细长带元件和方法_3

文档序号:9756102阅读:来源:国知局
背离底座弯曲。相似地,相邻绕组也将以小的恒定曲率半径3052朝侧壁背离内表面弯曲。这样会在邻接绕组与相邻径向内层(例如,聚合物阻隔层302)之间留下十分接近三角形的空间306。在这种区域306中,已经发现,底层,(例如,聚合物阻隔层302和/或中间聚合物牺牲层(未示出)),可能会蔓延到这些三角形空间中。这是因为来自通过管力而输送的流体的高内部压力迫使径向内层朝向压力铠装层和迫使其进入在绕组之间的空间中。这样会产生局部区域,其中,聚合物层的部分与压力铠装层的底座和聚合物的部分接触,该聚合物的部分是无支撑的,并且不会被迫进入在绕组之间的间隙中。在绕组集合的这个局部区域中,对压力铠装层下面的层的支撑突变会对那些底层的材料产生高剪切力和应变。这可能导致裂缝或者微裂纹。
[0089]在柔性管状中,虽然要了解,许多材料可能是适合的,例如,聚合物、金属或者复合材料,但是在压力铠装层下面的层通常为聚合物层,例如,PVDF(聚偏二氟乙烯)。管设计者可以选择适合材料以与管的使用情况匹配。然而,大多数材料将具有某一最大可允许应变,超过该某一最大可允许应变时,损坏材料的风险就会更大。同样,在压力铠装层的绕组之间的上述间隙的存在可能会在底层中导致潜在损坏和潜在故障。当聚合物区域在应变下时,该区域的性能可以变化,从而使其变得更弱。在应变区域中,与周围材料相比,聚合物更容易发生形变,从而在聚合物中产生更高水平的应变,这样可能导致塑性铰效果。
[0090]如可见于图3和图4,存在间隙,该间隙在压力铠装层的每个绕组301η之间,例如,在绕组301ι和绕组3012的相对表面之间延伸。这种间隙通常可以在约O mm和3 mm之间,例如在压力铠装层中。如本领域所知的,这种间隙允许绕组一起或者进一步分开地移动,以适应管的弯曲或者运动。
[0091]图5示出了包括细长带元件的柔性管体的一部分。柔性管体包括压力铠装层的绕组5011-3、径向内流体保持层502和细长带元件(桥接元件)508ι,2,该细长带元件(桥接元件)5081>2位于空间506中,该空间506在相邻绕组501的边缘504、505之间并且在压力铠装层的内表面503与流体保持层502的径向外表面514之间。图6示出了图5的部分B的放大视图。此处,桥接元件5081>2是连续的相对精细的金属细长带,并且在流体保持层502上螺旋缠绕,该流体保持层502在压力铠装带(抗塌带)的每个连续绕组之间。即,桥接元件构造为交替地缠绕有压力铠装带,从而在截面中,交替使用桥接元件的绕组和压力铠装带的绕组。适当地,桥接元件的金属材料的弹性模量可以是170-210 GPa。适当地,金属材料的弹性模量可以是190-210 GPa。桥接元件5081>2可以交替地具有相对高的弹性模量聚合或者复合材料。这种相对高的弹性模量聚合物可以包括PVDF材料,该PVDF材料在以室温测量时具有大于400MPa的弹性模量。适当地,聚合物材料的弹性模量可以大于800 MPa。适当地,聚合物材料的弹性模量可以大于1000 MPa。适当地,复合材料的弹性模量可以是20-50 GPa。适当地,复合材料的弹性模量可以是70至80 GPa。
[0092]如可见于图5,压力铠装带501的截面轮廓为具有矩形体、和前缘、和后缘的大体上Z形。当然,压力铠装带、或者铠装带可以具有其他截面轮廓,例如,C形夹、I形、T形、X形或者K形。利用其他轮廓,桥接元件可以适当地构造为桥接在相邻绕组之间的间隙。
[0093]细长带508的截面为近似矩形,该近似矩形具有凸起或者体部分510,该凸起或者体部分510向外径向延伸到在相邻绕组501的边缘504、505之间的间隙512的至少一部分中。可以从图5中看见,细长带具有近似倒T形截面轮廓。桥接元件508设置为至少部分地延伸跨过间隙512,并且在压力铠装层的内表面503与相邻流体保持层502的外表面514之间至少部分地延伸,从而防止流体保持层502蔓延到间隙512中。
[0094]桥接元件508的体部分510构造为位于在相邻防塌带绕组501之间的间隙512中。体部分沿间隙512向外径向延伸,因此有助于保持细长带508在间隙内的位置,从而保持交替的绕组构造。替代地,体部分510可以构造为具有沿其长度的规则狭缝或者狭槽,以允许带更容易弯曲,并且更一致地形成在流体保持层502周围(如在图16a和图16b中所示)。
[0095]桥接元件508还包括从体部分510的端区域延伸的两个翼部分5161>2,该两个翼部分5161>2跨越间隙512的宽度并且轴向延伸越过间隙,从而使翼部分5161>2的径向外表面518与相邻抗塌带绕组501的径向内表面503邻接。翼部分5161>2的大体上平整径向内表面520与流体保持层502的径向外表面514邻接。以这种方式,防止流体保持层在其受到内部压力时蔓延到间隙512中。翼部分设计得相对薄,以便不会对在聚合物阻隔层502与压力铠装层501之间的距离造成很大的干涉,而足够牢固以保持其位置,并且防止聚合物进入间隙512中。
[0096]在图5中,构造了在各自翼部分与体部分之间的可选过渡弯曲表面,从而使表面具有曲率半径,该曲率半径约等于在抗塌带绕组501的径向内表面503与各自侧壁504、505之间的弯曲的角部的曲率半径。
[0097]将认识到,在使用中,柔性管体通过电流、船舶运动而受到弯曲力。当柔性管体弯曲时,在抗塌带的相邻绕组之间的间隙512的宽度将发生变化。在弯曲的外半径,间隙宽度通常将增大,然而,在弯曲的内半径,间隙宽度通常将减小。因此,最好是翼部分的翼展(即,从第一翼的最外端到第二翼的最外端的两个翼部分的全宽)大于间隙512的最大可能宽度。同样,翼部分防止整个桥接元件移动到间隙区域512中。适当地,翼部分的翼展是在抗塌带绕组之间的最大间隙宽度的三倍。
[0098]由于细长带元件508的截面轮廓,当抗塌绕组相互靠近移动时,桥接元件的过渡弯曲表面将与抗塌线的弯曲的角部对应。因此,使在相邻带元件之间的另外的应力降至最小。
[0099]在图7至图9中,示出了其他桥接元件,其中,桥接元件的体部分的截面具有替代形状。
[0100]图7的桥接元件708为近似倒‘T形’。桥接元件708相对于桥接元件508包括与上述翼部分相似的翼部分,并且,因此,将不再详细描述。在本实施例中,桥接元件708的体部分710沿间隙712的长度延伸,大体上沿间隙的全长延伸。类似于图6,翼部分从体部分710的端轴向延伸。对体部分710进行构造,以便在绕组之间的间隙712减小时,侧面721和722将与相邻抗塌带绕组的各自侧壁704和705邻接。
[0101]要实现的是,体部分710的径向长度可能与所示的径向长度不同,例如,沿间隙712的径向长度延伸了约90%、或者80%、或者70%、或者60%、或者50%、或者40%、或者30%、或者20%、或者10%、或者2%,并且可能在沿桥接元件的伸长长度的半径长度方面是不连续的或者可能在该半径长度方面变化。同样,体部分的宽度还可能与所示的相对薄的宽度不同,延伸了在相邻绕组之间的最大间隙宽度的约100%、或者90%、或者80%、或者70%、或者60%、或者50%、或者40%、或者30%、或者20%、或者10%、或者2%。在替代实施例中,细长桥接元件的体部分710可以包括在其放置在平整表面上时形成其的波浪或者非线性,以便阻隔层502周围形成桥接元件(表面514和520接触)时,由于与在体部分的下部径向端的周向应变相比,在体部分的上部径向端的更高周向应变,在体部分中的波度移除(如图17a和图17b所示)。
[0102]图8示出了具有近似倒‘T形’的另一桥接元件/细长带元件808。此处,体部分810具有近似U形轮廓,该近似U形轮廓具有第一侧部分824、底座部分826和另一侧部分825。类似于图6,翼部分从体部分810的底座部分826延伸。
[0103]在此桥接元件中,第一侧部分824和另一侧部分825与相邻抗塌带绕组的各自侧壁804、805邻接。此处,第一侧部分824和另一侧部分825大体上沿间隙812的全长延伸。
[0104]第一侧部分824和另一侧部分825被视为叉齿。叉齿应该由具有一定程度的柔性材料制成,诸如,钢或者相对高的弹性模量聚合材料,从而在相邻抗塌绕组相互靠近移动时,叉齿可以从靠近底座部分826的地方弯曲以在开口端部分828处一起靠近移动。这类相对高的弹性模量聚合物可以包括在以室温测量时具有大于400 MPa的弹性模量的一些PVDF材料、复合材料或者合金。适当地,聚合物材料的弹性模量可以大于800 MPa。适当地,聚合物材料的弹性模量可以大于1000 MPa。适当地,复合材料的弹性模量可以是20-50 GPa。适当地,复合材料的弹性模量可以是70-80 GPa。适当地,叉齿的金属材料的弹性模量可以是170-210 GPa。适当地,金属材料的弹性模量可以是190-210 GPa。
[0105]图9示出了具有近似倒‘T形’的另一桥接元件/细长带元件908。桥接元件908具有与图7所示的截面轮廓类似的截面轮廓。然而,体部分910比图7的实施例的体部分宽,大约是最大间隙宽度912的宽度。
[0106]桥接元件至少部分地为可压缩的,但是,具有足够的强度来防止聚合物阻隔层大体上进入间隙912中。桥接元件可以是非金属、聚合物、弹性体、橡胶、泡沫或者任何其他弹性材料,该弹性材料适合于在抗塌带的相邻绕组一起靠近移动时,暂时被压缩,或者适合于在由如上所述的适合压缩的弹性材料封装或者封装该如上所述的适合压缩的弹性材料时,由内部骨架结构(诸如,710或者810)构造。适合压缩的材料可以具有远远小于400 MPa,例如150 MPa、例如50 MPaji^n1 MPaji^ni ]\0^、例如0.08 MPa的弹性模量,并且可以是橡胶或者发泡材料。虽然体部分910具有高达最大间隙宽度的宽度,但是如果间隙912在宽度方面减少(诸如,在管弯曲期间),那么用于桥接元件的材料的压缩性允许桥接元件膨胀并且与变化间隙宽度成直线接触。
[0107]当然,要实现的是,体部分的径向长度可能与所示的径向长度不同,例如,沿间隙912的径向长度延伸了约90%、或者80%、或者70%、或者60%、或者50%、或者40%、或者30%、或者20%、或者10%、或者2%,并且可能在沿桥接元件的伸长长度的半径长度方面是不连续的或者可能在该半径长度方面变化。
[0108]图1Oa和图1Ob示出了具有近似‘S形,的桥接元件/细长带元件1008。图1Oa示出了在对抗塌带绕组10l1,2进行设置从而使间隙1012的宽度处于其最大值时的桥接元件1008的位置。桥接元件1008具有体部分1010,该体部分1010沿与相邻抗塌带绕组10l2的侧壁1005邻接的间隙1012延伸。体部分继续形成钩形端区域1015,该钩形端区域1015为大体上钩形的,以适应相邻抗塌带绕组10l2的后缘。钩形端区域1015因此用于使用与侧壁1005邻接的体部分11来帮助桥接元件1008保持就位。
[0109]桥接元件1008进一步包括翼部分1016,该翼部分1016从体部分的端区域延伸,从而跨越间隙1012的最大宽度。翼部分1016进一步在抗塌带绕组10lj^内表面1003与流体保持层1002的外表面之间延伸。翼部分1016大于最大间隙宽度,而且适当地为最大间隙宽度的125%、或者150%、或者200%、或者300%。
[0110]同样,体部分有效连接或者附接至压力铠装层的一个相邻绕组,以便无法偏离该位置,并且,无论间隙宽度是大或者小,都将一直与该侧绕组保持相邻
当前第3页1 2 3 4 5 6 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1