一种用于陶瓷胶态成型的覆膜砂模具的制备方法与流程

文档序号:11221231阅读:859来源:国知局

本发明属于无机非金属陶瓷制备领域,更具体地,涉及一种用于陶瓷胶态成型的覆膜砂模具的制备方法。



背景技术:

胶态成型工艺在制备复杂形状的先进陶瓷部件方面具有巨大优势,该工艺不但能够改善陶瓷部件的微观结构、减少缺陷,而且还能够有效增加陶瓷部件性能的可靠性、降低制备成本,因此受到世界各国研究人员的广泛关注。其中,新的胶态成型方法如凝胶注模成型(gel-casting)和直接凝固注模成型(directcoagulationcasting,dcc),由于在制备大尺寸、复杂形状的高性能陶瓷材料方面具有明显的优势,被相继开发并得到广泛重视。

凝胶注模成型工艺是由美国橡树岭国家实验室janney和omatete等人于1991年发明的一种新型的陶瓷近净尺寸成型工艺。该成型工艺利用有机单体的交联作用形成交织网状的高分子使陶瓷浆料固化成型。凝胶注模成型具有有机物含量少,容易排除,素坯强度较好等优点,但其成型陶瓷素坯在脱模和干燥过程中容易开裂,所采用的有机单体具有神经毒性,从一定程度上限制了其进一步应用。

直接凝固注模成型工艺是瑞士联邦理工大学的gauckler教授课题组于1994年提出的一种新型的近净尺寸陶瓷原位成型技术,其利用生物酶或底物的催化反应来调整悬浮体的ph值至等电点或增加离子强度,实现陶瓷浆料的液固转变。直接凝固注模成型具有有机添加剂少、无神经毒性、坯体不需脱脂、坯体密度均匀等优点,但该方法制备的陶瓷湿坯强度很低(~10kpa),在脱模过程中极易产生裂纹,且固化时间较长。为此,清华大学的许杰等人结合dlvo理论和schulze-hardy电价规则提出了一种改进的直接凝固注模成型方法,即高价反离子直接凝固注模成型工艺(directcoagulationcastingviahighvalencecounterions,dcc-hvci),通过高价反离子的可控释放实现陶瓷浆料的原位固化。该方法成型的陶瓷坯体具有强度较高(1~3mpa)和固化时间短等优点,但在脱模过程中仍易产生裂纹,难以成型大型厚截面的陶瓷部件。



技术实现要素:

针对现有技术的以上缺陷或改进需求,本发明提供了一种用于陶瓷胶态成型的覆膜砂模具的制备方法,其通过三维打印技术快速制备形状复杂的覆膜砂模具初坯,采用硅溶胶浸渗法使覆膜砂模具初坯表面覆上一层均匀致密的硅溶胶涂膜,从而获得可浇注大型厚截面复杂形状陶瓷部件的覆膜砂模具,有效避免陶瓷胶态成型工艺中低强度陶瓷素坯由于脱模易产生裂纹和开裂的现象,具有操作简单,环境友好,陶瓷素坯无需脱模,适用于不同陶瓷体系的胶态成型等优点。

为实现上述目的,本发明提出了一种用于陶瓷胶态成型的覆膜砂模具的制备方法,其包括如下步骤:

(1)构建覆膜砂模具的三维模型,并进行切片处理,根据切片处理后的三维模型数据进行增材制造以制备获得覆膜砂模具初坯;

(2)将步骤(1)中制备的所述覆膜砂模具初坯埋于玻璃微珠中,并将覆膜砂模具初坯与玻璃微珠一起置于烧结炉中进行烧结热处理,以提高覆膜砂模具初坯的致密度和强度;

(3)将步骤(2)中烧结热处理后的覆膜砂模具初坯置于硅溶胶溶液中浸渗,取出后置于烘箱中干燥,得到陶瓷胶态成型用的覆膜砂模具;

(4)将陶瓷浆料注入到步骤(3)中的覆膜砂模具中,然后置于烘箱中使浆料固化并干燥,得到陶瓷干坯;

(5)将步骤(4)中未经脱模的陶瓷干坯与覆膜砂模具一起置于烧结炉中进行烧结处理,在烧结过程中覆膜砂模具发生溃散从而实现陶瓷干坯的脱模,最终获得陶瓷烧结体。

作为进一步优选的,所述覆膜砂模具优选为易溃散类的覆膜砂制成,优选为氧化铝、氧化硅、氧化锆中的一种或多种。

作为进一步优选的,所述覆膜砂的粒度优选为300~70目,覆膜砂中酚醛树脂含量为1.5wt%~3.5wt%。

作为进一步优选的,步骤(2)中所述玻璃微珠的粒径优选为10μm~250μm。

作为进一步优选的,步骤(2)中所述烧结热处理温度优选为200℃~400℃,保温时间优选为1h~3h。

作为进一步优选的,步骤(3)中所述硅溶胶浸渗时间优选为1h~4h,所述干燥处理是将浸渗处理后的覆膜砂模具在50℃~80℃下干燥4h~24h。

作为进一步优选的,步骤(4)中所述的陶瓷浆料为氧化铝、二氧化硅、氧化锆、高岭土、氮化硅、碳化硅和氮化硼中的一种或多种;优选的,浆料固化和干燥温度为40℃~90℃,保温时间为12h~24h。

作为进一步优选的,步骤(5)中所述的烧结处理具体是将未经脱模的陶瓷干坯先升温至600℃~1200℃进行保温使覆膜砂模具溃散,保温时间优选为2h~6h;再升温至1350℃~1800℃进行保温得到陶瓷烧结体,保温时间优选为2h~5h;优选的,所述升温的升温速率为每分钟1℃~10℃。

总体而言,通过本发明所构思的以上技术方案与现有技术相比,主要具备以下的技术优点:

1.本发明提供的用于陶瓷胶态成型的覆膜砂模具的制备方法,其采用三维打印技术增材制造覆膜砂模具初坯,可实现复杂形状模具的快速开发和制造。

2.本发明采用硅溶胶浸渗法使覆膜砂模具初坯表面覆上均匀致密的硅溶胶涂膜层,获得可直接浇注陶瓷浆料的覆膜砂模具,制造成本低,操作简单。

3.本发明利用覆膜砂模具高温易溃散的特点,在陶瓷高温烧结时实现脱模,故陶瓷浆料固化后无需脱模,可有效避免裂纹和开裂的产生,有利于陶瓷胶态成型技术的工业化应用。

4.本发明制备的覆膜砂模具与传统的高分子或金属模具相比,高温烧结时产生的废气较少,环境友好,且覆膜砂砂粒可回收再利用,制备的覆膜砂模具可适用于不同陶瓷体系的胶态成型,普适性较强。

附图说明

图1是本发明用于陶瓷胶态成型的覆膜砂模具的制备方法的流程图。

具体实施方式

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。

本发明提供了一种用于陶瓷胶态成型的覆膜砂模具的制备方法,具体为先通过三维打印、烧结热处理和硅溶胶浸渗等方法快速制备复杂形状覆膜砂模具,然后进行陶瓷胶态成型的方法,其硅溶胶在失去水分时单体硅酸逐渐聚合成聚硅酸,随着水分的蒸发,胶体分子量增大,最终形成网状结构的涂膜,如下所示:

由于覆膜砂高温下易溃散,覆膜砂模具在陶瓷的高温烧结过程中可自动实现脱模,故陶瓷浆料在固化后无需脱模,有效地避免了胶态成型工艺中陶瓷素坯由于强度较低而易引起的裂纹和开裂等现象,可实现大尺寸、厚截面、复杂形状陶瓷部件的制备,本发明采用的方法具有模具制造成本低,操作简单,环境友好,可回收再利用,陶瓷素坯无需脱模,适用于不同陶瓷体系的胶态成型等优点。

本发明主要包括如下步骤:

(1)构建覆膜砂模具的三维模型,并进行切片处理,根据切片处理后的三维模型数据进行增材制造以制备获得覆膜砂模具初坯,具体为根据需要制备的覆膜砂模具结构构建cad模型,将cad模型切片处理为stl格式后导入到三维打印设备的控制系统中,三维打印设备依据三维模型对覆膜砂进行增材制造。

上述覆膜砂优选为易溃散类覆膜砂,其沙粒主要成分优选为氧化铝,氧化硅和氧化锆中的一种或多种,其在高温烧结时易发生溃散以保证陶瓷部件的自动脱模。具体的,覆膜砂粒度优选为300目~70目,覆膜砂中酚醛树脂含量优选为1.5wt%~3.5wt%,在该工艺参数下采用三维打印技术增材制造的覆膜砂致密度和强度均较高。

(2)将步骤(1)中制备的覆膜砂模具初坯埋于玻璃微珠中,并将覆膜砂模具初坯与玻璃微珠一起置于烧结炉中进行烧结热处理,以提高覆膜砂模具初坯的致密度和强度。

其中,玻璃微珠的粒径优选为10μm~250μm;烧结热处理温度优选为200℃~400℃,保温时间优选为1h~3h,在该热处理工艺下可大幅度提高覆膜砂模具初坯的致密度,有效减小其孔隙率。

(3)将步骤(2)中烧结热处理后的覆膜砂模具初坯置于硅溶胶溶液中浸渗,取出后置于烘箱中干燥,得到陶瓷胶态成型用的覆膜砂模具。

其中,硅溶胶浸渗时间优选为1h~4h,所述的干燥处理是将上述浸渗处理的覆膜砂模具在50℃~80℃下干燥4h~24h。覆膜砂模具干燥时间过短会导致其表面的硅溶胶涂膜层厚较小,在浇注陶瓷浆料时易发生脱落;而干燥时间过长则会导致硅溶胶涂膜过分失水易产生开裂和裂纹。因此,发明人经研究发现,采用上述干燥处理工艺即50℃~80℃下干燥4h~24h进行干燥处理时,在保证硅溶胶涂膜不产生大量裂纹的条件下,能使得涂膜层厚度最大。

(4)将陶瓷浆料注入到步骤(3)中的覆膜砂模具中,然后置于烘箱中使浆料固化并干燥,得到陶瓷干坯。

其中,所述的陶瓷浆料为氧化铝、二氧化硅、氧化锆、高岭土、氮化硅、碳化硅和氮化硼中的一种或多种;优选的,浆料固化和干燥温度为40℃~90℃,保温时间为12h~24h。

(5)将步骤(4)中未经脱模的陶瓷干坯与覆膜砂模具一起置于烧结炉中进行烧结处理,在烧结过程中覆膜砂模具发生溃散从而实现陶瓷干坯的脱模,最终获得陶瓷烧结体。

具体的,上述烧结处理是先升温至600℃~1200℃进行保温2h~6h,使覆膜砂模具发生高温溃散从而实现陶瓷部件的自动脱模;然后继续升温至1350℃~1800℃进行保温2h~5h,得到最终的陶瓷烧结体;进一步的,所述升温的升温速率为每分钟1℃~10℃。

以下为本发明的具体实施例。

实施例1:

采用300目、酚醛树脂含量为1.5wt%的氧化铝覆膜砂制备用于陶瓷直接凝固注模成型的模具,成型氧化锆陶瓷部件。

将cad模型切片处理后导入到三维打印设备的控制系统中,依据三维模型对氧化铝覆膜砂进行增材制造,得到氧化铝覆膜砂模具初坯;接着将初坯埋于粒径为10μm的玻璃微珠中,置于烧结炉中200℃保温3h;然后将覆膜砂模具坯体置于硅溶胶溶液中浸渗1h,取出后在80℃下保温4h,得到直接凝固注模成型氧化锆陶瓷用的氧化铝覆膜砂模具;然后,往模具中浇注预先制备好的氧化锆陶瓷悬浮液,置于90℃下保温12h;最后置于高温烧结炉中,以3℃/min升温到800℃保温4h,再以10℃/min升温至1600℃保温2h,最终得到氧化锆陶瓷部件。

实施例2:

采用70目、酚醛树脂含量为3.5wt%的二氧化硅覆膜砂制备用于陶瓷凝胶注模成型的模具,成型氧化铝陶瓷部件。

将cad模型切片处理后导入到三维打印设备的控制系统中,依据三维模型对二氧化硅覆膜砂进行增材制造,得到二氧化硅覆膜砂模具初坯;接着将初坯埋于粒径为150μm的玻璃微珠中,置于烧结炉中400℃保温1h;然后将覆膜砂模具坯体置于硅溶胶溶液中浸渗4h,取出后在50℃下保温24h,得到凝胶注模成型氧化铝陶瓷用的二氧化硅覆膜砂模具;然后,往模具中浇注预先制备好的氧化铝陶瓷悬浮液,置于40℃下保温24h;最后置于高温烧结炉中,以1℃/min升温到600℃保温6h,再以5℃/min升温至1350℃保温5h,最终得到氧化铝陶瓷部件。

实施例3:

采用140目、酚醛树脂含量为2.5wt%的二氧化硅覆膜砂制备用于陶瓷高价反离子直接凝固注模成型的模具,成型高岭土陶瓷部件。

将cad模型切片处理后导入到三维打印设备的控制系统中,依据三维模型对二氧化硅覆膜砂进行增材制造,得到二氧化硅覆膜砂模具初坯;接着将初坯埋于粒径为200μm的玻璃微珠中,置于烧结炉中300℃保温2h;然后将覆膜砂模具坯体置于硅溶胶溶液中浸渗2h,取出后在70℃下保温12h,得到高价反离子直接凝固注模成型高岭土陶瓷用的二氧化硅覆膜砂模具;然后,往模具中浇注预先制备好的高岭土陶瓷悬浮液,置于70℃下保温18h;最后置于高温烧结炉中,以3℃/min升温到1200℃保温2h,再以8℃/min升温至1550℃保温3h,最终得到高岭土陶瓷部件。

实施例4:

采用250目、酚醛树脂含量为3.0wt%的氧化锆覆膜砂制备用于陶瓷直接凝固注模成型的模具,成型氮化硅陶瓷部件。

将cad模型切片处理后导入到三维打印设备的控制系统中,依据三维模型对氧化锆覆膜砂进行增材制造,得到氧化锆覆膜砂模具初坯;接着将初坯埋于粒径为250μm的玻璃微珠中,置于烧结炉中200℃保温2h;然后将覆膜砂模具坯体置于硅溶胶溶液中浸渗3h,取出后在80℃下保温8h,得到直接凝固注模成型氮化硅陶瓷用的氧化锆覆膜砂模具;然后,往模具中浇注预先制备好的氮化硅陶瓷悬浮液,置于80℃下保温16h;最后置于氮气气氛烧结炉中,以5℃/min升温到900℃保温2h,再以10℃/min升温至1800℃保温4h,最终得到氮化硅陶瓷部件。

实施例5:

采用200目、酚醛树脂含量为2.5wt%的氧化铝覆膜砂制备用于陶瓷凝胶注模成型的模具,成型二氧化硅陶瓷部件。

将cad模型切片处理后导入到三维打印设备的控制系统中,依据三维模型对氧化铝覆膜砂进行增材制造,得到氧化铝覆膜砂模具初坯;接着将初坯埋于粒径为160μm的玻璃微珠中,置于烧结炉中300℃保温2h;然后将覆膜砂模具坯体置于硅溶胶溶液中浸渗2h,取出后在60℃下保温8h,得到凝胶注模成型二氧化硅陶瓷用的氧化铝覆膜砂模具;然后,往模具中浇注预先制备好的二氧化硅陶瓷悬浮液,置于80℃下保温24h;最后置于高温烧结炉中,以1℃/min升温到700℃保温2h,再以10℃/min升温至1350℃保温4h,最终得到二氧化硅陶瓷部件。

综上,本发明通过三维打印技术快速制备形状复杂的覆膜砂模具初坯,采用硅溶胶浸渗法使覆膜砂模具初坯表面覆上一层均匀致密的硅溶胶涂膜,从而获得可浇注陶瓷浆料的覆膜砂模具,实现陶瓷胶态成型用模具的快速开发和制造,该模具在陶瓷高温烧结过程中发生溃散从而实现自动脱模,以解决现有陶瓷胶态成型方法中模具制备周期长、成本高、素坯在脱模时易产生裂纹等问题,具有模具制造成本低,制造周期短,模具形状可设计,操作简单,环境友好,陶瓷素坯无需脱模,适用于不同陶瓷体系的胶态成型等优点。

本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1