散热片及其制备方法

文档序号:2451934阅读:156来源:国知局
散热片及其制备方法
【专利摘要】本发明的散热片包括:具有多个气孔的网形态的散热层,通过对将高分子物质及溶剂混合而成的纺丝溶液或将高分子物质、导热物质及溶剂混合而成的纺丝溶液进行电纺丝而形成;以及网形态的粘结层,层叠于上述散热层的一面或两面,通过对将粘结剂、导热物质及溶剂混合而成的粘结物质进行电纺丝而形成。
【专利说明】散热片及其制备方法

【技术领域】
[0001]本发明涉及设置于电子设备来向外部排放在设备的内部发生的热量的散热片,更详细地,涉及通过电纺丝方法来制成纳米网形态的散热片及其制备方法。

【背景技术】
[0002]通常,计算机、便携式个人终端、通讯机等电子设备因无法向外部散发在设备的内部发生的过多的热能而在余像问题及系统稳定性方面内载着严重的隐患。这种热能可能缩短产品的寿命或引发故障、失灵,且在严重的情况下,也可成为爆炸及火灾的隐患。
[0003]尤其,由于当前的电子设备的厚度越来越超薄化,性能不断提高,因而应将产生于设备的内部的各种回路部件的热量向外部排放,来防止电子设备因热量而受到损伤。因此,为了向外部排放在系统的内部产生的热能而使用散热片。
[0004]如韩国登录特许公报10-0721462 (2007年05月17日)公开,现有的散热片包括导热性的金属板和粘结性的泡沫片,上述粘结性的泡沫片形成于上述金属板的至少一个面,单体作为泡沫结构形成于上述泡沫片的内部;上述粘结性的泡沫片为含有粘结剂和单体形成剂的粘结性混合物;上述粘结剂为丙烯酸类树脂、硅类树脂或聚氨酯类树脂;上述单体形成剂构成为微小中空球。
[0005]但是,现有的散热片由于在金属板的表面附着粘结性的泡沫片来使用,使得厚度变厚,因而存在难以使用于便携式电子设备等厚度薄的电子设备的问题。
[0006]并且,为了能够附着于电子设备的散热部件,散热片以与散热部件的大小相匹配地冲裁来使用,但在现有的散热片的情况下,由于冲裁时的泡沫片具有粘结性,因而存在难以进行精密的冲裁的问题。


【发明内容】

[0007]技术问题
[0008]本发明的目的在于,提供散热片及其制备方法,上述散热片通过电纺丝方法来制成纳米网形态,从而能够使厚度变薄,并能提高导热性。
[0009]本发明的另一目的在于,提供散热片及其制备方法,上述散热片通过电纺丝方法来制备用于附着于散热部件的粘结层,从而能够提高冲裁性,并且,由于包含导热物质,使得粘结层也具有散热性能,从而能够提高散热性能。
[0010]本发明所要解决的问题并不局限于以上所提及的技术问题,未提及的其他技术问题可通过以下的记载使本发明所属【技术领域】的普通技术人员明确地理解。
[0011]解决问题的手段
[0012]为了实现上述目的,本发明的散热片的特征在于,包括:具有多个气孔的网形态的散热层,通过对将高分子物质及溶剂混合而成的纺丝溶液或将高分子物质、导热物质及溶剂混合而成的纺丝溶液进行电纺丝而成;以及网形态的粘结层,层叠于上述散热层的一面或两面,通过对将粘结剂、导热物质及溶剂混合而成的粘结物质进行电纺丝而形成。
[0013]本发明的散热片的特征在于,包括:网形态的基材,通过电纺丝方法来形成;粘结层,层叠于上述基材一面;以及金属层,涂敷于上述基材的另一面,并具有导热性。
[0014]本发明的散热片的制备方法的特征在于,包括:对由粘结剂、导热物质及溶剂混合而成的粘结物质进行电纺丝,来形成纳米网形态的粘结层的步骤;以及在上述粘结层的一面对由高分子物质及溶剂混合而成的纺丝溶液或由高分子物质、导电物质及溶剂混合而成的纺丝溶液进行电纺丝,来形成网形态的散热层的步骤。
[0015]发明的效果
[0016]如上所述,本发明的散热片通过电纺丝方法来制成网形态,使得厚度变薄,因而具有能够适用于厚度薄的电子设备的优点。
[0017]并且,本发明的散热片通过对粘结层进行电纺丝,来制成网形态,从而能够提高冲裁性,并且,通过在粘结层包含导热物质,来提高散热性能。

【专利附图】

【附图说明】
[0018]图1为本发明第一实施例的散热片的剖视图。
[0019]图2为本发明第一实施例的散热层的扩大图。
[0020]图3为本发明第二实施例的散热片的剖视图。
[0021]图4为用于制备本发明的散热片的电纺丝装置的结构图。

【具体实施方式】
[0022]以下,参照附图对本发明的实施例进行详细说明。在这一过程中,附图所示的结构要素的大小或形状等可以为了说明的明确性和方便而以夸张的方式示出。并且,考虑到本发明的结构及作用而特别定义的术语可根据使用人员、运用人员的意图或惯例而有所不同。对这种术语的定义应基于本说明书整体的内容来定义。
[0023]图1为本发明第一实施例的散热片的剖视图,图2为本发明第二实施例的散热片的扩大图。
[0024]第一实施例的散热片包括:纳米网形态的散热层10,通过电纺丝方法来形成,包含导热性物质,从而具有导热性;粘结层20,层叠于散热层10的一面或两面。
[0025]按规定的百分比混合能够进行电纺丝的高分子物质及溶剂或高分子物质、导热物质及溶剂,来制成纺丝溶液,对上述纺丝溶液进行电纺丝来形成纳米纤维14,通过积累这种纳米纤维14来形成具有多个气孔12的纳米网(nano web)形态的散热层10。在此,纳米网形态能够被称为网。
[0026]在此,适用于本发明的纺丝方法可使用通常的电纺丝(electrospinning)、空气电纺丝(AES:Air-Electrospinning)、电喷射(electrospray)、电喷射纺丝(electrobrown spinning)、离心电纺丝(centrifugal e lectrosp inning)、闪蒸纺丝(flash-e lectrosp inning)中的一种。
[0027]S卩,本发明的散热层10及粘结层20均可适用能够制成纳米纤维积累形态的纺丝方法中的任何纺丝方法。
[0028]例如,制备散热层10的过程中所使用的高分子物质可使用聚偏氟乙烯(PVDF)、聚偏氟乙烯-六氟丙烯共聚物、全氟聚合物、聚氯乙烯或聚偏二氯乙烯及它们的共聚物、包含聚乙二醇二烷基醚、聚乙二醇二烷基酯的聚乙二醇衍生物、包含聚甲醛-低聚-氧乙烯、聚环氧乙烷及聚环氧丙烷的多氧化物、包含聚乙酸乙烯酯、聚乙烯吡咯烷酮-聚乙酸乙烯酯、聚苯乙烯及聚苯乙烯丙烯腈共聚物、聚丙烯腈甲基丙烯酸酯共聚物的聚丙烯腈共聚物、甲基丙烯酸甲酯、甲基丙烯酸甲酯共聚物及它们的混合物。
[0029]并且,导热物质可使用导热性优秀的N1、Cu、Ag等导热性金属及传导性碳(Carbon)、传导性碳黑(Carbon Black)、碳纳米管(CNT)、传导性聚合物(PDOT)中的一种,除此之外,凡是具有导热性的物质都能适用。
[0030]在此,若通过混合适用于导热性物质的导热性粒子、高分子物质及溶剂来制成纺丝溶液,则导热性粒子将成为分散于纳米网形态的散热层10的纳米纤维14的状态。S卩,导热性粒子的一部分露出于散热层10的纳米纤维14的表面,并参与导热。
[0031]由于散热层10通过电纺丝方法来制备,因而其厚度根据纺丝溶液的纺丝量来决定。因此,具有易于将散热层10制成所需的厚度的优点。
[0032]像这样,散热层10通过纺丝方法来成为纳米纤维积累而成的纳米网形态,因此,无需额外的工序也能够制成具有多个气孔的形态,并且能够根据纺丝量来调整气孔的大小。
[0033]粘结层20以与制备散热层10相同的电纺丝方法来制备。即,通过混合具有粘结性的粘结剂、导热物质及溶剂来制成具有适合用于电纺丝的粘度的导热性粘结物质,并通过电纺丝方法将上述导热性粘结物质按规定厚度层叠于散热层10的一面或两面。
[0034]粘结层20以超细纤维丝形态纺丝,并粘结于散热层10的表面。此时,粘结物质向散热层10的气孔12流入,使得散热层10与粘结层20之间的粘结强度增加。因此,减少散热层10从粘结层20剥离的现象,提高散热片的可靠性。并且,向气孔12流入的粘结物质使粘结层20的厚度变薄,从而能够体现超薄膜散热片。
[0035]形成粘结层20的导热物质能够使用与形成散热层10的导热物质相同的物质。
[0036]在此,除了向散热层10直接电纺丝导热性粘结物质的方法之外,粘结层20也可适用通过电纺丝方法来分别单独制成散热层10与粘结层20后,在贴合工序中,在散热层10的一面或两面贴合导热性粘结层20来制备的方法。
[0037]粘结层20也与散热层一样,根据导热性粘结物质的纺丝量来决定厚度。因此,可以自由地制备粘结层20的厚度。
[0038]像这样,由于粘结层20包含导热物质,因而同时具有用于使散热层附着于发热部件的粘结性和导热性,从而能够提高散热性能。
[0039]另一方面,本发明可在散热层10与粘结层20之间分散导热性粒子。导热性粒子配置在位于散热层10和粘结层20的表面上的散热层10的纳米纤维和粘结层20的纳米纤维的外侧,从而能够更好地向散热层10传递从电子设备内部的发热部件中发生的热量,并能增加散热效率。
[0040]在此,若通过混合导热性粒子与溶剂来制成喷射溶液,并通过电喷射工序将由导电性粒子与溶剂组成的珠(bead)喷射于粘结层(20)的纳米网上,则溶剂一边挥发,一边使导热性粒子分散于粘结层20的纳米网。之后,若将散热层10的纳米网形成于喷射有导热性粒子的粘结层20的纳米网,则能够制备导热性粒子分散于上述散热层10与粘结层20之间的散热片。
[0041]并且,在本发明中,散热层10能够快速扩散从发光二极管(LED)、中央处理器(CPU)、集成电路(IC)等发热体产生的热量,从而防止引起发热体的局部温度的上升。
[0042]图3为本发明第二实施例的散热片的剖视图。
[0043]第二实施例的散热片包括:纳米网形态的基材30,通过进行电纺丝方法来形成;粘结层40,层叠于基材30的一面;以及金属层50,涂敷于基材30的另一面,并具有导热性。
[0044]基材30由高分子物质与溶剂按规定比率混合,来制成具有能够进行电纺丝的粘度的纺丝溶液,并对上述纺丝溶液进行电纺丝来形成纳米纤维,而上述纳米纤维积累成为具有多个气孔的纳米网(nano web)形态。
[0045]并且,基材30也能够适用与上述第一实施例中的散热层10相同的结构。S卩,基材30可以由高分子物质形成,来成为用于执行支撑金属层的作用的结构,并且,如散热层10,也可适用包含导热物质,来成为同时具有支撑金属层的作用和导热作用的结构。
[0046]其中,由于形成基材30的高分子物质与上述第一实施例中说明的高分子物质相同,因而省略详细说明。
[0047]由于粘结层40的结构与上述第一实施例中说明的粘结层20的结构相同,因而省略详细说明。
[0048]金属层50可使用N1、Cu、Ag等作为具有导热性的金属的一列,且除了涂敷方法之夕卜,还可适用附着金属箔(foil)的方法。
[0049]像这样,第二实施例的散热片具有导热性优秀的金属层50,因而能够更加提高散热性能。
[0050]另一方面,上述金属层50能够体现为在基材30的另一面以图案形状涂敷的金属图案层,金属图案层与具有块(bulk)状的面的金属层50相比,因接触面积大而增加散热效率。
[0051]图4为表示制备本发明的散热片的电纺丝装置的结构图。
[0052]本发明的电纺丝装置包括:第一混合罐70,用于储存由粘结剂、导热物质及溶剂混合而成的粘结物质;第二混合罐(Mixing Tank)72,用于储存由可进行电纺丝的高分子物质、导热物质及溶剂混合而成的纺丝溶液;第一纺丝喷嘴74,与高电压发生器相连接,并与第一混合罐70相连接,来形成粘结层20 ;第二纺丝喷嘴76,与高电压发生器相连接,并与第二混合罐72相连接,来形成散热层10 ;以及集电器78,设于第一纺丝喷嘴74和第二纺丝喷嘴76的下侧,由粘结层20和散热层10依次层叠。
[0053]在第一混合罐70设有第一搅拌器60,上述第一搅拌器60 —边均勾地混合高分子物质、导热物质及溶剂,一边使纺丝溶液维持规定粘度,在第二混合罐72设有第二搅拌器62,上述第二搅拌器62 —边均匀地混合粘结剂、导热物质及溶剂,一边使粘结物质维持规定粘度。
[0054]随着施加90?120Kv的高电压静电力,在集电器78和第一纺丝喷嘴74之间及集电器78和第二纺丝喷嘴76之间纺丝纳米纤维14,从而在集电器中捕集到纳米纤维14,来形成纳米网。
[0055]在此,第一纺丝喷嘴74及第二纺丝喷嘴76排列成多个,并能依次配置于一个腔体的内部,也能分别配置于不同腔体。
[0056]在第一纺丝喷嘴74和第二纺丝喷嘴76分别设有空气喷射装置64,用于防止从第一纺丝喷嘴74及第二纺丝喷嘴76中纺丝的纳米纤维14无法捕集反而扬起的现象。
[0057]集电器78可以使用以使粘结层20和散热层10依次层叠于离型膜82上的方式自动移送离型膜82的输送机,或者在粘结层20及散热层10分别形成于不同腔体的情况下,可以使用盘形态。
[0058]在集电器78的前方设有卷绕着离型膜82的离型膜辊80,从而向集电器78的上表面供给离型膜82。并且,在集电器78的后方设有加压辊86和薄板轧辊88,上述加压辊86以加压(压延)的方式将粘结层20及散热层10制成规定厚度,而一边通过加压辊86,一边得到加压来成为规定厚度的散热片卷绕于上述薄板轧辊88。
[0059]以下,对利用以如上所述的方式构成的电纺丝装置来制备散热片的工序进行说明。
[0060]首先,若集电器78被驱动,则卷绕于离型膜辊80的离型膜82被解开并向集电器78供给。
[0061 ] 并且,随着在集电器78和第一纺丝喷嘴74之间施加高电压静电力,第一纺丝喷嘴74将粘结物质制成纳米纤维14,并在离型膜82的表面进行纺丝。由此,在离型膜82的表面积累纳米纤维14,来形成粘结层20。
[0062]在此,由于粘结层20包含导热物质,因而粘结层20本身也起到散热作用。
[0063]此时,当设于第一纺丝喷嘴74的空气喷射装置64纺丝纳米纤维14时,向纳米纤维14喷射空气,来防止纳米纤维14不会扬起而捕集并堆积于离型膜82的表面。
[0064]并且,若结束粘结层20的制备,则粘结层20向第二纺丝喷嘴76的下部移动,而通过向集电器78与第二纺丝喷嘴76之间施加高电压静电力,由第二纺丝喷嘴76将纺丝溶液制成纳米纤维14来纺丝于粘结层20上。由此,在粘结层20的表面形成具有多个气孔12的纳米网形态的散热层10。
[0065]通过上述过程来完成的散热片一边通过加压辊86,一边被加压为规定厚度。并且,以卷绕于薄板轧辊88的方式得到保管。
[0066]除了如上所述的制备方法之外,还可适用分别单独制备散热层10和粘结层20之后,在散热层10的一面或两面设置粘结层20,并对散热层10与粘结层30之间进行贴合来制备的方法。
[0067]在此,还可进行如下工序:散热层10和粘结层20分别形成于由不被使用于纺丝溶液的溶剂所溶解的高分子材料组成的无纺布、纸及聚乙烯(PE)、聚丙烯(PP)等聚烯烃(polyolefin)类膜中的一种转印纸,在对散热层10和粘结层20进行贴合之后,能够执行去除转印纸的工序。
[0068]并且,散热片为金属层50涂敷于通过电纺丝方法来形成的基材30的表面的结构的情况下,以与上述方法相同的方法制备出粘结层40和基材30之后,在基材30的表面涂敷金属层50来制备散热片。
[0069]此时,基材30能够以与如上所述的散热层10相同的方式包含导热物质,并能适用仅对高分子物质进行电纺丝来执行基材的作用的结构。
[0070]以上,以举例的方式示出并说明了本发明的特定的优选实施例,但本发明并不局限于上述的实施例,在不脱离本发明的技术思想的范围内,能够由本发明所属【技术领域】的普通技术人员进行多种变更和修改。
[0071]产业上的可利用性
[0072]本发明提供通过电纺丝方法来制成纳米网形态,使得厚度变薄,因而能够适用于厚度薄的电子设备的散热薄片。
【权利要求】
1.一种散热片,其特征在于,包括: 具有多个气孔的网形态的散热层,通过对将高分子物质及溶剂混合而成的纺丝溶液或将高分子物质、导热物质及溶剂混合而成的纺丝溶液进行电纺丝而形成;以及 网形态的粘结层,层叠于上述散热层的一面或两面,通过对将粘结剂、导热物质及溶剂混合而成的粘结物质进行电纺丝而形成。
2.根据权利要求1所述的散热片,其特征在于,上述导热物质为导热性优秀的导热性金属、传导性碳、传导性碳黑、碳纳米管、传导性聚合物中的一种。
3.根据权利要求1所述的散热片,其特征在于,上述导热物质为导热性粒子,上述导热性粒子的一部分露出于上述散热层及上述粘结层的网形态的纳米纤维的表面。
4.根据权利要求1所述的散热片,其特征在于,上述粘结层与电子设备的发热部件相接触及粘结。
5.根据权利要求1所述的散热片,其特征在于,导热性粒子分散于上述散热层与上述粘结层之间。
6.一种散热片,其特征在于,包括: 网形态的基材,通过电纺丝方法而形成; 粘结层,层叠于上述基材的一面;以及 具有导热性的金属层,涂敷于上述基材的另一面。
7.根据权利要求6所述的散热片,其特征在于,上述基材为对将高分子物质及溶剂混合而成的纺丝溶液或将高分子物质、导热物质及溶剂混合而成的纺丝溶液进行电纺丝来形成的具有多个气孔的网结构,上述粘结层为对将粘结剂、导热物质及溶剂混合而成的粘结物质进行电纺丝来形成的网结构。
8.根据权利要求6所述的散热片,其特征在于,上述金属层为以图案形状涂敷于上述基材的另一面的金属图案层。
9.一种散热片的制备方法,其特征在于,包括: 对由粘结剂、导热物质及溶剂混合而成的粘结物质进行电纺丝,来形成网形态的粘结层的步骤;以及 在上述粘结层的一面,对由高分子物质及溶剂混合而成的纺丝溶液或由高分子物质、导电物质及溶剂混合而成的纺丝溶液进行电纺丝,来形成网形态的散热层的步骤。
10.根据权利要求9所述的散热片的制备方法,其特征在于,在形成上述网形态的粘结层的步骤与形成上述网形态的散热层的步骤之间,还包括对由导热性粒子、溶剂混合而成的喷射溶液进行电喷射,使得上述导热性粒子分散于上述粘结层的网的步骤。
11.根据权利要求9所述的散热片的制备方法,其特征在于,在形成上述网形态的散热层的步骤之后,还包括对上述粘结层和散热层进行加压的步骤。
【文档编号】B32B7/12GK104520100SQ201380041560
【公开日】2015年4月15日 申请日期:2013年7月30日 优先权日:2012年8月6日
【发明者】徐寅踊, 李承勋, 丁榕湜, 苏允美 申请人:阿莫绿色技术有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1