一种基于Al-Cu一步去合金化制备多孔Al<sub>2</sub>Cu化合物的方法

文档序号:3417555阅读:298来源:国知局
专利名称:一种基于Al-Cu一步去合金化制备多孔Al<sub>2</sub>Cu化合物的方法
技术领域
本发明涉及一种制备纳米多孔Al2Cu的方法,更特别地说,是指一种一步去合金化连续制备纳米多孔Al2Cu化合物的方法。
背景技术
金属纳米多孔材料是兼具功能和结构双重属性的一类特殊工程材料。它保留了金属的可焊性、导电性、延展性以及结构强度高、耐高温等特性,而且具备稳定的孔隙结构和由此带来的流体渗透率高、比表面积大等独特性能。金属纳米多孔材料由于其表面和结构特性,可广泛用于离子交换、分离、催化、传感器、生物分子的隔离和净化等领域。近来,去合金法被用来制备多孔材料,是利用金属活泼性的差异,通过制备合金前躯体,然后在腐蚀溶液中选择性溶解掉活泼组元,同时使惰性组元在合金/溶液界面快速扩散重排形成多孔网络,从而简化了实验步骤,而且避免了前躯体必须附着在基底上的缺点,制备出无支撑的纳米多孔金属。

发明内容
本发明的目的是提出一种一步去合金化连续制备纳米多孔Al2Cu化合物的方法, 该方法通过控制合金化的时间,使得铝铜合金在腐蚀过程中依次获得单孔Al2Cu化合物、双孔金属铜以及单孔金属铜;经本发明方法制得的产物皆显示了均勻的三维、开放、双连续、 相互渗透的多孔网络结构特性。本发明的一种基于Al-Cu —步去合金化制备多孔Al2Cu化合物的方法,其特征在于包括有下列步骤步骤一制母合金根据目标成分称取质量百分比纯度为99. 99wt%的铝及质量百分比纯度为 99. 999wt%的铜,并将铝、铜混合得到母合金原料;然后将母合金原料置于电弧炉中,并在氩气保护下,熔炼温度为700°C 900°C, 熔炼15 30min后,随炉冷却至25°C 40°C后,制得铝铜合金铸锭;铝铜合金铸锭中铜的原子百分比为13 20%,其余为铝;步骤二 制合金条带将步骤一制得的铝铜合金铸锭去除表层氧化皮,并采用熔炼-甩带设备制铝铜合金条带;制甩带条件在1X10_3 5X10_3Pa真空度下,加热至800°C 900°C,使去除氧化皮的铝铜合金铸锭熔融,然后将熔融的铝铜合金吹铸形成合金条带;吹铸所需压力为0. 01 IMPa ;吹铸形成的合金条带在冷却速率为IO6 10%/s 条件下进行冷却;制得的铝铜合金条带的长为2 20mm、宽为4 6mm、厚为20 40 μ m ;
步骤三一步去合金化将步骤二制得的铝铜合金条带置于15°C 30°C的腐蚀液中进行去合金化处理 0. 5 100小时,从而制得随去合金化时间0. 5 100小时变化的具有层次性的纳米多孔结构的时间-化合物或金属铜条带;所述腐蚀液为盐酸、硫酸、磷酸、或者柠檬酸、水杨酸、乙二酸、酒石酸、乳酸;所述的去合金化时间包括有第一段成型时间、第二段成型时间和第三段成型时间;第一段成型时间为0. 5h 10h,成型产物为单孔Al2Cu化合物条带;第二段成型时间为IOh 80h,成型产物为双孔金属铜条带;第三段成型时间为80h 100h,成型产物为单孔金属铜条带;步骤四后处理与保存将步骤三得到的单孔Al2Cu化合物条带顺次采用去离子水和无水乙醇进行清洗, 然后将清洁单孔Al2Cu化合物条带保存在真空度为IXKT1MPa的真空室内,以避免其被氧化;将步骤三得到的双孔金属铜条带顺次采用去离子水和无水乙醇进行清洗,然后将清洁双孔金属铜条带保存在真空度为IXKT1MPa的真空室内,以避免其被氧化;将步骤三得到的单孔金属铜条带顺次采用去离子水和无水乙醇进行清洗,然后将清洁单孔金属铜条带保存在真空度为IXlO-1MPa的真空室内,以避免其被氧化。本发明的制备方法具有如下优点①在多段的合金化时间条件下,能够通过调控连续制备的时间得到三种复杂的纳米多孔结构,灵巧地实现了复杂纳米多孔结构的一步成型工艺。②本发明通过灵活地掌控去合金化腐蚀溶液种类、浓度及腐蚀时间可连续制备纳米多孔Al2Cu化合物、双孔径纳米多孔铜及单孔径纳米多孔铜。与现有方法相比操作更为简便,调控自由度更大,可实现复杂多孔结构连续制备的特点。③本发明在温和腐蚀环境(15°C 30°C )中长时间去合金化处理,不仅使得形成的纳米多孔结构更加均勻,而且能够得到几乎无明显体积收缩和开裂产生的整块纳米多孔铜带,结构完整性更佳。


图1是Al-Cu 二元合金相图。图2A是A1-15CU合金经甩带前的显微结构照片。图2B是A1-15CU合金经甩带后的显微结构照片。图3A是实施例4制得的4h_单孔Al2Cu化合物条带的表面形貌照片。图;3B是实施例4制得的10. 5h_双孔金属铜条带的表面形貌照片。图3C是实施例4制得的94h_单孔金属铜条带的表面形貌照片。图4是实施例4制得产物的XRD图片。
具体实施例方式下面将结合附图和实施例对本发明做进一步的详细说明。
本发明的一种基于Al-Cu —步去合金化制备多孔Al2Cu化合物的方法,包括有下列具体的制备步骤步骤一制母合金根据目标成分称取纯铝(质量百分比纯度99. 99wt% )及纯铜(质量百分比纯度 99. 999wt% ),并将铝、铜混合得到母合金原料;然后将母合金原料置于电弧炉中,并在氩气保护下,熔炼温度为700°C 900°C, 熔炼15 30min后,随炉冷却至25°C 40°C后,制得铝铜合金铸锭;铝铜合金铸锭中铜的原子百分比为13 20%,其余为铝; 在本发明中,对目标成分的设计依据了如图1所示的Al-Cu 二元合金相图。步骤二 制合金条带将步骤一制得的铝铜合金铸锭去除表层氧化皮,并采用熔炼-甩带设备制铝铜合金条带;制甩带条件在1X10_3 5X10_3Pa真空度下,加热至800°C 900°C,使去除氧化皮的铝铜合金铸锭熔融,然后将熔融的铝铜合金吹铸形成合金条带;铝铜合金条带的长为2 20_、宽为4 6_、厚为20 ~ 40 μ m ;吹铸所需压力为0. 01 IMPa ;吹铸形成的合金条带在冷却速率为IO6 l(fK/s 条件下进行冷却;对制得的铝铜合金条带进行组织分析,该铝铜合金由类层状的α -Al (Cu)固溶体相和Al2Cu相构成,类层状的α -Al (Cu)固溶体相与Al2Cu相的摩尔量之比为0. 15 1.50。步骤三一步去合金化将步骤二制得的铝铜合金条带置于15°C 30°C的腐蚀液中进行去合金化处理 0. 5 100小时,从而制得随去合金化时间0. 5 100小时变化的具有层次性的纳米多孔结构的化合物或金属铜(简称为时间-化合物或金属铜);所述腐蚀液为盐酸(质量百分比浓度Iwt. % 37wt. % )、硫酸(质量百分比浓度Iwt. % 98wt. % )、磷酸(质量百分比浓度Iwt. % 90wt. % )、或者柠檬酸、水杨酸、
乙二酸、酒石酸、乳酸;所述时间-化合物或金属铜依据去合金化时间(0. 5 100小时)的长短(也称为多段成型时间)依次得到的产物结构为单一模式孔径分布的纳米多孔Al2Cu化合物条带 (简称为单孔Al2Cu化合物条带)、双模式孔径分布的纳米多孔铜条带(简称为双孔金属铜条带)和单一模式孔径分布的纳米多孔铜条带(简称为单孔金属铜条带);所述的去合金化时间包括有第一段成型时间、第二段成型时间和第三段成型时间;第一段成型时间为0. 5h IOh后,成型产物为单孔Al2Cu化合物条带;第二段成型时间为IOh 80h后,成型产物为双孔金属铜条带;第三段成型时间为80h IOOh后,成型产物为单孔金属铜条带。在此步骤中,本发明是将铝铜合金条带分三个成型时间段进行腐蚀观察其表面形貌。当在第一成型时间内,本发明对腐蚀后的铝铜合金条带进行表面形貌观察,其为单一模式孔径分布的纳米多孔Al2Cu化合物。当在第二成型时间内,本发明对腐蚀后的铝铜合金条带进行表面形貌观察,其为双模式孔径分布的纳米多孔铜。当在第三成型时间内,本发明对腐蚀后的铝铜合金条带进行表面形貌观察,其为单一模式孔径分布的纳米多孔铜。由于本发明采用不同的去合金化时间(0.5 100小时)进行处理,所以在连续去合金化处理过程中,铝铜合金条带的形貌依次进行了变化,最终制得具有明显层次性结构的纳米多孔铜的均勻完整条带。步骤四后处理与保存将步骤三得到的单孔Al2Cu化合物条带顺次采用去离子水和无水乙醇进行清洗, 然后将清洁单孔Al2Cu化合物条带保存在真空度为IXKT1MPa的真空室内,以避免其被氧化;将步骤三得到的双孔金属铜条带顺次采用去离子水和无水乙醇进行清洗,然后将清洁双孔金属铜条带保存在真空度为IXKT1MPa的真空室内,以避免其被氧化;将步骤三得到的单孔金属铜条带顺次采用去离子水和无水乙醇进行清洗,然后将清洁单孔金属铜条带保存在真空度为IXlO-1MPa的真空室内,以避免其被氧化。 实施例1 制单孔Al2Cu化合物步骤一制母合金根据目标成分称取质量百分比纯度为99. 99wt%的铝及质量百分比纯度为 99. 999wt%的铜,并将铝、铜混合得到母合金原料;然后将母合金原料置于电弧炉(型号NEW-ADR_05 ;生产厂家日本日新技研株式会社)中,并在氩气保护下,熔炼温度为800°C,熔炼20min后,随炉冷却至25°C后,制得铝铜合金铸锭;铝铜合金铸锭中铜的原子百分比为14%,其余为铝;在本发明中,对目标成分的设计依据了如图1所示的Al-Cu 二元合金相图。步骤二 制合金条带将步骤一制得的铝铜合金铸锭去除表层氧化皮,并采用熔炼-甩带设备(型号 NEW-A05 ;生产厂家日本日新技研株式会社)制铝铜合金条带;制甩带条件在3 X IO-3Pa真空度下,加热至800°C,使去除氧化皮的铝铜合金铸锭熔融,然后将熔融的铝铜合金吹铸形成合金条带;吹铸所需压力为0. IMPa ;吹铸形成的合金条带在冷却速率为106K/s条件下进行冷却;对制得的铝铜合金条带进行组织分析,该铝铜合金由类层状的α -Al (Cu)固溶体相和Al2Cu相构成,类层状的α -Al (Cu)固溶体相与Al2Cu相的摩尔量之比为0. 89。铝铜合金条带的长为15mm、宽为4mm、厚为25 μ m ;步骤三一步去合金化将步骤二制得的铝铜合金条带置于25°C的腐蚀液中进行去合金化处理2小时,从而制得单一模式孔径尺寸分布的纳米多孔Al2Cu化合物(简称为2h-单孔Al2Cu化合物), 经测量孔径为50nm ;所述腐蚀液为盐酸(质量百分比浓度IOwt. % );在此步骤中,本发明对腐蚀后的铝铜合金条带进行表面形貌观察,其为单一模式孔径分布的纳米多孔Al2Cu化合物。步骤四后处理与保存将步骤三得到的单孔Al2Cu化合物条带顺次采用去离子水和无水乙醇进行清洗, 然后将清洁单孔Al2Cu化合物条带保存在真空度为IXKT1MPa的真空室内,以避免其被氧化。实施例2 制双孔金属铜步骤一制母合金根据目标成分称取质量百分比纯度为99. 99wt%的铝及质量百分比纯度为 99. 999wt%的铜,并将铝、铜混合得到母合金原料;然后将母合金原料置于电弧炉(型号NEW-ADR_05 ;生产厂家日本日新技研株式会社)中,并在氩气保护下,熔炼温度为750°C,熔炼15min后,随炉冷却至40°C后,制得铝铜合金铸锭;铝铜合金铸锭中铜的原子百分比为17%,其余为铝; 在本发明中,对目标成分的设计依据了如图1所示的Al-Cu 二元合金相图。步骤二 制合金条带将步骤一制得的铝铜合金铸锭去除表层氧化皮,并采用熔炼-甩带设备(型号 NEW-A05 ;生产厂家日本日新技研株式会社)制铝铜合金条带;制甩带条件在3 X IO-3Pa真空度下,加热至850°C,使去除氧化皮的铝铜合金铸锭熔融,然后将熔融的铝铜合金吹铸形成合金条带;吹铸所需压力为0. 3MPa ;吹铸形成的合金条带在冷却速率为107K/s条件下进行冷却;对制得的铝铜合金条带进行组织分析,该铝铜合金由类层状的-Al (Cu)固溶体相和Al2Cu相构成,类层状的-Al (Cu)固溶体相与Al2Cu相的摩尔量之比为0. 66。铝铜合金条带的长为10mm、宽为6mm、厚为20 μ m ;步骤三一步去合金化将步骤二制得的铝铜合金条带置于20°C的腐蚀液中进行去合金化处理12小时, 从而制得双模式孔径尺寸分布的纳米多孔铜(简称为12h-双孔金属铜),其大孔径为 200nm,小孔径为20nm ;所述腐蚀液为硫酸(质量百分比浓度8wt. % );在此步骤中,本发明对腐蚀后的铝铜合金条带进行表面形貌观察,其为双模式孔径尺寸分布的纳米多孔铜。步骤四后处理与保存将步骤三得到的双孔金属铜条带顺次采用去离子水和无水乙醇进行清洗,然后将清洁双孔金属铜条带保存在真空度为IXKT1MPa的真空室内,以避免其被氧化。实施例3 制单孔金属铜步骤一制母合金根据目标成分称取质量百分比纯度为99. 99wt%的铝及质量百分比纯度为 99. 999wt%的铜,并将铝、铜混合得到母合金原料;然后将母合金原料置于电弧炉(型号NEW-ADR_05 ;生产厂家日本日新技研株式会社)中,并在氩气保护下,熔炼温度为850°C,熔炼25min后,随炉冷却至30°C后,制得铝铜合金铸锭;铝铜合金铸锭中铜的原子百分比为19%,其余为铝;在本发明中,对目标成分的设计依据了如图1所示的Al-Cu 二元合金相图。步骤二 制合金条带将步骤一制得的铝铜合金铸锭去除表层氧化皮,并采用熔炼-甩带设备(型号 NEW-A05 ;生产厂家日本日新技研株式会社)制铝铜合金条带;
制甩带条件在2 X IO-3Pa真空度下,加热至900°C,使去除氧化皮的铝铜合金铸锭熔融,然后将熔融的铝铜合金吹铸形成合金条带;吹铸所需压力为0. SMPa ;吹铸形成的合金条带在冷却速率为107K/s条件下进行冷却;对制得的铝铜合金条带进行组织分析,该铝铜合金由类层状的-Al(CU)固溶体相和Al2Cu相构成,类层状的-Al (Cu)固溶体相与Al2Cu相的摩尔量之比为0. 47。铝铜合金条带的长为15mm、宽为4. 6mm、厚为38 μ m ;步骤三一步去合金化将步骤二制得的铝铜合金条带置于23°C的腐蚀液中进行去合金化处理98小时, 从而制得单一模式孔径尺寸分布的纳米多孔铜(简称为98h-单孔金属铜),其孔径为 500nm ;所述腐蚀液为磷酸(质量百分比浓度20wt. % );在此步骤中,本发明对腐蚀后的铝铜合金条带进行表面形貌观察,其为单一模式孔径尺寸分布的纳米多孔铜。步骤四后处理与保存将步骤三得到的单孔金属铜条带顺次采用去离子水和无水乙醇进行清洗,然后将清洁单孔金属铜条带保存在真空度为IXlO-1MPa的真空室内,以避免其被氧化。实施例4 根据去合金化时间的不同顺次制得产物步骤一制母合金根据目标成分称取质量百分比纯度为99. 99wt%的铝及质量百分比纯度为 99. 999wt%的铜,并将铝、铜混合得到母合金原料;然后将母合金原料置于电弧炉(型号NEW-ADR_05 ;生产厂家日本日新技研株式会社)中,并在氩气保护下,熔炼温度为900°C,熔炼30min后,随炉冷却至^TC后,制得铝铜合金铸锭;铝铜合金铸锭中铜的原子百分比为15%,其余为铝;在本发明中,对目标成分的设计依据了如图1所示的Al-Cu 二元合金相图。步骤二 制合金条带将步骤一制得的铝铜合金铸锭去除表层氧化皮,并采用熔炼-甩带设备(型号 NEW-A05 ;生产厂家日本日新技研株式会社)制铝铜合金条带;制甩带条件在4X IO-3Pa真空度下,加热至870°C,使去除氧化皮的铝铜合金铸锭熔融,然后将熔融的铝铜合金吹铸形成合金条带;吹铸所需压力为0. 6MPa ;吹铸形成的合金条带在冷却速率为108K/s条件下进行冷却;对制得的铝铜合金条带进行组织分析,该铝铜合金由类层状的Ci-Al(Cu)固溶体相和Al2Cu相构成,类层状的Ci-Al(Cu)固溶体相与Al2Cu相的摩尔量之比为0.76。制得的铝铜合金条带的长为18mm、宽为5. 2mm、厚为观μ m ;其显微结构照片如图 2A和图2B所示。图2A为A1-15CU合金经甩带前的显微结构照片,图2B是Al_15Cu合金经甩带后的显微结构照片。步骤三一步去合金化将步骤二制得的铝铜合金条带置于的腐蚀液中分别进行去合金化处理4小时、10. 5小时、94小时,从而制得随去合金化时间4小时、10. 5小时、94小时变化的单一模式孔径分布的纳米多孔Al2Cu化合物条带(简称为4h-单孔Al2Cu化合物条带)、双模式孔径分布的纳米多孔铜条带(简称为10. 5h_双孔金属铜条带)和单一模式孔径分布的纳米多孔铜条带(简称为94h-单孔金属铜条带);所述腐蚀液为盐酸(质量百分比浓度5wt. % );所述时间-化合物或金属铜依据去合金化时间G小时、10. 5小时、94小时)的长短(也称为多段成型时间)依次得到的产物结构为单一模式孔径分布的纳米多孔Al2Cu化合物条带(简称为4h-单孔Al2Cu化合物条带)、双模式孔径分布的纳米多孔铜条带(简称为10. 5h-双孔金属铜条带)和单一模式孔径分布的纳米多孔铜条带(简称为94h-单孔金属铜条带);所述的去合金化时间包括有第一段成型时间、第二段成型时间和第三段成型时间;第一段成型时间为4h;第二段成型时间为10. 5h ;第三段成型时间为94h。在此步骤中,本发明是将铝铜合金条带分三个成型时间段进行腐蚀观察其表面形貌。当在第一成型时间内,本发明对腐蚀后的铝铜合金条带进行表面形貌观察,孔径为 250nm,如图3A所示,其为单一模式孔径分布的纳米多孔Al2Cu化合物条带(简称为4h_单孔Al2Cu化合物条带)。当在第二成型时间内,本发明对腐蚀后的铝铜合金条带进行表面形貌观察,大孔径为450nm,小孔径45nm,如图所示,其为双模式孔径分布的纳米多孔铜条带(简称为10.5h-双孔金属铜条带)。当在第三成型时间内,本发明对腐蚀后的铝铜合金条带进行表面形貌观察,孔径为700nm,如图3C所示,其为单一模式孔径分布的纳米多孔铜条带(简称为94h-单孔金属铜条带)。采用D/MaX2200多功能X射线衍射仪(日本理学)对实施例4制得的4h_单孔 Al2Cu化合物条带、10. 5h-双孔金属铜条带和94h-单孔金属铜条带进行结构分析,图中XRD 结果分别为(a) A1-15CU原合金;(b)去合金化4h后;(c)去合金化10. 5h后;(d)去合金化 94h 后。由于本发明采用不同的去合金化时间G小时、10. 5小时、94小时)进行处理,所以在连续去合金化处理过程中,铝铜合金条带的形貌依次进行了变化,最终制得具有明显层次性结构的纳米多孔铜的均勻完整条带。步骤四后处理与保存将步骤三得到的单孔Al2Cu化合物条带顺次采用去离子水和无水乙醇进行清洗, 然后将清洁单孔Al2Cu化合物条带保存在真空度为IXKT1MPa的真空室内,以避免其被氧化;将步骤三得到的双孔金属铜条带顺次采用去离子水和无水乙醇进行清洗,然后将清洁双孔金属铜条带保存在真空度为IXKT1MPa的真空室内,以避免其被氧化;将步骤三得到的单孔金属铜条带顺次采用去离子水和无水乙醇进行清洗,然后将清洁单孔金属铜条带保存在真空度为IXlO-1MPa的真空室内,以避免其被氧化。实施例5 根据去合金化时间的不同顺次制得产物步骤一制母合金根据目标成分称取质量百分比纯度为99. 99wt%的铝及质量百分比纯度为99. 999wt%的铜,并将铝、铜混合得到母合金原料;然后将母合金原料置于电弧炉(型号NEW-ADR_05 ;生产厂家日本日新技研株式会社)中,并在氩气保护下,熔炼温度为720°C,熔炼30min后,随炉冷却至30°C后,制得铝铜合金铸锭;铝铜合金铸锭中铜的原子百分比为19%,其余为铝;在本发明中,对目标成分的设计依据了如图1所示的Al-Cu 二元合金相图。步骤二 制合金条带将步骤一制得的铝铜合金铸锭去除表层氧化皮,并采用熔炼-甩带设备(型号 NEW-A05 ;生产厂家日本日新技研株式会社)制铝铜合金条带; 制甩带条件在3 X IO-3Pa真空度下,加热至900°C,使去除氧化皮的铝铜合金铸锭熔融,然后将熔融的铝铜合金吹铸形成合金条带;吹铸所需压力为0. 3MPa ;吹铸形成的合金条带在冷却速率为106K/s条件下进行冷却;对制得的铝铜合金条带进行组织分析,该铝铜合金由类层状的Ci-Al(Cu)固溶体相和Al2Cu相构成,类层状的Ci-Al(Cu)固溶体相与Al2Cu相的摩尔量之比为0.47。制得的铝铜合金条带的长为15mm、宽为4. 5mm、厚为28 μ m ;步骤三一步去合金化将步骤二制得的铝铜合金条带置于的腐蚀液中分别进行去合金化处理10小时、75小时、100小时,从而制得随去合金化时间10小时、75小时、100小时变化的单一模式孔径分布的纳米多孔Al2Cu基化合物条带(简称为IOh-单孔Al2Cu化合物条带)、双模式孔径分布的纳米多孔铜条带(简称为75h-双孔金属铜条带)和单一模式孔径分布的纳米多孔铜条带(简称为IOOh-单孔金属铜条带);所述腐蚀液为磷酸(质量百分比浓度5wt. % );所述时间-化合物或金属铜依据去合金化时间(10小时、75小时、100小时)的长短(也称为多段成型时间)依次得到的产物结构为单一模式孔径分布的纳米多孔Al2Cu化合物条带(简称为IOh-单孔Al2Cu化合物条带)、双模式孔径分布的纳米多孔铜条带(简称为75h-双孔金属铜条带)和单一模式孔径分布的纳米多孔铜条带(简称为IOOh-单孔金属铜条带);所述的去合金化时间包括有第一段成型时间、第二段成型时间和第三段成型时间;第一段成型时间为IOh ;第二段成型时间为75h;第三段成型时间为100h。在此步骤中,本发明是将铝铜合金条带分三个成型时间段进行腐蚀观察其表面形貌。当在第一成型时间内,本发明对腐蚀后的铝铜合金条带进行表面形貌观察,孔径为 80nm,其为单一模式孔径分布的纳米多孔Al2Cu化合物条带(简称为IOh-单孔Al2Cu化合物条带)。当在第二成型时间内,本发明对腐蚀后的铝铜合金条带进行表面形貌观察,孔径为150nm,其为双模式孔径分布的纳米多孔铜条带(简称为75h_双孔金属铜条带)。当在第三成型时间内,本发明对腐蚀后的铝铜合金条带进行表面形貌观察,孔径为190nm,其为单一模式孔径分布的纳米多孔铜条带(简称为IOOh-单孔金属铜条带)。由于本发明采用不同的去合金化时间(10小时、75小时、100小时)进行处理,所以在连续去合金化处理过程中,铝铜合金条带的形貌依次进行了变化,最终制得具有明显层次性结构的纳米多孔铜的均勻完整条带。步骤四后处理与保存将步骤三得到的单孔Al2Cu化合物条带顺次采用去离子水和无水乙醇进行清洗, 然后将清洁单孔Al2Cu化合物条带保存在真空度为IXKT1MPa的真空室内,以避免其被氧化;将步骤三得到的双孔金属铜条带顺次采用去离子水和无水乙醇进行清洗,然后将清洁双孔金属铜条带保存在真空度为IXKT1MPa的真空室内,以避免其被氧化;将步骤三得到的单孔金属铜条带顺次采用去离子水和无水乙醇进行清洗,然后将清洁单孔金属铜条带保存在真空度为IXlO-1MPa的真空室内,以避免其被氧化。
权利要求
1.一种基于Al-Cu —步去合金化制备多孔Al2Cu化合物的方法,其特征在于包括有下列步骤步骤一制母合金根据目标成分称取质量百分比纯度为99. 99wt%的铝及质量百分比纯度为 99. 999wt%的铜,并将铝、铜混合得到母合金原料;然后将母合金原料置于电弧炉中,并在氩气保护下,熔炼温度为700°C 900°C,熔炼 15 30min后,随炉冷却至25°C 40°C后,制得铝铜合金铸锭;铝铜合金铸锭中铜的原子百分比为13 20%,其余为铝; 步骤二 制合金条带将步骤一制得的铝铜合金铸锭去除表层氧化皮,并采用熔炼-甩带设备制铝铜合金条带;制甩带条件在1 X 10_3 5X 10_3Pa真空度下,加热至800°C 900°C,使去除氧化皮的铝铜合金铸锭熔融,然后将熔融的铝铜合金吹铸形成合金条带;吹铸所需压力为0. 01 IMPa ;吹铸形成的合金条带在冷却速率为IO6 l(fK/s条件下进行冷却;制得的铝铜合金条带的长为2 20mm、宽为4 6mm、厚为20 40 μ m ;步骤三一步去合金化将步骤二制得的铝铜合金条带置于15°C 30°C的腐蚀液中进行去合金化处理0. 5 100小时,从而制得随去合金化时间0. 5 100小时变化的具有层次性的纳米多孔结构的时间-化合物或金属铜条带;所述腐蚀液为盐酸、硫酸、磷酸、或者柠檬酸、水杨酸、乙二酸、酒石酸、乳酸; 所述的去合金化时间包括有第一段成型时间、第二段成型时间和第三段成型时间; 第一段成型时间为0. 5h 10h,成型产物为单孔Al2Cu化合物条带; 第二段成型时间为IOh 80h,成型产物为双孔金属铜条带; 第三段成型时间为80h 100h,成型产物为单孔金属铜条带; 步骤四后处理与保存将步骤三得到的单孔Al2Cu化合物条带顺次采用去离子水和无水乙醇进行清洗,然后将清洁单孔Al2Cu化合物条带保存在真空度为IXKT1MPa的真空室内,以避免其被氧化;将步骤三得到的双孔金属铜条带顺次采用去离子水和无水乙醇进行清洗,然后将清洁双孔金属铜条带保存在真空度为IXKT1MPa的真空室内,以避免其被氧化;将步骤三得到的单孔金属铜条带顺次采用去离子水和无水乙醇进行清洗,然后将清洁单孔金属铜条带保存在真空度为IXlO-1MPa的真空室内,以避免其被氧化。
2.根据权利要求1所述的一种基于Al-Cu—步去合金化制备多孔Al2Cu化合物的方法,其特征在于在步骤二中对制得的铝铜合金条带进行组织分析,该铝铜合金由类层状的 α -Al (Cu)固溶体相和Al2Cu相构成,类层状的α -Al (Cu)固溶体相与Al2Cu相的摩尔量之比为0. 15 1. 50。
3.根据权利要求1所述的一种基于Al-Cu—步去合金化制备多孔Al2Cu化合物的方法, 其特征在于步骤三制得的时间-化合物或金属铜条带的孔径为IOnm 900nm。
全文摘要
本发明公开了一种基于Al-Cu一步去合金化制备多孔Al2Cu化合物的方法,该方法通过控制Al-Cu前躯体合金中固溶体相和化合物相的构成、比例及分布,使其在去合金化时间0.5~100小时内的化学去合金化腐蚀过程中,依次获得单孔Al2Cu化合物、双孔金属铜以及单孔金属铜;经本发明方法制得的产物皆显示了均匀的三维、开放、双连续、相互渗透的多孔网络结构特性。
文档编号C22C1/08GK102304639SQ20111027301
公开日2012年1月4日 申请日期2011年9月15日 优先权日2011年9月15日
发明者刘文博, 张世超, 郑继伟 申请人:北京航空航天大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1