(sinuses)形状的三个有叶形状部分32。期望地,框架的下部部分28具有从流入端24朝向上部部分30逐渐变细的大体圆锥形的或喇叭口的形状,以便在被植入后帮助将人工瓣膜锚定到天然瓣环上。在其他实施方式中,框架的下部部分28可具有从流入端24至上部部分30的下端整体上圆柱形的形状。如果框架12由自膨胀的材料(如,镍钛诺)构造,那么当框架径向膨胀到它的膨胀状态时,框架可被形状设定为呈现图1-3中显示的形状。如果框架12由可塑地膨胀的材料构造,那么专门设计的递送装置可用于引起框架膨胀到图1-3中显示的形状。在图9-11中示出一个这样的递送器件并在下面描述。

瓣叶组合件14限定其中瓣叶40的临边被彼此固定的三个连合42。期望地,在最接近人工瓣膜的纵轴a的位置处(其相当于其中有叶部分32的相邻末端汇合的框架周围的位置),将连合42固定到框架12的上部部分30上。框架12在框架的这些位置处可设置有连合窗口框架部分18,以促进连合42附着至框架。可通过将每一个瓣叶袢扣(leaflettab)44(图6)与另一个瓣叶40的相邻袢扣44固定形成每一个连合42。经过框架部分18中的各自狭槽20插入每一对瓣叶袢扣44,并比如利用缝合线将瓣叶袢扣44固定到轴向撑杆34上,将连合42固定到框架上。在2011年10月5日提交的共同未决的美国申请no.13/253,689——其通过引用并入本文——中公开了关于用于将连合固定到窗口框架部分18上的多种技术的进一步细节。

图6显示用于相同大小的人工瓣膜的叠加于已知的瓣叶150上的瓣叶40。如示出的,在图示的实施方式中,瓣叶40包括在袢扣44的下边缘之间延伸的基本上v型的下边缘,和在袢扣44的上边缘之间延伸的微弯曲的或圆齿状的上边缘48。因为在相对于有叶部分32的径向最外节段(section),朝向纵向中心轴a径向向内隔开的位置处,将连合42固定到框架12上,瓣叶的宽度w(在沿着瓣叶的高度h的任何位置处相对侧边之间测量的)可能远小于瓣叶150的宽度。同样地,下边缘46的相对侧边可比瓣叶150具有更大的锥度(也就是,瓣叶的下部部分的宽度从顶部至底部以更大的比率减少)。因此,对于相同大小的人工瓣膜,瓣叶40比典型的传统瓣叶小得多,并且因此,在人工瓣膜内占据小得多的空间。结果,人工瓣膜10可被卷曲成更小的直径,用于递送。

人工心脏瓣膜的重要设计标准是防止或最小化瓣叶的可移动部分和框架的内表面之间的接触。在人工瓣膜的操作期间,瓣叶的可移动部分和金属框架之间的反复接触可引起过早的磨损和最终破坏瓣叶。为了将瓣叶组合件安装到具有圆柱形横截面的框架上,例如,已知的是,在从框架的内表面径向向内隔开的位置处,利用附加的金属撑杆或条或附加的材料层安装连合,其帮助防止瓣叶和框架之间的接触。不幸地,使用用于安装连合的附加部件或附加材料层占据框架的内部有价值空间,并且可限制人工瓣膜的整体卷曲轮廓。

为了解决这些担忧,成形框架12的上部部分30,使得在框架内没有使用附加的部件或材料层来使得连合与框架的内表面偏移的情况下,相对于框架的相邻部分,朝向人工瓣膜的中心轴a径向向内隔开框架的连合支撑部分。如上所述,在其中有叶部分32的末端汇合或收敛的位置处支撑瓣叶的连合42。因此,可在人工瓣膜的操作期间避免瓣叶40和有叶部分32的内表面之间的接触。最好如图2示出的,当在收缩压下打开瓣叶时,瓣叶的上部自由边48与有叶部分32向内隔开距离g。有利地,因为在人工瓣膜内部没有附加部件的情况下,框架的形状自身支撑连合42自连合支撑18之间的框架部分径向向内,可将人工瓣膜10卷曲成更小的直径用于递送。

同样,由于框架的形状,在人工瓣膜的操作期间,可径向向内和向外地稍微折曲框架的连合支撑18,以减少连合附着点上的应力(将瓣叶袢扣44固定到框架上的位置)。如上所述,瓣叶40可具有圆齿状的或弯曲的上边缘48。结果,降低心脏舒张期间的瓣叶的接合线(coaptationline),产生从连合向下(轴向)作用的力矢量,其减小连合附着点上的应力。

期望地,在天然瓣环(例如,大动脉环)内植入人工瓣膜10,使得框架的下部部分28担当锚以针对天然解剖结构保持人工瓣膜。将框架的上部部分30的大部分放置在天然瓣环上,并且具有足够的柔性,以便当不管天然瓣环的形状如何膨胀时,获得期望的大小和形状。例如,在椭圆形天然瓣环的情况中,框架的上部部分30可相对于下部部分28弯曲或折曲,以便膨胀到它的期望的功能大小和形状,从而确保人工瓣膜的适当操作。在相对小的天然瓣环的情况中,其可阻止下部部分28的完全部署,上部部分可完全地膨胀到它的期望的功能大小和形状,从而确保人工瓣膜的适当操作。

框架也对框架的上部部分的不充分(under)部署不太敏感。因为从有叶的部分径向向内隔开瓣叶的连合,所以施加至上部部分的径向力将首先在径向方向中压缩有叶的部分,然后连合开始向内移动。即,随着径向压缩有叶部分32预定的量,连合42之间的距离基本上保持恒定。在一个实施中,当人工瓣膜的流出端的直径减小大约2.5mm时,连合42之间的距离基本上保持恒定。因而,如果框架的上部部分由于人工瓣膜的放置和/或天然瓣环的形状而稍微不充分膨胀,连合42仍然可实现它们的功能大小,其促进最优的瓣叶性能和增加的瓣叶耐用性。同样地,因为框架的某些程度的不充分膨胀不会影响瓣叶功能,所以可在更大范围的环尺寸中将某一尺寸的人工瓣膜植入。因而,可减少用于治疗宽范围的患者的人工瓣膜尺寸的数目。

框架的有叶部分32内的裙状部分16和瓣叶40的外表面之间的空间产生类似于和模拟瓦耳萨耳瓦窦成形的人造窦。因而,当瓣叶关闭时,进入这些人造窦的回流沿着瓣叶的上表面形成血液的湍流。这种湍流帮助洗涤瓣叶和裙状部分,以最小化凝块形成。

也可将连合42固定到不具有任何窗口框架部分18的框架上。例如,图7显示根据另一个实施方式的人工瓣膜100。人工瓣膜100包括框架102,安装到框架102上的瓣膜结构14,和裙状部分16。类似于上述描述的框架12,框架102具有大体圆锥形或喇叭口的下部部分104和三叶形状上部部分106,并且以上述描述的方式行使功能。框架102包括限定通过框架的撑杆形成的多个开口或单元的网孔状结构。框架102具有基本上均匀的或一致的结构,因为所有开口的大小和形状是基本上相同的。可临近流出端将瓣叶袢扣44固定到框架102的撑杆上,和可利用缝合线将瓣叶40的下边缘46(在图7中没有示出)固定到裙状部分16上,如上述结合人工瓣膜10描述的。框架102也可包括用于连接到递送器件的支柱22(在图7中没有示出)。

裙状部分16的主要功能是帮助将瓣膜结构14固定到框架12上和通过阻挡血液在瓣叶的下边缘下面通过框架12的开口单元(cell)的流动,帮助在人工瓣膜和天然瓣环之间形成良好的密封。期望地,裙状部分16包括坚韧的耐磨材料如聚对苯二甲酸乙二酯(pet),但是也可使用多种其他合成的或天然的材料。期望地,裙状部分的厚度小于6mil,和期望地小于4mil,和甚至更期望地大约2mil。在具体的实施方式中,裙状部分16可具有可变的厚度,例如,裙状部分可能是在它的边缘比在它的中心厚。在一个实施中,裙状部分16可包括在它的边缘具有大约0.07mm的厚度和在它的中心大约0.06mm的厚度的pet裙状部分。较薄的裙状部分可提供更好的卷曲性能,同时仍然提供良好的血管周密封。

如图1示出的,可通过缝合线60将裙状部分16固定到框架12的内部。可通过沿着瓣叶的下边缘48放置的一个或更多个薄pet增强条(没有示出)将瓣膜结构14附着到裙状部分上,所述增强条能够确保牢固的缝合和保护瓣叶结构的心包组织免于撕裂。可将瓣膜结构14夹在裙状部分16和薄pet条之间。缝合线可用于沿着缝线62将pet条和瓣叶结构14固定到裙状部分16上,所述缝线62追踪瓣叶的底部边缘48的弯曲部分。

参考图8,与已知的织物裙状部分形成对照,期望地,由第一组纤维、或纱线或线78,和第二组纤维、或纱线或线80编织裙状部分16,两组都不垂直于裙状部分的上边缘82和下边缘84。在具体的实施方式中,以相对于上边缘和下边缘82、84大约45度的角延伸第一组纤维78和第二组纤维80。可以通过以相对于织物的上边缘和下边缘45度角编织纤维形成裙状部分16。可选地,可由垂直编织的纤维(其中纤维垂直于材料的边缘延伸)对角线地切割裙状部分,使得纤维以相对于裙状部分的切割的上边缘和下边缘45度角延伸。如图8中进一步显示的,期望地,裙状部分的相对短边缘86、88都不垂直于上边缘和下边缘82、84。例如,期望地,短边缘86、88以相对于上边缘和下边缘大约45度的角延伸,并且因此,与第一组纤维78对齐。因此,裙状部分的整体形状是长斜方形的形状。

裙状部分16的上边缘部分可形成具有限定波状形状的多个突出部分(projection)96,其中所述波状形状大体上遵循在连合部分18下面的撑杆行的形状。以这种方式,可利用缝合线60将裙状部分16的上边缘紧紧地固定到撑杆上。裙状部分16也可形成有狭缝98,以促进裙状部分附着到框架。设定狭缝98的尺寸,以便允许裙状部分的上边缘部分被部分地包裹在撑杆周围并减少附着过程期间裙状部分中的应力。例如,将裙状部分16放置在框架12的内部,并且可围绕撑杆的上表面包裹裙状部分的上边缘部分和利用缝合线60将其固定在适当的位置。以这样的方式在撑杆周围包裹裙状部分的上边缘部分提供更强的和更耐用的裙状部分到框架的附着。

由于纤维相对于上边缘和下边缘的定向,裙状部分在轴向方向中(也就是,在从上边缘82至下边缘84的方向中)可经历更大的伸长。因而,当使金属框架12卷曲时,裙状部分16可与框架一起在轴向方向中伸长,和因此提供更一致的和可预测的卷曲轮廓。图示的实施方式中的金属框架的每一个单元包含至少四个有角的撑杆,其朝向轴向方向旋转(也就是,有角的撑杆变得与框架的长度更加对齐)。每一个单元的有角的撑杆起用于在撑杆相同方向中旋转裙状部分的纤维的机构的作用,这允许裙状部分沿着撑杆的长度伸长。当使人工瓣膜卷曲时,这允许裙状部分的更大伸长和避免撑杆的非期望变形。

另外,可增加编织的纤维或纱线之间的间隔,以促进裙状部分在轴向方向中的伸长。例如,对于由20旦纱线形成的pet裙状部分16,纱线密度可能小于传统的pet裙状部分大约15%至大约30%。在某些实例中,裙状部分16的纱线间隔可以是从每英寸大约155纱线至每英寸大约180纱线,如每英寸大约160,然而,在传统的pet裙状部分中,纱线间隔可能是从每英寸大约217纱线至每英寸大约247英寸。斜边缘86、88促进在卷曲期间沿着框架的内部圆周纤维材料的一致和均匀分布,以便最小化织物的聚束,从而促进一致卷曲成最小的可能直径。另外地,以垂直的方式切割对角线缝合线可沿着切割边缘留下松弛的须边(fringe)。斜边缘86、88帮助最小化这一点出现。

本文公开的人工瓣膜也可包括固定到框架的外部的外裙状部分(没有显示)。外裙状部分帮助在人工瓣膜和天然瓣环之间形成良好的密封,以避免瓣膜周(perivalvular)泄露。在2011年10月5日提交的共同未决的申请美国申请no.13/253,689——其通过引用并入本文——中进一步描述了外裙状部分。

可通过已知的技术植入本文公开的人工瓣膜。例如,可以以逆行途径植入人工瓣膜,其中经由股动脉将在递送器械的远端上安装的卷曲状态的人工瓣膜引入身体,并且通过主动脉弓进行到心脏。也可经由经心尖途径植入人工瓣膜,其中在心脏的胸和尖端中经由手术切口将在递送器械的末端上安装的卷曲状态的人工瓣膜插入心脏。

图9和10显示天然主动脉瓣内用于植入本公开的人工心脏瓣膜的两个可能位置。图9显示其中人工瓣膜100的有叶部分108与主动脉根中的天然窦对准以配合天然解剖结构的第一位置。图10显示其中人工瓣膜100从图9示出的位置旋转60度的第二位置。在图10中显示的位置中,人工瓣膜的连合42通常与冠状动脉对齐以最大化冠状动脉的开口和人工瓣膜的外表面之间的空间。

图11-12显示根据一个实施方式的递送器械的球囊组合件200,其可用于将人工瓣膜膨胀到膨胀的形状,其中相对于在连合支撑之间延伸的框架的节段,连合支撑18径向向内弯曲。将球囊组合件200安装到递送器械的细长轴206的远端上。图示的实施方式中的球囊组合件200包括中心球囊202和围绕中心球囊的多个外围球囊204a、204b。可将所有球囊的近端可流动性地连接到通过轴206延伸的中心充胀腔,其允许充胀流体流入每一个球囊。

外围球囊包含第一组球囊204a和没有延伸球囊组合件的整个长度的第二组相对较短的球囊204b。将每一个较短的球囊204b放置在两个较长的球囊204a之间。为了图解的目的,在图11和12中显示裸框架12(没有瓣叶或裙状部分)。当使人工瓣膜10卷曲并放置在用于在患者中递送的球囊组合件上时,连合支撑18与较短的球囊204b的锥形末端对齐。因而,当使球囊充胀时,连合支撑18下面的框架12部分膨胀成圆柱形配置,而连合部分18没有完全地膨胀,并且因此相对于在连合部分之间延伸的撑杆径向向内倾斜或弯曲。

图13是根据另一个实施方式的人工心脏瓣膜300的侧正视图。图14是人工瓣膜300的俯视平面图。图示的人工瓣膜适于被植入天然大动脉环,尽管在其他实施方式,它可适于被植入心脏的其他天然瓣环。人工瓣膜300可具有三个主要的部件:支架或框架302、瓣膜结构304和内裙状部分306。人工瓣膜300经配置用于径向压缩成卷曲状态,用于递送到患者的体内,且在放置在体内的期望植入位置后,从卷曲状态径向膨胀成膨胀状态。

瓣膜结构304可包括三个瓣叶308,共同地形成瓣叶结构,可安排瓣叶结构以便以三尖瓣安排塌缩,最好如图14中显示的。瓣叶308可由心包组织(例如,牛科心包组织)、生物相容的合成材料或本领域已知的和在美国专利no.6,730,118中——其通过引用并入本文——描述的多种其他合适的天然或合成材料形成。

如图13示出的,框架302包括在节312彼此连接的多个纵向延伸的、正弦形状或波状的撑杆310,以便限定在沿着框架的纵向流动轴成行安排的多个开口单元。框架302包括流入端部分314,其将直径从框架的流入端处的直径d1增加至与框架的流入端隔开距离处的相对较大的直径d2。框架的中间部分316限定用于框架的“着陆区(landingzone)”,因为当部署人工瓣膜时,将中间部分放置在天然瓣环内。最初,中间部分的直径从直径d2减少至中间部分的大约中段318处的相对较小的直径d3,和然后将直径增加至在近框架的流出端处的直径d4。中间部分的中段318可以是在直径从直径d2减少至直径d3的节段和直径从d3增加至直径d4的节段之间,沿着框架的长度具有相对不变的直径d3的圆柱形形状。框架的流出部分320的直径从中间部分的流出端处的直径d4减少至框架的流出端处的直径d5。在具体的实施方式中,d2等于d4,d1等于d3,和d5小于d1、d2、d3和d4。

图15显示平展的或展开的配置的框架302。最好如图15中显示的,框架的流出端部分320包括占据在多个框架保持臂或支柱324之间的多个圆周隔开的纵向延伸的连合附着部分或支柱322。保持臂324用于在人工瓣膜300和递送导管的远端处的相应部件之间形成可释放的连接,以便在递送导管的末端处保持人工瓣膜,直到将人工瓣膜适当地放置在体内其目标部署位置处。典型地,当框架是自膨胀的框架时,使用保持臂324,这是因为在部署期间没有球囊将人工瓣膜保持在适当的位置。如果框架是利用球囊或类似的膨胀器件部署的可塑地膨胀的框架,典型地不提供保持臂。在美国专利申请公开no.2010/0049313中——其通过引用并入本文——公开经配置用于经由保持臂324保持自膨胀的人工瓣膜的递送器件的细节。在图示的实施方式中,框架302具有六个这样的保持壁324,尽管可使用更多或更少数目的保持臂。同样,在图示的实施方式中,框架302具有与通过瓣叶308形成的三个连合相对应的三个连合附着部分322。如果存在更多或更少数目的通过瓣叶308形成的连合,框架可具有更多或更少数目的连合附着部分322。

如图13显示的,在图示的配置中,保持臂324大体平行于人工瓣膜的流动轴a延伸,或以关于流动轴a的非常小的角(例如,大约1-2度)向内延伸,而连合附着部分322以关于流动轴a更尖锐的多的角向内延伸。在具体的实施方式中,例如,连合附着部分322以关于流动轴a大约10度至大约60度的角和更具体地以大约15度至大约45度的角向内延伸上。连合附着部分322的上部自由端限定人工瓣膜的流出直径d5。保持臂324限定直径d6,其可比流出直径d5大。

在图13中描绘的框架302的形状具有几个优势。典型地,将人工瓣膜300放置在递送器械的鞘内,使得流入端部分314临近鞘的远端开口。锥形的流入端部分314可消除在递送器械的远端处单独头锥的需要,典型地,其在人工瓣膜通过患者脉管系统递送期间用于防护框架的末端免于接触周围的组织。典型地,在逆行递送到天然主动脉瓣期间首先从鞘部署的锥形流入端部分314可减少对天然组织如主动脉环和天然瓣叶的创伤的风险,这是因为从鞘部署人工瓣膜。锥形流入端部分也减少递送系统阻塞的风险。

当将人工瓣膜植入天然大动脉环时,框架的锥形流出部分320减少阻塞冠状动脉口的风险。当植入时,流出部分从主动脉根向内隔开,这允许血液流入冠状动脉。此外,锥形流出部分可减少钙化的天然瓣叶将被推动抵靠和阻挡冠状动脉口的风险。同样,当部署、放置、或取回人工瓣膜时和在植入的人工瓣膜的正常操作期间,锥形流出部分减少与窦管交界(sinotubularjunction)的相互作用的风险。

通过提供用于放置在天然瓣环内的相对大的中段318,中间段316的形状促进人工瓣膜的放置。中间段316(在d2和d4上)的放大的流入和流出段326、326分别地帮助确定关于天然瓣环人工瓣膜纵向的中心。放大的流入和流出段326、328也通过啮合天然瓣膜的下部部分和上部部分增强人工瓣膜的锚定。因而,流入段326可啮合天然主动脉瓣的心室侧和抑制朝向主动脉的植入物迁移,而流出段328可啮合天然主动脉瓣的主动脉侧和抑制朝向左心室的植入物迁移。以此方式,中间部分316可为人工瓣膜甚至为非钙化的主动脉根提供稳定的固定。此外,放大的流入段326和临近组织之间和放大的流出段328和临近组织之间的接触可增强裙状部分306和天然瓣环之间的瓣膜周密封。

框架设计的另一个优势是促进人工瓣膜的再入鞘和/或重新定位。如上所述,当在将人工瓣膜植入体内时,可将框架的保持臂324固定到在递送器械远端上的连接器件上。在理想的环境下,通过在部署位置上或附近,从递送器械的鞘部署人工瓣膜,调整人工瓣膜的位置(如果必要)和释放保持臂324和递送器械之间的连接,植入人工瓣膜。在一些情况下,可必要的或期望的,在部署之后,使人工瓣膜完全地或部分地再入鞘(将人工瓣膜向后缩回到鞘中),以便重新定位人工瓣膜或将其从体内完全地移出。因为连合附着部分322相对于保持臂324径向向内延伸,所以可将连合附着部分322的远端保持在压缩状态,其具有比递送器械的鞘的内径小的压缩直径。因而,即使从递送鞘完全地部署人工瓣膜,也可将连合附着部分322向后缩回到鞘内,然后是重新定位人工瓣膜或将其从身体取出的人工瓣膜的剩余部分。

图16是为了说明的目的,去除了裙状部分306的人工瓣膜300的俯视平面图。图16也显示在收缩压下处于打开位置的瓣叶308,其允许血液通过人工瓣膜流动。如可看到的,悬臂式和有角的连合附着部分322支撑瓣膜结构的各自连合330,朝向中心流动轴a向内且远离框架302的临近部分以便避免瓣叶的可移动部分和框架之间的接触。有角的连合附着部分322也减少连合之间的距离,能够得到更有效的瓣叶设计,如下面进一步描述的。如上所述,可取决于具体的应用改变连合附着部分322的角。图17显示其中连合附着部分322以相对于保持臂324大约60度角向内延伸的实施方式。图18显示其中连合附着部分322以相对于保持臂324大约15度角向内延伸的实施方式。

图19显示瓣膜结构304的瓣叶308。在图示的实施方式中的瓣叶308包括在袢扣344的下边缘之间延伸的基本上v型或圆齿状的下边缘332和在袢扣344的上边缘之间延伸的基本上v型或圆齿状的上边缘336。通过减少连合330之间的距离,可最小化瓣叶308的宽度w(在沿着瓣叶的高度h的任何位置处相对边缘之间测量的)和上边缘336可具有相对显著的凹度,与用于相同大小的人工瓣膜的已知瓣叶150(图6)相比,其减少瓣叶的整体大小。更小、更有效的瓣叶设计占据卷曲的人工瓣膜内的更少得多的空间,并且因此,允许人工瓣膜卷曲成更小的直径,用于递送。

因为使连合附着部分322相对于框架伸出悬臂(cantilever),它们可在人工瓣膜的操作期间轻微地偏斜,其改进瓣膜操作和耐用性。具体地,当瓣叶在舒张压下关闭时,连合附着部分322可向内偏斜,以便释放瓣叶上的应力和应变(特别是瓣叶袢扣344的连合附着点),其改进瓣叶的长期的耐用性。同样,当瓣叶在收缩压下打开时(如图16中描绘的),将瓣叶的上边缘336保持在与框架的内表面隔开的位置处以便防止磨损和增加瓣叶耐用性。当瓣叶在打开位置时,在框架的流出部分320内提供放大的直径d4(图13)也帮助在框架的内表面和瓣叶之间形成间隙。

悬臂式连合附着部分322也可帮助避免瓣叶的“针轮式旋转(pinwheeling)”。“针轮式旋转”是通过当瓣叶在舒张压下关闭时瓣叶的上边缘的扭转表征的现象。扭转运动导致瓣叶上的增加的弯曲和应力,其可不利地影响瓣叶的耐用性。柔性的连合附着部分322可缓冲瓣叶上的一些闭合力,和允许瓣叶在舒张压下更温和地关闭,因此阻止或至少最小化针轮式旋转影响。

瓣叶的凹入上边缘336和悬臂式连合附着部分322也可帮助避免瓣叶的“反向弯曲”。瓣叶的“反向弯曲”指的是当瓣叶在收缩压下打开时,可出现的不规则的折叠或弯曲。通过瓣叶的这种弯曲或折叠在瓣叶组织上产生的应力可导致瓣叶的疲劳断裂。当瓣叶308在收缩压下打开时,连合附着部分322远离流动轴a向外稍微偏斜,这沿着瓣叶的上边缘336扎紧(takeup)或减少松弛。这抑制瓣叶内不规则的折叠或弯曲的形成,允许瓣叶模拟打开位置的天然大动脉瓣叶的形状。瓣叶的凹入上边缘也减少连合之间的松弛的量,以进一步确保,在收缩压下打开时,在没有不规则的折叠或弯曲的情况下,瓣叶可实现更自然的形状。

图15a是连合附着部分322的放大图。连合附着部分322包括至少两个悬臂式撑杆,其经配置用于对一对瓣叶袢扣344提供夹紧或固定力,以帮助将瓣叶袢扣固定到框架。在图示的配置中,每一个附着部分322包括从共同的基础(base)342延伸的两个悬臂式内撑杆338和两个悬臂式外撑杆340。将两个内撑杆338彼此间隔开,以限定其间的瓣叶接收间隙。类似地,将每一个外撑杆340与相应的相邻内撑杆338间隔开,以限定其间的各自的瓣叶接收间隙。内和外撑杆338、340用于固定瓣叶的连合330。每一个外撑杆340可形成有小的凹槽或凹口344,其可用于保持在围绕附着部分322延伸的缝合线,如下面进一步描述的。

现在参考图20-25,现在将描述用于将连合330固定到连合附着部分322上的方法。每一个连合附着部分322支撑内撑杆和外撑杆338、340上两个瓣叶308的一对相邻的袢扣部分334。最好如图23示出的,一对袢扣部分334a和334b穿过内撑杆338之间的间隙延伸。在连合附着部分的径向外侧上,袢扣部分334彼此远离折叠,形成第一折叠346a和第二折叠346b。第一折叠346a穿过内撑杆338和相邻的外撑杆340之间的各自间隙延伸。第二折叠346b穿过内撑杆338和相邻的外撑杆340之间的各自间隙延伸。然后,可再次折叠袢扣部分334a,以形成紧靠折叠346a的外侧的折叠348a。同样地,可再次折叠袢扣部分334b,以形成紧靠折叠346b的外侧的折叠348b。可通过沿着折叠的长度延伸的缝合线350a将折叠348a固定到折叠346a上。同样地,可通过沿着折叠的长度延伸的缝合线350b将折叠348b固定到折叠346b上。

可利用增强部分352增强每一对袢扣部分334,可从一片坚韧的柔性材料如pet切割或以其他方式形成所述增强部分352。增强部分352增强瓣叶袢扣部分至框架的连接和保护框架外侧上的瓣叶部分免于接触递送鞘。增强部分352可以为安装到连合附着部分322上的三个单独的材料件。可选地,增强部分352可以是裙状部分306的一体化上部延伸部分(也就是,裙状部分306和增强部分352可能是单个材料件)。

图20显示在将增强部分352放置在并且固定到附着部分322上之前的连合330。图21显示放置在并且固定到附着部分322之前,未折叠配置的增强部分352。可围绕一对袢扣部分334部分地折叠增强部分352,以形成沿着连合附着部分322的径向外表面延伸的后面部分354(图24-25)。从后面部分354的纵向边缘延伸的是侧活瓣(flap)356a,356b。最好如图23示出的,侧活瓣356a在瓣叶折叠346a和相邻的外撑杆340之间延伸和侧活瓣356b在瓣叶折叠346b和相邻的外撑杆340之间延伸。最好如图22示出的,顶部活瓣358从后面部分354的上边缘延伸并覆盖连合附着部分322的顶部。前部活瓣360从顶部活瓣的前边缘向下延伸并覆盖瓣叶上的连合附着部分322的部分。两个上部侧活瓣362从顶部活瓣358的上侧边缘向下延伸并覆盖瓣叶上的连合附着部分322的相对侧。最好如图24显示的,每一个侧活瓣362可以是包括内折叠和外折叠的双层。

可通过在围绕撑杆338、340的上末端部分拉紧的缝合线环364(图23),将瓣叶袢扣部分334和增强部分352紧紧地固定到内撑杆和外撑杆338、340上。因为撑杆338、340自身是悬臂式的,并且在它们的上端未彼此附着在一起,拉紧缝合线环364朝向连合附着部分322的纵向中心线向内拉动撑杆338、340(与内撑杆338等距的线),因此夹紧瓣叶的折叠和撑杆338、340之间的增强部分。缝合线环364可位于外撑杆340的凹口344(图15a)内,其防止环364沿着撑杆的长度滑行。可围绕连合附着部分322的下游末端和增强部分352的下游末端部分拉紧另一个缝合线环366(图24和25)。

可沿着缝线368将每一个瓣叶308的下边缘332固定到裙状部分306上(图13)。期望地,瓣叶的下边缘332的最低节段(由缝线368指示)与框架302的流入边缘对齐。以这种方式,瓣叶308从框架的入口端至出口端延伸框架的整个长度或基本上整个长度。可利用缝合线(没有显示)将裙状部分306直接地固定到框架302上,以相同的方式,利用缝合线60将裙状部分16(图1)固定到框架12上。

将瓣叶连合缝合到框架上的工艺是耗时并且冗长的工艺。连合附着部分的撑杆338、340是有利的,因为它们为瓣叶袢扣部分334提供强健的附着,同时与已知的技术相比,显著地最小化将瓣叶连合固定到框架需要的缝合程度。在具体的实施方式中,例如,只有两个缝合线环364、366用于将增强部分352固定到连合附着部分322上,和固定到一对瓣叶袢扣部分334,除了缝合线350a、350b之外,将瓣叶的多个折叠彼此固定在一起或固定到增强部分352的折叠上不需要进一步的缝纫。

连合附着部分提供的另一个重要的优势是它们最小化放置在框架外侧的瓣叶材料的量。这减少比如当从鞘部署人工瓣膜时人工瓣膜的外侧和递送鞘之间的摩擦。此外,如果在人工瓣膜的最初部署之后,将它向后缩回到鞘内,则人工瓣膜可更容易地向后滑入鞘,同时最小化对框架外侧上的瓣叶材料损伤的风险,所述风险可由于与鞘的远端接触而发生。

图26显示可用于人工瓣膜300的框架400的另一个实施方式。框架400类似于框架302(图15),除了桥接中间部分316和流出部分320的单元数之外。参考图15,除了由保持臂324形成的最上单元行之外,框架的每一单元行370包括十二个单元372。参考图26,桥接中间部分316和流出部分320的最上单元行402包括六个单元404,其减少框架的那个部分中的金属的量。最上单元行402限制瓣叶的最宽部分(除了袢扣部分334之外),和因此当使人工瓣膜径向卷曲时,对应于大部分瓣叶占据的体积。因此,从框架并具体地从限制瓣叶最宽部分的框架部分移出金属允许人工瓣膜更小的卷曲直径。

图27图示人工瓣膜500的实施方式,其在美国专利no.7,993,394中被详细地描述,该专利通过引用并入本文。人造瓣膜500可具有三个主要的部件:支架或框架502、瓣膜结构504和内裙状部分506。人工瓣膜500经配置用于径向压缩成用于递送到患者体内的卷曲状态,和在被放置在体内的期望植入位置后,从卷曲状态径向膨胀到膨胀状态。瓣膜结构504可包括三个瓣叶508,共同地形成瓣叶结构,可安排所述瓣叶结构以便以三尖瓣安排塌缩,如所示出的。

图28是显示两个相邻瓣叶508的连合510与框架连接的人工瓣膜500的截面的放大图。如示出的,通过将一对瓣叶袢扣部分512彼此固定在一起和利用缝合线520固定到框架502的连合附着支柱514上形成连合510。可沿着缝线516将瓣叶508的下边缘缝合到裙状部分506上,和可利用缝合线518将裙状部分506固定到框架502上。

图29显示根据另一个实施方式的支架或框架600,其可用于图27和28的人工瓣膜500中。在具体的实施方式中,框架600是可塑地膨胀的框架(也就是,利用球囊或等效结构膨胀),和经配置在被部署在患者体内之后,经历部署后成形。具体地,在图示的配置中,框架600经配置用于利用传统的圆柱形球囊部署成大体上圆柱形配置,和在放气和移出球囊之后,连合附着部分可向内弯曲,以支撑更靠近人工瓣膜中心流动轴的位置处的瓣叶的连合。在具体的实施方式中,人工瓣膜可包括框架600和包括人工瓣膜300的瓣叶308的瓣叶结构304。

图29显示在通过球囊导管的可充胀球囊膨胀之后,径向膨胀状态的框架600。该球囊可以是当充胀时呈现大体上圆柱形形状的传统球囊。因此,如图29中所描绘的,当通过球囊膨胀时,框架600可成形大体上圆柱形形状。在图示的配置中,框架600包括多个连合附着支柱或撑杆602(在图示的实施方式中为三个)、在框架的流入端处的第一行撑杆604、和在框架的流出端处的第二行撑杆606和第三行撑杆608。多个纵向撑杆610在第一行撑杆604的顶端和临近由撑杆606和608形成的相邻单元的节612之间延伸。

框架600经配置用于允许连合附着支柱602的上部部分614当它们首先在舒张压下经受瓣叶的闭合力时向内倾斜或位移和然后保持在倾斜位置。这样,可通过减小或变薄撑杆606a、608a的横截面轮廓,如通过减小撑杆606a、608a的厚度和/或宽度,和通过在撑杆606a、608a中提供一个或更多曲线或弯曲,使直接地连接至连合附着支柱602上的撑杆606a和608a相对于其他撑杆削弱。撑杆606a、608a中的曲线或弯曲在那些撑杆中提供松弛,以允许连合附着撑杆602相对于纵向撑杆610向内弯曲。

当通过充胀球囊,首先在天然主动脉瓣膜(或另一个天然心脏瓣膜)内部署人工瓣膜时,框架600膨胀到图29示出的膨胀的形状。在球囊的放气和移出后,舒张压引起瓣叶(例如,瓣叶508)关闭,和瓣叶的闭合力拉动连合附着支柱602的上部部分614向内弯曲或倾斜到图30和31示出的位置。随着向内拉动支柱602,使撑杆606a、608a变直和限制支柱602的进一步弯曲。在它们的变直或几乎变直的构造中,撑杆606a、608a显示足够的硬度,以便在收缩压下将支柱602保持在它们的倾斜位置。因而,在最初人工瓣膜关闭之后,支柱602保持它们的倾斜位置,其支撑更靠近人工瓣膜的纵向流动轴的连合(例如,连合510)。因此,在没有专门地成形的球囊组合件的情况下,包括框架600的可塑地膨胀的人工瓣膜可实现类似于图11和12示出的整体形状。当瓣叶在打开位置时,向内倾斜的支柱602支撑瓣叶的可移动部分远离框架600的内表面,因此保护瓣叶免受由瓣叶和框架之间的接触引起的摩擦,如先前讨论的。

如果期望的,直接地连接至支柱602的第一行撑杆604a可具有类似于支柱606a、608a的构造。使连接至柱602的下端的撑杆604a削弱可通过允许支柱602的下端稍微向外偏斜促进支柱602的位移。另外,可在一个或更多个选定的位置处使支柱602削弱,以促进支柱的位移。如图32和33示出的,例如,每一个支柱602可在刚好在第一行撑杆604上的位置处具有在支柱的内表面中形成的狭缝或凹陷部分616。凹陷部分616使支柱602削弱,和其起支柱的枢轴的作用,当经受瓣叶的最初闭合力时,允许支柱在凹陷部分616上更容易弯曲。除了或代替凹陷部分616,还可通过在选定的位置上减小支柱的宽度和/或厚度使支柱602削弱,以促进支柱的位移。

在图34中显示框架600的修改。在框架600的这个实施方式中,系链或金属丝618可用于限制支柱的上端部分的向内位移的范围。例如,可将每一个支柱602连接至一对金属丝618上,每一个金属丝具有固定到撑杆的第三行的顶端620的一个末端和固定到支柱602的上端部分614上的另一个末端。当在框架最初膨胀时和在经受瓣叶的闭合力之前,在金属丝618中存在足够的松弛,以允许支柱602向内弯曲。选择金属丝618的长度以允许当经受瓣叶的最初闭合力时支柱602向内弯曲或倾斜有限量。在瓣叶的最初闭合后,将金属丝618拉紧和限制可通过瓣叶的力向内拉支柱602的上端部分的程度。

考虑到可应用本公开的发明的原理的很多可能的实施方式,应该认识到图示的实施方式仅仅是本发明的优选的实例和不应该被看作限制本发明的范畴。相反地,通过下面的权利要求限制本发明的范畴。因此,我们主张我们的发明都在这些权利要求的范畴和精神内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1