一种微合金化硅铝合金材料及其制备方法

文档序号:3420200阅读:306来源:国知局

专利名称::一种微合金化硅铝合金材料及其制备方法
技术领域
:本发明属于硅铝合金制备和电子封装材料领域,特别是提供了一种集低密度、低热膨胀系数、高热导率、高强度和耐蚀性能于一身的结构功能一体化高硅铝合金材料及其制备方法。
背景技术
:电子封装技术是伴随着微电子技术的发展而发展起来的,电子封装的主要作用是为精细电子线路提供机械支撑以及作为导电连接介质,在微电子技术的发展中占有不可或缺的重要地位。电子封装的最基础部分(零级)一般被认为是半导体芯片(集成电路),其中集成了逻辑门、晶体管和门与门之间的连线,这些均直接集成在芯片上。芯片本身由半导体材料(包括硅或砷化镓)的薄片或晶片制成。热膨胀、散热和轻量化是发展现代电子封装材料所必须考虑的三大基本要素,只有能够充分兼顾这三项基本要求,并具有合理的封装工艺性能的材料才能适应电子信息工业发展趋势的要求。理想的先进电子封装材料应该具有与砷化镓和硅等典型半导体材料相匹配,或略高的热膨胀系数(<79X10—6/K)、高的热传导率(>100W/m.K)和低密度(<3g/cm3)。此外,希望封装材料具有合理的刚度(>100GPa),可以为对机械作用敏感的部件和基板提供足够的机械支撑。它还需要易于进行精密加工成形,并可利用经济的工业标准方法,如电镀,进行涂装处理。能够通过焊接形成封接是另外一个重要的封装工艺性能要求。Si-Al合金已被证明是一个综合性能满足先进电子封装要求的材料体系,该材料的开发已经显示了广阔的产业化应用前景。硅铝合金比重轻(密度小于3X103Kg/m3),同时随着Si含量的变化热膨胀系数和热导率在一定范围内(723卯m广C、100180W/(m《))连续可调,是一种可以满足现代封装技术要求的轻质、高热导、低热膨胀系数的合金材料。喷射成形技术已被证明是可工业化生产硅含量大于50%的Si-Al合金的一项先进的制备技术。国内外一些单位已采用喷射成形技术制备出了硅含量大于50X的Si-Al合金,该合金具有良好的电子封装性能,用外层涂有TiCN的碳化物硬质合金或多晶金刚石(PVD)刀具对材料进行切削加工,并用顶部涂有TiAlN的钻头对材料进行钻孔,可以制备出形状复杂的封装部件。但是在这种新型系列轻质结构功能一体化材料的实际推广应用过程中逐渐暴露出诸如强度水平低、在海洋气候下使用时材料的腐蚀问题等,这些问题的出现已影响到这种新型材料的应用。究其原因,主要是由于仅考虑到材料的物理性能与合金Si含量之间的对应关系,所制备的系列材料是单纯的二元假合金,并未拓展材料微合金化的研究,从而出现了强度偏低和腐蚀等问题,影响该系列材料进一步扩大应用范围。
发明内容本发明的目的是提供一种集低密度、低热膨胀系数、高热导率、高强度和耐蚀性能于一身的结构功能一体化高硅铝合金材料,以满足航空、航天电讯等相关工业关键元器件及一些特定使用环境对高档、高可靠性封装材料的需求。本发明的另一个目的是提供一种微合金化高硅铝合金材料的制备方法。为实现上述目的,本发明采取以下技术方案—种微合金化硅铝合金,该合金材料的元素组成及含量为Si5080wt%,Mn0.050.5wt%,Mg0.050.5wt%,Zr00.4wt%,余量为Al,其中,Mn、Mg和Zr总含量为0.11.0wt%。本发明的微合金化高硅铝合金材料,包括5080wt^的Si元素,还包括微量Mn、Mg、Zr等元素,其余为Al。本发明主要依据新型硅铝合金材料在强度、刚度及机加工性能等方面的要求对合金进行微合金化设计。与常规硅铝合金材料相比,Si和Al两种主合金元素含量基本保持不变,添加了微量的Mg、Mn、Zr等元素。微量Mg元素的加入细化Si相和形成球形Mg^i相,在不减弱合金中Si元素作用的同时,改善材料的强度和热机加工性能;Mn可提高材料的耐腐蚀性能并可形成热膨胀系数更低的第三相;Zr元素的加入可形成弥散强化相,可使只有(2050)X含量的铝既作为连接高体积分数的脆性Si相的基体,又可提高铝基体的强度。本发明的微合金化高硅铝合金材料,其微量元素总添加量范围为0.11.0%。本发明的微合金化高硅铝合金材料,Mn元素的含量范围优选为0.10.5%;Mg元素的含量范围优选为0.10.5%;Zr的含量为00.4%。本发明的微合金化硅铝合金材料的制备方法的工艺步骤包括(1)中间合金锭的预制按照本发明的所述的微合金化硅铝合金的组成进行配料,其中,Si、Al和Mg都采用单质原料,Mn采用Al-Mn中间合金和Zr采用Al-Zr中间合金作为原料,经熔制,再浇铸成微合金化硅铝合金的中间合金锭备用;(2)喷射成形微合金化硅铝合金的制备将上述中间合金锭放入真空气氛保护下的中频感应电炉中进行熔炼,真空度为10100Pa,并将合金熔体温度控制在16001700K;静置后将合金液倒入保温炉后通过导流管到达雾化喷嘴进行雾化,并沉积在接收盘上,得到沉积坯件;其中,雾化前的合金熔体温度为16001700K;雾化喷嘴采用双层非限制式气流雾化喷嘴,雾化气体为氮气,雾化气体压力控制为0.400.8MPa;接收盘的相对于雾化喷嘴的倾斜角度为3035°,接收盘的相对于雾化喷嘴的沉积距离为500700mm;(3)沉积坯件的致密化处理将制备的沉积坯件进行机加工,用车床车去沉积坯件的表皮,进行热压致密化,热压致密化参数选择如下热压温度为55059(TC,压强为200300MPa,热压时间为25h。本发明的优点是本发明的微合金化高硅铝合金材料是在原有Si-Al系列合金中添加微量的Mn、Mg、Zr等元素,通过采用高温高真空喷射成形技术制备出的新型微合金化硅铝合金材料,在具有低密度低热膨胀系数高热导率等优良特性的同时,提高了材料的强度、刚度及耐蚀性能,是一种新型的结构功能一体化封装或散热材料,可满足航空、航天电讯等相关工业关键元器件及一些特定使用环境对高档化、高可靠性封装材料的需求。图1为喷射成形设备示意图。具体实施例方式制备喷射成形微合金化硅铝合金的喷射成形设备如图1所示,该喷射成形设备是在罐体内的上部设有感应熔化坩埚l(也称中频感应电炉),感应熔化坩埚1的外壁上设有加热感应圈2;在感应熔化坩埚1的下方设有保温炉4,在保温炉4内装有石墨坩埚5,石墨坩埚5的上口与感应熔化坩埚1倾斜后的上口相对,石墨坩埚5的底部设有出口,石墨坩埚5的出口接导流管6,导流管6的管壁的四周包有感应加热系统(未图式),导流管直径为3.54.5mm,导流管6的出口处设有非限制式气流雾化喷嘴7,导流管的出口段位于非限制式气流雾化喷嘴的中间;拔开塞棒3,使合金液通过导流管6向下流的瞬间,即向雾化喷嘴7内送氮气,雾化氮气的压力为0.400.8MPa;微合金化硅铝合金液从导流管6流出在雾化气体作用下形成雾化锥8,基板运动装置10带动接收盘转动和下降,形成沉积坯9;罐体外部设有激光器ll,起到限位的作用,目的是为保持一定的沉积距离,沉积坯9长到一定高度后,激光器11显示出信息,并使基板向下移动。雾化喷嘴与接收盘的接收系统配合方式为直喷斜拉,即雾化喷嘴直线向下喷射金属熔体的液滴,接收盘倾斜对着雾化喷嘴,边旋转边下降接收金属熔体的液滴,在接收盘形成圆柱形沉积坯件;接收盘倾斜对着雾化喷嘴7,也就是说垂直于接收盘平面的直线和雾化喷嘴7的中心线(也即导流管6的中心线)不是在一条直线上,而成夹角即倾斜角,该倾斜角度为3035。;雾化喷嘴7的中心线(也即导流管6的中心线)到接收盘上的交点与接收盘的中心的距离为偏心距e,偏心距e为2040mm。从雾化喷嘴7到雾化液滴到达接沉积坯件9的距离为沉积距离,沉积距离为500700mm。雾化喷嘴7可以采用专利号98201214.4名为"双层非限制式气流雾化喷嘴"专利文献中的雾化喷嘴结构,雾化喷嘴7可以以15HZ的频率高速扫描,进行直线向下喷射;基板运动装置10的结构以及采用喷射成形设备进行的喷射成形方法在专利号03119605.5名为"一种超高强度高韧性铝合金材料及其制备方法"专利文献中已详细记载,故不再赘述。本发明的一种微合金化高硅铝合金材料的制备方法,具体方法如下(1)中间合金锭的制备按照微合金化高硅铝合金成分(重量百分比计)进行配料,浇铸成微合金化硅铝合金的中间合金锭备用。(2)喷射成形微合金化硅铝合金的制备将上述中间合金锭放入真空气氛保护下的中频感应电炉中进行熔炼,真空度为10100Pa,然后将合金液倒入中间包后进行雾化沉积;雾化沉积的工艺参数选择如下采用双层非限制式气流雾化喷嘴,雾化气体为氮气,雾化喷嘴与沉积坯件接收系统配合方式为直喷斜拉,倾斜角度为3035°,偏心距为2040mm,沉积距离为500700mm,金属熔体温度为16001700K,雾化气体压力控制为0.400.8MPa,导流管直径为3.84.5mm。本发明所采用的高温高真空喷射成形设备示意图如图l所示。(3)沉积坯件的致密化处理将制备的沉积坯件进行机加工车皮,进行热压致密化,热压致密化参数选择如下热压温度为550590°C,压强为200300MPa,热压时间为25h。对比例1:采用中频感应电炉熔制60wt^Si-Al中间合金锭。将预制好的中间合金锭放入真空保护气氛的雾化熔炼炉中,真空度为20Pa,升温至1700K,保温10min,采用氮气进行气雾化,雾化压力0.65MPa,雾化喷嘴与沉积坯件接收系统配合方式为直喷斜拉,倾斜角度为35°,偏心距为30mm,沉积距离为600mm,导流管直径为3.8mm,一次性连续雾化30公斤Si合金高温熔体时,制备出重约20Kg的合金圆锭。将机加工车皮后的沉积坯件装入模具中,在热压烧结炉中进行致密化处理,热压温度为57(TC,压强为250MPa,保压时间为3h。对比例2:采用中频感应电炉熔制70wt%Si-Al中间合金锭。将预制好的中间合金锭放入真空保护气氛的雾化熔炼炉中,真空度为50Pa,升温至1700K,保温10min,采用氮气进行气雾化,雾化压力0.65MPa,雾化喷嘴与沉积坯件接收系统配合方式为直喷斜拉,倾斜角度为30°,偏心距为40mm,沉积距离为600mm,导流管直径为4.Omm,一次性连续雾化30公斤Si合金高温熔体时,制备出重约20Kg的合金圆锭。将机加工车皮后的沉积坯件装入模具中,在热压烧结炉中进行致密化处理,热压温度为57(TC,压强为250MPa,保压时间为3h。实施例1:采用中频感应电炉熔制60wt%Si-O.2wt%Mg-O.lwt%Mn-Al中间合金锭,其中,其中微量Mg元素直接加入,Mn元素以Al-Mn中间合金形式加入。将预制好的中间合金锭放入真空保护气氛的雾化熔炼炉中,真空度为30Pa,升温至1625K,保温10min,采用氮气进行气雾化,雾化压力0.5MPa,雾化喷嘴与沉积坯件接收系统配合方式为直喷斜拉,倾斜角度为32°,偏心距为25mm,沉积距离为550mm,导流管直径为4.2mm,一次性连续雾化30公斤Si合金高温熔体时,制备出重约20Kg的合金圆锭。将机加工车皮后的沉积坯件装入模具中,在热压烧结炉中进行致密化处理,热压温度为585t:,压强为270MPa,保压时间为2h。实施例2:采用中频感应电炉熔制60wt^Si-O.2wt%Mg-0.35wt%Mn-Al中间合金锭,其中,其中微量Mg元素直接加入,Mn元素以Al-Mn中间合金形式加入。将预制好的中间合金锭放入真空保护气氛的雾化熔炼炉中,真空度为80Pa,升温至1600K,保温10min,采用氮气进行气雾化,雾化压力0.4MPa,雾化喷嘴与沉积坯件接收系统配合方式为直喷斜拉,倾斜角度为35°,偏心距为40mm,沉积距离为500mm,导流管直径为3.6mm,一次性连续雾化30公斤Si合金高温熔体时,制备出重约20Kg的合金圆锭。将机加工车皮后的沉积坯件装入模具中,在热压烧结炉中进行致密化处理,热压温度为58(TC,压强为270MPa,保压时间为2.5h。实施例3:采用中频感应电炉熔制60wt%Si-O.2wt%Mg-O.35wt%Mn-O.3wt%Zr-Al中间合金锭,其中,其中微量Mg元素直接加入,Mn元素以Al-Mn中间合金形式加入,Zr元素以Al-Zr中间合金形式加入。将预制好的中间合金锭放入真空保护气氛的雾化熔炼炉中,真空度为100Pa,升温至1650K,保温10min,采用氮气进行气雾化,雾化压力0.55MPa,雾化喷嘴与沉积坯件接收系统配合方式为直喷斜拉,倾斜角度为30°,偏心距为30mm,沉积距离为650mm,导流管直径为3.8mm,一次性连续雾化30公斤Si合金高温熔体时,制备出重约20Kg的合金圆锭。将机加工车皮后的沉积坯件装入模具中,在热压烧结炉中进行致密化处理,热压温度为590。C,压强为230MPa,保压时间为3h。实施例4:采用中频感应电炉熔制60wt^Si-O.3wt%Mg_0.48wt%Mn-Al中间合金锭,其中,其中微量Mg元素直接加入,Mn元素以Al-Mn中间合金形式加入。将预制好的中间合金锭6放入真空保护气氛的雾化熔炼炉中,真空度为50Pa,升温至1650K,保温10min,采用氮气进行气雾化,雾化压力0.75MPa,雾化喷嘴与沉积坯件接收系统配合方式为直喷斜拉,倾斜角度为30°,偏心距为35mm,沉积距离为700mm,导流管直径为4.3mm,一次性连续雾化30公斤Si合金高温熔体时,制备出重约20Kg的合金圆锭。将机加工车皮后的沉积坯件装入模具中,在热压烧结炉中进行致密化处理,热压温度为565t:,压强为250MPa,保压时间为4h。实施例5:采用中频感应电炉熔制60wt%Si-O.3wt%Mg-O.48wt%Mn_0.15wt%Zr_Al中间合金锭,其中,其中微量Mg元素直接加入,Mn元素以Al-Mn中间合金形式加入,Zr元素以Al-Zr中间合金形式加入。将预制好的中间合金锭放入真空保护气氛的雾化熔炼炉中,真空度为lOPa,升温至1700K,保温10min,采用氮气进行气雾化,雾化压力0.65MPa,雾化喷嘴与沉积坯件接收系统配合方式为直喷斜拉,倾斜角度为34°,偏心距为30mm,沉积距离为550mm,导流管直径为4.2mm,一次性连续雾化30公斤Si合金高温熔体时,制备出重约20Kg的合金圆锭。将机加工车皮后的沉积坯件装入模具中,在热压烧结炉中进行致密化处理,热压温度为555",压强为300MPa,保压时间为3.5h。实施例6:采用中频感应电炉熔制50wt%Si-O.lwt%Mg-O.5wt%Mn-Al中间合金锭,其中,其中微量Mg元素直接加入,Mn元素以Al-Mn中间合金形式加入。将预制好的中间合金锭放入真空保护气氛的雾化熔炼炉中,真空度为30Pa,升温至1650K,保温10min,采用氮气进行气雾化,雾化压力0.75MPa,雾化喷嘴与沉积坯件接收系统配合方式为直喷斜拉,倾斜角度为35°,偏心距为40mm,沉积距离为600mm,导流管直径为4.4mm,一次性连续雾化30公斤Si合金高温熔体时,制备出重约20Kg的合金圆锭。将机加工车皮后的沉积坯件装入模具中,在热压烧结炉中进行致密化处理,热压温度为565t:,压强为260MPa,保压时间为4.5h。实施例7:采用中频感应电炉熔制50wt%Si-O.14wt%Mg-O.25wt%Mn_0.4wt%Zr-Al中间合金锭,其中,其中微量Mg元素直接加入,Mn元素以Al-Mn中间合金形式加入,Zr元素以Al-Zr中间合金形式加入。将预制好的中间合金锭放入真空保护气氛的雾化熔炼炉中,真空度为75Pa,升温至1680K,保温10min,采用氮气进行气雾化,雾化压力0.60MPa,雾化喷嘴与沉积坯件接收系统配合方式为直喷斜拉,倾斜角度为30°,偏心距为20mm,沉积距离为630mm,导流管直径为3.7mm,一次性连续雾化30公斤Si合金高温熔体时,制备出重约20Kg的合金圆锭。将机加工车皮后的沉积坯件装入模具中,在热压烧结炉中进行致密化处理,热压温度为575",压强为240MPa,保压时间为2.5h。实施例8:采用中频感应电炉熔制70wt%Si-O.45wt%Mg-O.15wt%Mn-Al中间合金锭,其中,其中微量Mg元素直接加入,Mn元素以Al-Mn中间合金形式加入。将预制好的中间合金锭放入真空保护气氛的雾化熔炼炉中,真空度为60Pa,升温至1630K,保温10min,采用氮气进行气雾化,雾化压力0.55MPa,雾化喷嘴与沉积坯件接收系统配合方式为直喷斜拉,倾斜角度为33°,偏心距为38mm,沉积距离为650mm,导流管直径为4.5mm,一次性连续雾化30公斤Si合金高温熔体时,制备出重约20Kg的合金圆锭。将机加工车皮后的沉积坯件装入模具中,在热压烧结炉中进行致密化处理,热压温度为56(TC,压强为260MPa,保压时间为3.5h。实施例9:采用中频感应电炉熔制70wt%Si-0.45wt%Mg-O.15wt%Mn_0.22wt%Zr-Al中间合金锭,其中,其中微量Mg元素直接加入,Mn元素以Al-Mn中间合金形式加入,Zr元素以Al-Zr中间合金形式加入。将预制好的中间合金锭放入真空保护气氛的雾化熔炼炉中,真空度为40Pa,升温至1650K,保温10min,采用氮气进行气雾化,雾化压力0.45MPa,雾化喷嘴与沉积坯件接收系统配合方式为直喷斜拉,倾斜角度为35°,偏心距为24mm,沉积距离为670mm,导流管直径为4.Omm,一次性连续雾化30公斤Si合金高温熔体时,制备出重约20Kg的合金圆锭。将机加工车皮后的沉积坯件装入模具中,在热压烧结炉中进行致密化处理,热压温度为57(TC,压强为240MPa,保压时间为5h。实施例10:采用中频感应电炉熔制80wt%Si-O.5wt%Mg-O.2wt%Mn_0.lwt%Zr_Al中间合金锭,其中,其中微量Mg元素直接加入,Mn元素以Al-Mn中间合金形式加入,Zr元素以Al-Zr中间合金形式加入。将预制好的中间合金锭放入真空保护气氛的雾化熔炼炉中,真空度为90Pa,升温至1700K,保温10min,采用氮气进行气雾化,雾化压力0.6MPa,雾化喷嘴与沉积坯件接收系统配合方式为直喷斜拉,倾斜角度为30°,偏心距为32mm,沉积距离为650mm,导流管直径为4.5mm,一次性连续雾化30公斤Si合金高温熔体时,制备出重约20Kg的合金圆锭。将机加工车皮后的沉积坯件装入模具中,在热压烧结炉中进行致密化处理,热压温度为58(TC,压强为250MPa,保压时间为3h。表1是硅铝合金的化学成分。表2是对比例1、2以及实施例110所获得材料的各项性能测试结果。可以看出,喷射成形微合金化硅铝系列合金的密度、热导率、热膨胀系数等性能与喷射成形硅铝合金相当,是一种低密度、低热膨胀系数、高热导率的合金材料,可以达到现代电子封装材料对热膨胀、散热和轻量化等三个方面的最基本要求。与此同时,本发明的微合金化可明显提高喷射成形技术硅铝系列合金材料的强度、硬度及耐蚀性能。另外,本发明所制备的系列硅铝合金均具有良好的可机加工、涂镀及焊接等封装工艺性能。表1Si-Al合金成分(质量百分数,wt%)序号SiMgMnZrAl对比例160Bal对比例270Bal实施例1600.200.10Bal实施例2600.200.35Bal实施例3600.200.350.30Bal实施例4600.300.48Bal<table>tableseeoriginaldocumentpage9</column></row><table><table>tableseeoriginaldocumentpage10</column></row><table>权利要求一种微合金化硅铝合金,其特征在于该合金材料的元素组成及含量为Si50~80wt%,Mn0.05~0.5wt%,Mg0.05~0.5wt%,Zr0~0.4wt%,余量为Al,其中,Mn、Mg和Zr总含量为0.1~1.0wt%。2.权利要求l的微合金化硅铝合金材料的制备方法,其特征在于,该制备方法的工艺步骤包括(1)中间合金锭的预制按照权利要求1的所述的微合金化硅铝合金的组成进行配料,其中,Si、Al和Mg都采用单质原料,Mn采用Al-Mn中间合金和Zr采用Al-Zr中间合金作为原料,经熔制,再浇铸成微合金化硅铝合金的中间合金锭备用;(2)喷射成形微合金化硅铝合金的制备将上述中间合金锭放入真空气氛保护下的中频感应电炉中进行熔炼,真空度为10lOOPa,并将合金熔体温度控制在16001700K;静置后将合金液倒入保温炉后通过导流管到达雾化喷嘴进行雾化,并沉积在接收盘上,得到沉积坯件;其中,雾化前的合金熔体温度为16001700K;雾化喷嘴采用双层非限制式气流雾化喷嘴,雾化气体为氮气,雾化气体压力控制为0.400.8MPa;接收盘的相对于雾化喷嘴的倾斜角度为3035°,接收盘的相对于雾化喷嘴的沉积距离为500700mm;(3)沉积坯件的致密化处理将制备的沉积坯件进行机加工,用车床车去沉积坯件的表皮,进行热压致密化,热压致密化参数选择如下热压温度为55059(TC,压强为200300MPa,热压时间为25h。全文摘要本发明公开了一种微合金化硅铝合金材料及其制备方法,通过在50~80wt%Si-Al合金中加入微量Mg,同时加入一定量的Mn;或在添加Mg的同时,添加Mn和微量Zr。按合金成分配料,将原料熔化,浇铸成合金预制锭。然后采用高真空高温喷射成形方法制备微合金化硅铝合金材料。喷射成形工艺参数选择如下雾化气体氮气;雾化气体压力0.40~0.8MPa;沉积距离500~700mm,金属熔体温度1600~1700K,导流管直径3.8~4.5mm。本发明的优点在于喷射成形微合金化Si-Al合金材料具有低密度低热膨胀系数高热导率等优良特性的同时,提高了材料的强度、刚度及耐蚀性能,是一种新型的结构功能一体化封装或散热材料。文档编号C22C29/00GK101748320SQ20081023957公开日2010年6月23日申请日期2008年12月12日优先权日2008年12月12日发明者刘红伟,张永安,朱宝宏,李志辉,李锡武,熊柏青,王锋申请人:北京有色金属研究总院
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1