一种低温高强高韧耐磨铝青铜合金及其制备方法与流程

文档序号:12794335阅读:472来源:国知局

本发明涉及一种在低温-196℃温度下兼具高强度、高冲击韧性的耐磨铝青铜合金及其制备方法,属于金属材料及其制备技术领域。



背景技术:

国内外对耐磨铜合金材料的研究由来已久,已有多种合金材料问世,如复杂黄铜、锡青铜、铝青铜等合金。这几种合金相比,铝青铜合金由于具有更高的强度、硬度和耐磨性,同时具有优良的耐腐蚀等性能,可广泛应用于航空航天、军事、石油化工、交通运输等领域的耐磨零件。如qa110-3-1.5和qa110-4-4合金用于齿轮、轴套、轴承等;qa19-4-4-2合金用于螺旋桨、阀门、叶轮等;cu14a1-x高铝复杂青铜用于模具材料等,均取得了不俗的效果。

随着现代航空航天技术的飞速发展,一些极端环境用耐磨零件对铝青铜合金在液氮温度下的力学性能提出了比室温更高的要求。众所周知,目前室温常用耐磨铝青铜合金一般为热处理后的铸件或挤制棒材。然而,这些铝青铜合金液氮温度(-196℃)时的力学性能、尤其是低温冲击韧性较低,导致零件在低温环境的服役寿命降低,或不能满足使用要求。其原因为,常用耐磨铝青铜合金在成型制备过程中,于567℃时发生共析转变:β=α+γ2,其生成的共析体α+γ2属于片层结构的脆性相,于常温下使用时可提高材料的耐磨性能,但在低温下使用时却增加了铝青铜合金的脆性,降低了合金的冲击韧性。我们实验研究证明,耐磨铝青铜合金在室温下的冲击功akv值在50j左右,而在-196℃时akv值降低到不足25j,与室温相比大幅降低。

近年来,一些通过严重塑性变形获得的亚微米或纳米结构合金由于同时具备高强度和高塑性,获得了广泛关注。据报道,a1-si合金经32道次等通道挤压变形后,其晶粒得到细化,脆性si颗粒被破碎,冲击功升高为原来的10倍。另外,当温度从室温降低时,粗晶金属钛的冲击功不断降低;而经过等通道挤压和冷轧变形后,纳米结构金属钛随着温度降低,其冲击功不但没有降低,反而显著提高。



技术实现要素:

本发明的目的在于提供一种低温高强高韧耐磨铝青铜合金,该合金在-196℃温度下具有优异力学性能,尤其是具有高的低温冲击功,强度高,耐磨性好。

本发明的另一目的在于提供一种所述低温高强高韧耐磨铝青铜合金的制备方法。

为实现上述目的,本发明采用以下技术方案:

一种低温高强高韧耐磨铝青铜合金,该铝青铜合金中各成分的重量百分含量为:铝6.5-12.0%、铁2.0-5.5%、镍2.5-6.0%、锰0.5-3.0%、钛0.2-0.3%,其余为铜。

该铝青铜合金是由各成分对应的金属原料经熔铸、热锻工艺、等通道转角挤压工艺而制成的。

优选地,所述铝青铜合金中各成分的重量百分含量为:铝7.0-11.0%、铁2.0-4.5%、镍2.5-4.5%、锰0.5-2.0%、钛0.2-0.25%,其余为铜。

一种所述低温高强高韧耐磨铝青铜合金的制备方法,包括以下步骤:

(1)熔铸:按照合金成分配料,在中频感应熔炼炉中进行熔炼,熔炼温度为1100-1200℃,熔炼时,加入溶剂使熔化的合金得到覆盖和精炼,静置、扒渣后浇注成φ200mm的铸锭;

(2)热锻工艺:将铸锭车皮定尺后,在750-900℃温度下进行3-4道次锻造变形,每次锻造后将铸锭沿同一方向翻转90°,总压下量为60-90%,最后空冷至室温,制成铜合金锻件;

(3)等通道转角挤压工艺:将铜合金锻件切割成圆棒状坯料,采用内角为90°、外角为35-40°的等通道转角挤压模具进行3-5道次等通道转角挤压,挤压温度为650-800℃,每次等通道挤压变形后将坯料沿同一方向旋转90°,即可获得低温高强高韧耐磨铝青铜合金。

在所述步骤(1)中,在熔炼前,先将铜、铝、铁、镍、锰、钛制成合金料;熔炼时,一次性加入该合金料。

在所述步骤(2)中,每道次压下量为20-30%。

在所述步骤(3)中,每次等通道挤压方式为:将坯料和模具用纯机油或丙酮清洗干净,表面均匀涂覆一层石墨润滑剂;然后将坯料放入模具中随炉升温至650-800℃,保温10-15分钟后,进行一次等通道挤压变形。

本发明的优点在于:

1)本发明采用热锻工艺和等通道转角挤压工艺相结合的方法,铸锭经热锻变形后,脆性相被初步破碎,晶粒得到初步细化,合金韧性得到初步提高;保证在之后的加温等通道转角挤压过程中,合金在具有良好塑性变形能力的同时,综合力学性能得到显著提高。

2)本发明的铝青铜合金在-196℃低温下,具有比室温更加优异的冲击韧性,综合力学性能得到显著提高,非常适用于航空航天等领域低温环境用耐磨零部件的制造,对降低生产成本、提高产品质量及设备使用寿命等均有重大的意义。

具体实施方式

下面结合实施例对本发明作进一步说明,但是本发明的保护范围不限于下列实施例。

实施例1

其生产工艺流程为:配料-熔铸-热锻-等通道转角挤压-成品

具体过程为:将质量百分比为84.3%的铜、9.0%的铝、2.5%的铁、3.5%的镍、0.5%的锰、0.2%的钛制成合金料,采用中频感应熔炼炉熔炼,熔炼温度为1100-1200℃。一次性加入该合金料并加入溶剂(玻璃、冰晶石)使熔化的合金得到覆盖和精炼。静置、扒渣后浇注成φ200mm的铸锭。将铸锭车皮定尺后,在850℃温度下进行锻造变形,首先沿一个方向进行锻造,道次压下量为25-30%;然后将坯料翻转90°,再进行一次与前次相同的锻造;按此方法一共进行3次锻造,总压下量80%,最后空冷至室温,制成铜合金锻件。

将铜合金锻件线切割成直径10mm、长度80mm的圆棒坯料,用丙酮清洗后,坯料表面涂覆一层石墨润滑剂。将模具表面进行清洗并涂覆石墨润滑剂后,把坯料放入模具中随炉升温至800℃,保温15分钟后,进行第一次等通道挤压变形。然后将一次挤压棒和模具表面再次涂覆石墨润滑剂,将挤压棒沿着挤压轴按同一方向旋转90°后,再次升温至800℃,保温15分钟后进行第二次等通道挤压变形。如此循环,一共进行4道次等通道转角挤压变形,即可获得低温高强高韧耐磨铝青铜合金成品。所制备成品在-196℃低温下的力学性能如表1所示。

实施例2

其生产工艺流程为:配料-熔铸-热锻-等通道转角挤压-成品

具体过程为:将质量百分比为82.8%的铜、11.0%的铝、3.0%的铁、2.5%的镍、0.5%的锰、0.2%的钛制成合金料,采用中频感应熔炼炉熔炼,熔炼温度为1100-1200℃。一次性加入该合金料并加入溶剂(玻璃、冰晶石)使熔化的合金得到覆盖和精炼。静置、扒渣后浇注成φ200mm的铸锭。将铸锭车皮定尺后,在800℃温度下进行锻造变形,首先沿一个方向进行锻造,道次压下量为20-25%;然后将坯料翻转90°,再进行一次与前次相同的锻造;按此方法一共进行4次锻造,总压下量85%,最后空冷至室温,制成铜合金锻件。

将铜合金锻件线切割成直径10mm、长度80mm的圆棒坯料,用丙酮清洗后,坯料表面涂覆一层石墨润滑剂。将模具表面进行清洗并涂覆石墨润滑剂后,把坯料放入模具中随炉升温至700℃,保温15分钟后,进行第一次等通道挤压变形。然后将一次挤压棒和模具表面再次涂覆石墨润滑剂,将挤压棒沿着挤压轴按同一方向旋转90°后,再次升温至700℃,保温15分钟后进行第二次等通道挤压变形。如此循环,一共进行4道次等通道转角挤压变形,即可获得低温高强高韧耐磨铝青铜合金成品。所制备成品在-196℃低温下的力学性能如表1所示。

表1实施例和常用挤压态耐磨铝青铜qa110-3-1.5合金在-196℃低温下的

力学性能

如表1所示,本发明所制备的铜合金材料在-196℃低温下的冲击功大于50j,为常用耐磨铜合金材料的2倍多;并且相比qa110-3-1.5挤压棒材,本发明所研制材料的抗拉强度、屈服强度和伸长率都大幅增加。因此,该材料为一种优异的低温高强高韧铜合金材料,可大大提高零件或设备在-196℃低温环境条件下的服役能力。

本发明包括但不限于以上实施例,凡是在本发明的精神和原则之下进行的任何等同替换或局部改进,都将视为在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1