基于石墨烯的背光源、场色序液晶显示装置及其驱动方法与流程

文档序号:12475542阅读:213来源:国知局
基于石墨烯的背光源、场色序液晶显示装置及其驱动方法与流程

本发明涉及液晶显示技术领域,尤其涉及一种基于石墨烯的背光源、液晶显示装置及其驱动方法。



背景技术:

作为近几年才突然新兴起的新产品,液晶显示器已经全面取代笨重的CRT(阴极射线管)显示器成为现在主流的显示设备。通常,液晶显示器由提供背光源的背光模组和用于显示画面的显示面板组成,显示面板内由于集成有彩色滤光片使其能够显示各种鲜艳的画面。然而,具有彩色滤光片的液晶显示器的光能利用率并不高,不利于节能降耗。



技术实现要素:

鉴于现有技术存在的不足,本发明提供了一种基于石墨烯的背光源、液晶显示装置及其驱动方法,可以省去液晶面板中的彩色滤光片,提升光能利用率,从而降低功耗。

为了实现上述的目的,本发明采用了如下的技术方案:

一种基于石墨烯的背光源,包括下基板、上基板和自下而上依次设置于所述下基板和所述上基板之间的第一绝缘层、多个栅极、第二绝缘层、多个石墨烯量子点层、多组源极和漏极,多个所述石墨烯量子点层间隔设置在所述第二绝缘层上,且每个所述石墨烯量子点层上分别设有一个所述源极和一个所述漏极。

作为其中一种实施方式,所述下基板和/或所述上基板为隔水隔氧基板。

作为其中一种实施方式,所述石墨烯量子点层为还原氧化石墨烯,和/或,所述第二绝缘层为氧化石墨烯。

作为其中一种实施方式,所述第二绝缘层的上下表面分别设置有若干间隔设置的凹陷部,所述栅极和所述石墨烯量子点层分别嵌设于对应的所述凹陷部。

作为其中一种实施方式,所述第一绝缘层和所述下基板之间还设有反光层,所述反光层覆盖所述下基板。

作为其中一种实施方式,所述的基于石墨烯的背光源还包括设于所述上基板上的棱镜增量层。

作为其中一种实施方式,所述的基于石墨烯的背光源还包括设于所述棱镜增量层上的反射式偏光增亮膜。

本发明的另一目的在于提供一种场色序液晶显示装置,包括基于石墨烯的背光源、液晶显示面板和场色序控制模块,所述场色序控制模块用于控制通过所述背光源的栅极电压而改变所述背光源的背光颜色。

作为其中一种实施方式,所述背光源的画框周期包括多个子画框周期,且在每个所述子画框周期的背光期间内,所述背光源的栅极电压至少具有分别对应红、绿、蓝三种背光颜色的电压,且每个所述子画框周期的背光期间内的背光颜色切换顺序一致。

本发明的又一目的在于提供一种所述的场色序液晶显示装置的驱动方法,包括提供不同颜色的影像数据至所述液晶显示面板,并控制所述基于石墨烯的背光源的背光颜色,使其画框周期包括多个子画框周期,且每个子画框周期的背光颜色切换顺序一致。

本发明通过控制通过石墨烯背光源的栅极电压,可实现彩色场时序显示,使得背光源具有精准区域控光的能力,避免色彩串扰导致的色域降低现象。另外,由于石墨烯发光元件采用时序驱动,省去了液晶面板中的彩色滤光片,提升了背光源的光能利用率,降低了功耗。

附图说明

图1为本发明实施例的基于石墨烯的背光源的发光部分的层叠结构示意图。

图2为本发明实施例的基于石墨烯的背光源的层叠结构示意图。

图3为本发明实施例的场色序液晶显示装置的结构示意图。

图4为本发明实施例的场色序液晶显示装置的单色发光示意图。

图5为本发明实施例的场色序液晶显示装置的模块组成示意图。

图6为本发明实施例的背光源的背光色序示意图。

图7为本发明实施例的背光源的色序驱动过程示意图。

具体实施方式

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。

本发明的背光源基于石墨烯发光原理,可通过调控栅极电压改变元件的发光颜色,从而实现了背光颜色可调的目的。参阅图1,本实施例的背光源包括两层基板:下基板111和上基板118,以及自下而上依次设置于下基板111和上基板118之间的第一绝缘层113、多个栅极114、第二绝缘层115、多个石墨烯量子点层116、多组源极117a和漏极117b,多个石墨烯量子点层116间隔设置在第二绝缘层115上,且每个石墨烯量子点层116上分别设有一个源极117a和一个漏极117b。石墨烯量子点层116作为发光元件,通过在相应的栅极114、源极117a和漏极117b上施加相应的电压即可发出光线,利用若干个阵列设置的石墨烯量子点层116在同一平面进行组合实现基于石墨烯的背光源发光。

本实施例中,源极117a和漏极117b采用还原氧化石墨烯,栅极114可以使用石墨烯、金属或透明金属氧化物等材料,而石墨烯量子点层116为还原氧化石墨烯,第二绝缘层115为氧化石墨烯。下基板111和上基板118采用隔水隔氧基板,例如具有阻水阻氧功能的玻璃基板或明塑料基板,使得封装在这两块基板之间的发光元器件不会进水或被氧化,使得整个背光源可靠性较高。

第二绝缘层115的上下表面分别设置有若干间隔设置的凹陷部,栅极114和石墨烯量子点层116分别嵌设于对应的凹陷部内,这样的设置可以最大程度地提高背光源的紧凑性,使得背光源可以做得更薄。

第一绝缘层113和下基板111之间还具有反光层112,反光层112覆盖下基板111,可以是金属反光层或金属与多层金属氧化物复合的增强式反射层。而第一绝缘层113位于栅极114和反光层112之间,第二绝缘层115位于栅极114和石墨烯量子点层116之间,每个石墨烯量子点层116上表面分别制作有一个源极117a和漏极117b。反光层112与栅极114之间,栅极114与石墨烯量子点层116、源极117a、漏极117b之间互不干扰,可以很好地避免背光源内部短路影响正常发光。

如图2和图3所示,背光源10的上基板118上还依次堆叠有棱镜增量层12、DBEF(Dual-Brightness Enhance Film,反射式偏光增亮膜)13,若干个石墨烯量子点层116的组合发光经过上方的棱镜增量层12聚光、反射式偏光增亮膜13增亮后进入液晶显示面板20,使得液晶面板20的光线利用率有效提高。作为其中一种实施方式,棱镜增量层12为两层,这两层棱镜增量层12的棱的方向也可以不同,具体可以根据实际需求改变经过棱镜增量层12发出的光线的出光方向。

结合图4和图5所示,本实施例提供的场色序液晶显示装置除了具有基于石墨烯的背光源10、液晶显示面板20以外,还具有用于控制背光颜色的场色序控制模块30和用于控制液晶显示面板20内各像素亮暗程度的像素驱动模块40,场色序控制模块30通过控制通过背光源10的栅极114的栅极电压而改变背光源的背光颜色,像素驱动模块40用于将预定的影像数据传递至液晶显示面板20,并根据预定的影像数据的变化实时改变相应的像素的亮暗程度,场色序控制模块30与像素驱动模块40二者配合,最终使得液晶显示面板20上形成预定的显示画面。

如图3所示,由于背光源10本身能够显示多种不同的颜色,液晶显示面板20可以省去彩色滤光片,其包括上下两层玻璃基板21a、21b,分别位于上下两层玻璃基板21a、21b内侧的上电极22a、下电极22b,TFT阵列23,液晶24以及分别贴合于上下两层玻璃基板21a、21b外表面的上偏光片25a、下偏光片25b。该液晶显示面板并不需要彩色滤光片,背光源10可实现彩色场时序显示,提升了背光光能利用率,降低了功耗。

背光源的画框周期包括多个子画框周期,且在每个子画框周期的背光期间内,背光源的栅极电压至少具有分别对应红、绿、蓝三种背光颜色的电压,且每个子画框周期的背光期间内的背光颜色切换顺序一致。

为清楚解释本发明,下面以一种具体的色序驱动方式为例进行说明。如图6为本发明其中一实施例的背光源的背光色序示意图,图7为本发明一实施例的背光源的色序驱动过程示意图。

背光源10的画框周期包括多个子画框周期,一个完整的画框周期对应一个连续的画面,一个子画框周期对应一帧画面,这里,以一个完整的画框周期包括4个子画框周期为例,该实施例的画框周期为1/15秒,子画框周期为1/60秒,且在每个子画框周期的背光期间内,背光源的栅极电压具有分别对应红、绿、蓝三种背光颜色的电压,且每个子画框周期的背光期间内的背光颜色切换顺序一致。当栅电压Vgs(如图6中的b)为0-12V范围的低电压时,石墨烯背光源发光为红光,当栅电压Vgs为20-35V的低电压时,石墨烯背光源发光为绿光;当栅电压Vgs为40-50V的低电压时,石墨烯发光为蓝光。而漏电压Vds(如图6中的a)在各子画框周期内基本保持不变,公共电压Vcom(如图6中的c)根据实际需要进行变化,最终形成如图7中的d所示的相应颜色的4帧。背光源中,子画框周期内的每个子画框周期的背光颜色的种类和变换顺序一致,该实施例以红、绿、蓝的顺序循环变化。可以理解的是,在其它实施方式中,子画框周期的背光颜色的种类和变换顺序并不仅限于上述情况,例如,也可以是红、蓝、绿,或蓝、绿、红,或红、绿、蓝、黄,或绿、红、蓝、黄,或红、绿、蓝、青等。

本实施例的场色序液晶显示装置的驱动方法在于:提供不同颜色的影像数据至液晶显示面板,并控制基于石墨烯的背光源的背光颜色,使其画框周期包括多个子画框周期,且每个子画框周期的背光颜色切换顺序一致。当背光源显示红色时,背光源从背光源的第一扫描区沿预定方向扫描,直至扫描完最后一个扫描区。如图7所示,背光源的背光自上而下进行扫描,背光源的最上方为第一扫描区,最下方为最后的一个扫描区,扫描方向为自上而下。当红色色场扫描时,背光自第一扫描区扫描至最后的一个扫描区;红色色场扫描完毕后开始绿色色场扫描,背光再次自第一扫描区扫描至最后的一个扫描区;绿色色场扫描完毕后开始蓝色色场扫描,背光再次自第一扫描区扫描至最后的一个扫描区,至此,一幅连续的画面扫描完毕。在此过程中,像素驱动模块40根据预定的影像数据控制相应的像素开启和关闭。

综上所述,本发明通过控制通过石墨烯背光源的栅极电压,可实现彩色场时序显示,使得背光源具有精准区域控光的能力,避免色彩串扰导致的色域降低现象。另外,由于石墨烯发光元件采用时序驱动,省去了液晶面板中的彩色滤光片,提升了背光源的光能利用率,降低了功耗。

以上所述仅是本申请的具体实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1