用于引线焊接的金合金细线的制作方法

文档序号:3344849阅读:459来源:国知局
专利名称:用于引线焊接的金合金细线的制作方法
技术领域
本发明涉及一种用于引线焊接的金合金细线,它适用于将半导体器件的电极连接到外部引线端上,更确切地说,涉及这样一种用于引线焊接的金合金细线,它改进了焊接强度并防止弯线高度降低。
用于将半导体器件上的电极连接到外部引线端的焊接引线通常是一种金合金的细线,因为它具有良好的导电性、抗腐蚀或其它可靠的特性。
一般利用热压焊接法进行细金合金线的焊接,在进行过程中利用电弧装置加热使细金合金线的顶端熔化,由于被熔化的金属的表面张力作用而成球状,然后小球被加压贴靠在被加热到150到300℃的半导体器件的电极上以便形成焊点,这种加热作用是利用施加到其上的超声波振动引起的,在此之后,以同样的方式,利用超声波压力焊接法焊接到外部引线端上。
半导体器件的高度集成化使半导体器件上的电极数量增加。半导体器件的小型化要求减少电极的面积和缩短电极间的间距,因此要求焊接引线应当形成降低尺寸的小球并应当减小直径。降低小球尺寸就要减少从电弧装置向形成小球的焊接线的热量输入,以此降低在小球形成过程中发生再结晶的细线区域的长度。已经公知,在再结晶区长度和线的弯线高度之间存在密切的相互关系,具有长的再结晶区的焊接线则具有高的弯线,反之亦然。即在降低小球尺寸的情况下,除非通过降低在焊接线金合金中一些合金元素的含量来增加再结晶区长度,否则不可能得到常规的弯线高度,该含量控制再结晶。这些控制再结晶的合金元素一般也提高线的机械强度,使得降低这样一些合金元素会引起线的机械强度的降低。
通过使焊接线变细还会降低弯线高度。特别是一般将小球尺寸控制在线径的2.5到3.0倍的范围内的一个固定值,使得降低线径会带来与通过降低小球尺寸所形成的相同效果,因此,将焊接线变细会引起弯线高度降低。
因此,小球尺寸的降低或焊接线的变细会导致弯线高度降低,并因此,会引起半导体器件的可靠性和产量的降低,这是因为不希望使焊接线与半导体器件或引线座的冲模垫产生接触,引起器件失效或不良,因为降低弯线高度会降低拉伸强度,并且因为对用于密封半导体器件的树脂的抗塑变性影响,由细线变形而产生细线塑变,使各焊接线彼此之间产生接触。
为了防止这些问题的产生,要常测量以降低那些控制再结晶区长度的元素的含量。然而,这会引起机械强度的降低和在正在成形的小球的最接近的上部中的细线的再结晶晶粒的粗化,使得在焊接以后在操作过程中由于振动使在小球上方最接近的部分很容易断裂,使半导体器件的可靠性变差和产量下降。
为了解决这一问题,已经提出很多种细金合金线,例如按重量计含钙为百万分之5到100(ppm)的金焊接线(53-105968号的未经审查的日本专利公开文件(kokai))、按重量计含钙为3到5ppm、按重量计含铍为1到8ppm、和/或按重量计含锗为5到50ppm的金合金线(53-112060号未经审查的日本专利公开文件(kokai)),以及按重量计含铍为1到8ppm的金合金线(53-112059号未经审查的日本专利公开文件(kokai))。
然而,由于增加了用于防止在小球上方最接近处的晶粒粗化的合金元素的含量,使这些金焊接线存在的问题是在焊接以后弯线高度被降低了。此外,包含仅作为加入到金基质中的附加合金元素铍的合金成分实现高弯线,但存在的问题是,线的机械强度下降并且树脂模塑之后与其它合金成分相比较,线的塑变更明显。
现时利用焊接器的弯线形状控制系统进行弯线高度的控制,以保证必要的变线高度,但是这需要长的焊接持续时间,给生产率多少带来影响。常规的焊接线在小球上方最接近的线部分处防止晶粒粗化的同时,在实现大的弯线高度方面并不成功。因此强烈需要一种能可靠地提供大的弯线高度和高焊接强度的用于线焊接的金合金细线。
研究了很多常规提出的用于线焊接的金合金细线的本发明人发现如下的事实。常规的用于线焊接的金合金细线比不含有附加元素的纯金具有较大的拉伸强度,但是当必须形成高的弯线时,合金元素的含量必须降低,由此结果使得拉伸特性变差和在小球上方最接近的线部分中的再结晶的晶粒很容易变粗。因此,使得在焊接操作过程中使小球颈部受到损害。降低线径会使拉伸强度按照降低的线截面而降低。因此,为了保证良好的拉伸强度,合金元素的含量必须增加,从而不能实现大的弯路高度。
本发明的目的是提供一种用于线焊接的金合金细线,对于相同的线径小球尺寸被降低,在减小线径的情况下,提供高弯线,维持高焊接度以及线塑变被减轻。
为了解决上述问题,本发明人对各种合金元素进行了研究,它们能够改进拉伸强度而不会引起热阻或再结晶温度的过分增加,同时保证大的弯线高度。
因此,本发明人已经发现由具有钪、铍和铟各合金元素的金合金组成的焊接线。他们还发现除了钪、铍和铟之外,少量的钙、钇和一些稀土金属,或者少量的锗都优先用作合金元素,以增强本发明的上述效果,以及银、铜和钯也可用作合金元素,以便与利用常规焊接线比较有利于改进将金合金细线焊接到半导体器件上的焊接力。
具体是,本发明提供如下(1)到(3)项。
(1)一种用于线焊接的金合金细线,它由如下组成第一组成份由按重量计钪为2到10ppm、铍为3到20ppm和铟为2到50ppm;以及金和不可避免的杂质组成的其余部分。
(2)一种用于线焊接的金合金的细线,它由如下组成第一组为按重量计,钪为2到10ppm,铍为3到20ppm和铟为2到50ppm。
由第二组如下成分组成中所选择的至少一种成分,计有按重量计钙为1到5ppm、镱为1到5ppm,至少一种稀土金属为1到5ppm,锗为10到50ppm;以及金和不可避免的杂质组成的其余部分。
(3)一种用于线焊接的金合金细线,它由如下组成按上述第一组和第二组中的至少一组;按重量计银为5到50ppm;钯为5到30ppm;铜为5到40ppm;以及金和不可避免的杂质组成的其余部分。
下面更详细地介绍本发明的构成。
在本发明中适合使用的金为按重量计具有99.995%或其以上纯度的金和其余部分的不可避免的杂质。当纯度按重量计小于99.995%时,该杂质呈现明显的影响并使合金元素的预期作用模糊不清,特别是当合金元素的总量很小时。
钪在金中具有相对大的溶解度限值并且有效地提高再结晶温度,但是当它单独用作合金元素时,它的效果比钙弱,并不明显。经过各种研究发现,通过与钪一起同时添加铍和铟到高纯金中,改进了小球颈部强度,改进了拉伸强度并产生高的弯线。这是因为钪、铍和铟三种元素的同时存在,与在常规的金合金细线中所遇到的波动相比,它降低了在小球形成过程中由于热影响而产生的再结晶晶粒尺寸的波动。确认这种现象是根据这样的事实,即在高纯度金中的三种元素之间的相互作用形成了均匀的固体熔解,抑制了在焊接过程中由于输入热量而产生的再结晶晶粒的生长。
还已经发现,向金中添加钪还改善了杨式模量,在树脂模塑的过程中抑制了线的塑变。还发现,与钪一起同时添加铟和铍进一步改善了杨式模量。然而,其效果随这三种元素的比例不同而变化波动。相信这点是因为由于在这三种元素之间的不同的相互作用的强度,使材料的晶体结构变化所致,尽管细节还没有澄清。由于后面介绍的稀土金属的存在,还可使杨式模量得到某种程度改善。同时存在上述三种元素还会使这种效果增强,明显地减轻了线的塑变。
当钪的含量按重量计小于2ppm时,在小球形成的过程中由于热量输入产生的再结晶晶粒含有不同的晶粒尺寸,即细的和粗的,引起拉伸强度的明显的波动。另一方面,假如钪含量按重量计大 于10ppm,即使同时存在后面介绍的铍和铟,弯线高度也变小,此外在小球表面上形成稳固的氧化物便于在小球末端处形成收缩孔,使得剪切强度下降,长期使用的可靠性下降。为了保证利用本发明的合金成分实现高的弯线,钪的含量按重量计最好不大于10ppm,并且按重量计必须在2到10ppm的范围内。
已知铍改善了细金线的室温下的强度,这是由于当拉伸线时结构硬化。在同时存在钪的情况下,利用含量为按重量计小于3ppm的铍,这种效果不够并波动。当铍的含量按重量计大于20ppm时,在小球表面上形成稳固的氧化物,这是因为在小球形成的过程中产生氧化作用。因此降低了在小球和半导体器件上的电极之间的焊接面积并降低了焊接强度(剪切强度)。还应当指出,当增加铍含量,以便增加负载,保证在小球和电极间良好的焊接时,小球硬度增加,引起在电极下方部分的半导体器件破裂。因此,铍的含量按重量计必须在3到20ppm之间。
已知铟在小球形成的过程中有效地扩大了再结晶范围,并且增加了弯线高度。在同时存在钪的情况下,铟的含量按重量计小于2ppm时,这种效果不够并波动。当铟的含量按重量计大于50ppm时,在小球上方最接近的线部分发生再结晶晶粒加速粗化的现象,在控制焊接过程中弯线形状时,会引起在小球上方最接近的线部分破裂。因此,铟的含量按重量计必须在2到50ppm之间。
为了防止在线变细的过程中(由于拉伸线)降低金合金细线的机械强度,利用钙和第二组中的其它添加元素,以防止球颈部分的再结晶晶粒粗化和改善对于具有相同线径的金合金细线的机械强度。然而,当大量使用第二组元素时会提高细金合金线的热阻,在小球形成的过程中缩短了产生线的再结晶区的长度。因此,为了保证弯线高度,第二组元素的含量存在上限。已知钙、镱和一些稀土金属能改善热阻,即使具有的量相对较少。当这些元素的含量按重量计小于1ppm时,线的质量有问题,即机械强度各段明显不同。另一方面,当含量按重量计大于5ppm时,改进了热阻却缩小了再结晶区并且不能提供高的弯线。因此,第二组元素按重量计必须在1到5ppm之间,以便实现高的弯线和良好的机械强度。
添加钙、镱和一些稀土金属还能实现的效果是以较少数量方式含有这些元素的金合金细线具有的杨式模量大约为1000到2000公斤/毫米2,大于纯金。因此,与常规的细线相比,改进了杨式模量抑制了在树脂模塑之后产生的线的塑变,这种常规细线能形成高的弯线,在密封之后呈现大的线塑变,这是因为由于相对限制了一些合金元素的数量,使杨氏模量不可能改进。
已知锗能改善室温下的强度和在线变细的过程中防止强度的降低。锗的含量按重量计必须在10到50ppm的范围内,因为其含量按重量计小于10ppm使得在强度方面没有明显的改进,而按重量计大于50ppm则降低了热阻。锗与钙、镱和一些稀土金属使用可能是有益的。
当大量使用银时能有效地改进机械特性,但是,使用较少数量,这种效果将不明显。通过很多研究,本发明人发现,含有一定数量的银和铜的金合金细线具有的焊接强度(剪切强度)大于包含这些元素数量上按重量计为几ppm的金所体现的焊接强度。另外,研究证实,当钯和银,铜一起添加到金中时,稳定地产生这种效果。这些元素与金一起形成一种完全的固态溶体。因此,确认上述现象是由这一事实所引起的,即这些元素均匀地散布在金中,减轻了在晶粒边界上的沉积。各种实验显示,按重量计银的含量必须在5到50ppm之间,铜的含量必须5到40ppm之间,钯的含量必须在4到30ppm之间。以便使剪切强度产生明显的改进。
实例一种金纯度为99.995%或以上的电解金和作为添加剂的高纯度金属(纯度为99.9%或以上)按照选择的数量,在真空感应熔炉中熔化并浇注以制备用作各个添加元素的母体金属。
经选择的数量的制备母体金属和金纯度为99.995%或以上的电解金在真空感应熔炉中熔化并浇注产生具有如表1所示化学成分的金合金铸块。该铸块在室温下被经轧辊型缝或槽隙滚轧并拉伸,形成最终直径为25微米的金合金细线。细金合金线在空气中连续退火韧化,以便产生的线伸长大约4%。
因此得到的细金合金线在室温下进行机械测试并用在高速自动焊接器中,以便对具有100针、在电极和内引线表面之间为200微米步距和平均焊接跨距为2.6毫米的42-镍GFP型引线座进行引线焊接。在焊接之后,对弯线高度、焊接强度,树脂模塑以后的引线的塑变以及小球形状进行了研究并将其结果总计表示在表1中。
弯线高度的确定是利用光学显微镜测量在半导体器件上的电极和所形成的弯线顶部之间的距离,这种弯线是在利用细金合金线将电极连接到外部引线端上时形成的,对100根线重复这种测量并将这100个结果平均。
焊接强度的评估是由对100根线所测定的拉伸强度和其波动的数据完成的,该为数据的确定是通过利用夹具将高速自动焊接的引线座和半导体器件固定,在中间拉细金合金线并测量该线断裂时的强度来实现的。焊接强度的评估还来自对所测定的100根引线的剪切强度及其波动的数据,该数据是通过沿与半导体器件相平行的方向移动一配置距各电极距离3微米的夹具,直到由于剪切作用将焊到电极上的金球被破坏,测量被破坏时的最大负载。
树脂模塑以后引线的塑变的评估是通过将线焊接的引线座安装到一个加热到175℃的金属模上,利用市场上可得到的密封树脂,从一个到相同的一批,密封这种组件,利用软式X射线发射装置测量引线的最大挠度,重复测量100次,对每根引线的挠度到焊接跨距的比率进行计算,对100根线的数据进行平均来实现的。
小球形状的评估是通过用扫描电子显微镜观察由高速自动焊接器的电弧装置产生的电弧放电所产生金球来实现。因为小球形状不正常或其上形成氧化物,使之不能保证良好焊接到半导体器件的电极上的那些小球标为“不良”,而能实现良好焊接的那些小球标为“好”。
表1表示具有根据本发明提示的化学成份的细合金线的评估结果,而表2表示具有的化学成分在本发明的范围之外的金合金细线的评估结果。表1和表2表示公知的现象,即弯线高度的降低与拉伸强度的降低相对应。
一般都承认,5克力或以上的拉伸强度是足以保证半导体器件的可靠性。通过比较基本上具有相同弯线高度的引线之间的拉伸强度,表明表1中的线具有的拉伸强度大于5克力,并大于表2中的引线,并具有较小的波动。
一般都承认,剪切强度为50克力或以上的25微米的细金合金线不会产生问题。在表1中的所有的线具有的剪切强度为50克力或以上,而在表2中的某些线具有的剪切强度小于50克力并且不适合于在引线焊接中使用。当合金元素存在过量,超出如表2所示的,权利要求提出的范围以外,剪切强度下降并且明显地波动。
一般都承认,在树脂模塑以后,引线的塑变不大于5%不会带来问题。表1所表示的数字都落入在这个范围内。
根据本发明的如表1表示的化学成分总是能形成正常的小球形状,而表2所示的化学成分使得产生不正常的小球形状计有在小球末端收缩、小球表面过分氧化,不呈球状等。
根据本发发明的很多试样具有的室温破坏强度超过11克力,伸长4%。这表明,从25微米进一步变细到23微米将提供好的强度。还应当指示,根据本发明的试样大多数具有的弯线高度大于200微米,因此有利于保证高的弯线、高的强度和小的引线塑变。
表1-1 实例含量(按重量计百万分率)机械强度弯线高度 拉伸强度剪切强度引线塑变球形(微米) (克力) (克力) (%)序号B.l E.lSc Be Ca Y La Ce Dy Ge In Ag Cu Pd(克力)%平均 σ 平均σ 平均 σ 平均12 3 - - - - - - 2 - - - 7.9 4.3 242.4 7.66.4 0.68 73.6 5.35.0好22 19 - - - - - - 2 - - - 8.7 4.2 240.5 6.87.2 0.64 70.1 6.04.9好32 3 - - - - - - 49 - - - 7.5 4.7 248.1 6.96.7 0.71 72.6 5.75.1好42 19 - - - - - - 49 - - - 8.5 4.4 238.9 7.07.1 0.72 69.4 5.85.0好59 3 - - - - - - 2 - - - 9.8 4.5 225.6 6.37.5 0.68 70.2 5.53.2好69 3 - - - - - - 48 - - - 9.6 4.6 235.3 6.77.7 0.65 68.5 5.33.4好79 20 - - - - - - 2 - - - 10.6 4.2 223.7 6.18.0 0.59 68.5 5.23.6好89 20 - - - - - - 49 - - - 10.5 4.3 230.6 6.37.9 0.61 67.8 5.53.7好94 8 - - - - - - 10 - - - 9.3 4.2 237.1 6.27.3 0.58 71.4 5.74.4好10 5 10 - - - - - - 20 - - - 9.8 4.2 239.5 5.97.4 0.54 70.5 5.24.3好11 4 8 1 - - - - - 10 - - - 9.9 4.5 225.7 5.47.6 0.62 71.4 5.34.2好12 4 8 - 1 - - - - 10 - - - 9.8 4.6 223.9 5.67.5 0.65 68.6 5.64.3好13 4 8 - - 1 - - - 10 - - - 9.6 4.5 228.4 5.37.5 0.58 67.2 4.94.1好14 4 8 - - - 1 - - 10 - - - 9.4 4.8 230.6 5.57.7 0.62 68.9 5.64.2好15 4 8 - - - - 1 - 10 - - - 9.6 4.3 229.5 5.17.3 0.59 67.3 5.24.1好16 4 8 - - - - - 10 10 - - - 8.9 4.1 235.7 5.96.8 0.63 74.2 6.14.3好17 5 10 1 - - - - 25 10 - - - 10.1 4.3 220.8 4.87.8 0.55 70.5 5.44.1好18 5 10 5 - - - - - 30 - - - 11.2 4.4 195.7 4.68.0 0.59 63.5 5.03.5好19 5 10 - 5 - - - - 30 - - - 11.5 4.1 193.7 5.07.9 0.53 62.9 4.93.1好表1-2 实例含量(按重量计百万分率) 机械强度 弯线高度拉伸强度剪切强度引线塑变球形(微米) (克力) (克力) (%)序号B.l E.lSc Be Ca Y La Ce Dy Ge In Ag Cu Pd(克力)% 平均 σ 平均 σ 平均 σ 平均205 10 - - 5 - - - 30 - - -10.9 4.6 196.1 5.37.9 0.5164.2 5.53.3好215 10 - - - 5 - - 30 - - -10.5 4.8 199.5 6.37.3 0.4962.8 5.73.1好225 10 - - - - 5 - 30 - - -10.6 4.7 189.8 5.57.2 0.5560.4 5.13.2好235 10 - - - - - 50 30 - - -10.5 4.4 235.5 6.07.8 0.5271.8 5.63.1好245 10 2 2 - - - - 30 - - -10.7 4.3 200.1 5.77.9 0.5765.3 5.23.3好255 10 2 - 2 - - - 30 - - -10.5 4.7 205.3 5.38.1 0.6163.6 5.53.2好265 10 2 - - 2 - - 30 - - -10.6 4.5 203.4 5.77.7 0.5764.1 5.73.1好275 10 2 - - - 2 - 30 - - -10.2 4.7 208.1 6.17.4 0.6261.6 6.33.4好285 10 2 - - - 2 25 30 - - -10.8 4.6 203.7 5.47.2 0.5762.0 5.43.3好295 10 2 - - - - 30 30 - - -11.0 4.3 211.6 5.88.3 0.6365.8 5.73.2好305 10 2 - 2 - - 30 30 - - -11.5 4.5 198.8 5.67.8 0.6466.3 6.23.1好315 10 - 2 2 - - - 30 - - -10.9 4.6 201.7 5.37.9 0.5763.8 5.83.4好325 10 - 2 - 2 - - 30 - - -11.1 4.4 196.4 4.98.1 0.5464.1 6.03.3好335 10 - 2 - - 2 - 30 - - -10.8 4.6 200.9 5.18.2 0.6163.5 5.43.6好345 10 - 2 - - 2 20 30 - - -11.3 4.7 196.1 4.98.0 0.5862.9 5.83.5好353 15 - - 3 1 - - 20 - - -10.7 4.3 196.9 5.67.9 0.6465.2 5.13.3好363 15 - - 3 - 1 - 20 - - -10.5 4.7 205.1 4.98.0 0.5961.6 5.53.5好373 15 - - - - 3 140 20 - - -11.6 4.5 202.8 6.18.5 0.4860.3 4.83.4好383 15 - - - 3 2 - 20 - - -10.4 4.7 199.5 5.77.7 0.5064.1 5.13.3好表1-3 实例含量(按重量计百万分率) 机械强度 弯线高度拉伸强度 剪切强度引线塑变球形(微米) (克力) (克力) (%)序号B.l E.lSc Be Ca Y Ia Ce Dy Ge In Ag Cu Pd(克力)% 平均 σ平均σ 平均σ平均39 3 15 - - - 3 2 25 20 --- 11.3 4.8193.7 5.3 7.0 0.53 63.9 5.73.1 好40 4 10 - - - - - - 15 555 10.2 4.3240.1 4.2 8.1 0.44 75.5 5.03.7 好41 4 10 - - - - - - 15 50 40 30 10.6 4.5236.9 4.0 8.3 0.41 74.9 4.73.4 好42 4 10 1 1 1 1 - 25 25 555 11.2 4.8198.5 3.8 7.9 0.45 70.5 4.82.9 好43 4 10 1 1 1 1 - 25 25 50 40 30 11.4 4.7195.1 4.6 7.7 0.47 71.1 4.93.0 好44 4 10 - - - - - - 20 540 5 10.2 4.5237.8 4.3 8.1 0.45 80.1 5.33.7 好45 4 10 - - - - - - 20 5530 10.4 4.1240.5 4.4 8.3 0.43 78.9 4.73.6 好46 4 10 - - - - - - 20 50 55 10.3 4.4243.1 5.0 7.7 0.47 77.1 4.93.8 好47 4 10 - - - - - - 20 50 40 5 10.4 4.6238.8 4.7 7.8 0.45 78.3 4.63.7 好48 4 10 - - - - - - 20 50 530 10.2 4.7237.1 4.4 7.4 0.48 79.5 4.23.5 好49 4 10 - - - - - - 20 30 20 10 10.3 4.6240.1 4.8 7.6 0.51 82.3 4.73.3 好50 4 10 2 - - - - 30 20 30 20 10 11.4 4.5214.2 4.7 8.3 0.49 77.1 4.43.0 好51 5 15 - 2 2 - - - 40 30 20 10 11.3 4.8205.7 4.2 8.5 0.47 78.3 3.93.1 好52 5 15 - - 3 - - - 20 35 25 15 10.7 4.6210.7 5.1 8.2 0.50 77.9 4.63.3 好53 5 15 - - 3 - - 30 20 35 25 15 11.7 4.5209.1 4.7 8.6 0.47 79.0 4.43.2 好54 5 6 2 - 1 - - 25 30 30 25 15 11.5 4.7205.8 4.3 8.4 0.45 75.7 4.73.1 好55 10 19 2 - 2 1 - 48 45 48 36 28 12.0 4.1195.6 4.6 8.1 0.43 73.5 4.42.9 好56 2 3 - - - - - - 2 555 8.1 4.0240.9 5.46.9 0.52 78.3 4.74.0.好表2比较例含量(按重量计百万分率)机械强度弯线高度 拉伸强度 剪切强度 引线塑变球形(微米)(克力) (克力) (%)序号B.l E.lSc Be Ca Y La Ce Dy Ge In Ag Cu Pd(克力)% 平均 σ 平均 σ 平均 σ 平均1 1 2 - - - - - - 1 - - - 6.8 4.8 245.2 10.5 5.9 0.83 78.5 5.9 9.1 好2 20 2 - - - - - - 2 - - - 11.9 4.5 173.6 7.66.1 0.75 68.4 5.7 5.8 不良3 20 2 - - - - - - 70 - - - 11.6 4.3 183.7 9.17.9 0.69 59.1 6.3 6.2 不良4 1 25 - - - - - - 2 - - - 8.3 4.4 242.6 9.66.9 0.75 57.8 6.1 8.6 好5 1 25 - - - - - - 60 - - - 8.7 4.1 249.9 7.97.1 0.77 60.3 6.7 10.3 不良6 20 25 - - - - - - 2 - - - 11.9 4.7 167.1 6.95.8 0.64 49.4 6.1 5.1 不良7 20 25 - - - - - - 60 - - - 12.1 4.2 184.5 8.36.7 0.78 45.7 6.8 6.2 好8 5 10 15 - - - - - 20 - - - 11.9 4.8 158.4 6.56.2 0.69 49.7 6.8 4.9 不良9 5 10 - 20 - - - - 20 - - - 12.3 4.4 163.7 5.97.1 0.75 46.1 5.7 4.8 不良10 5 10 - - - - - 5 30 - - - 9.1 4.3 238.6 6.07.3 0.59 68.9 5.3 4.5 好11 5 10 - - - - - 60 30 - - - 10.3 4.2 235.4 6.65.9 0.63 64.7 5.1 6.3 好12 5 10 - - - - - - 10 3 3 1 9.0 4.5 239.0 6.47.3 0.73 73.3 6.1 5.1 好13 5 10 - - - - - - 10 3 3 50 8.9 4.7 235.9 4.97.3 0.58 71.9 5.9 4.0 好14 5 10 - - - - - - 10 80 10 10 7.9 4.8 237.2 5.97.5 0.71 67.3 6.3 4.3 好15 5 10 - - - - - - 10 10 70 10 8.4 4.5 236.7 5.57.0 0.68 70.1 6.1 4.0 好16 5 15 10 10 - - - - 20 - - - 12.3 4.5 155.3 5.86.8 0.60 48.6 6.4 3.3 不良17 5 15 10 - - - - - 20 55 50 50 12.1 4.9 164.8 5.26.1 0.67 59.3 6.0 3.0 不良18 2 7 5 5 5 5 - 60 65 10 10 10 12.5 4.4 160.3 4.95.8 0.55 55.7 5.7 2.9 不良19 2 7 5 5 5 5 - 5 65 10 10 10 12.3 4.7 158.4 4.86.0 0.53 52.1 5.4 3.0 不良20 1 1 - - - - - 5 1 3 3 3 7.9 4.0 242.9 8.36.9 0.78 73.9 6.2 8.9 好细金合金线在工业上会得到广泛应用是因为它具有的弯线高度波动很小,很小波动的高焊接强度,在树脂模塑以后很小的引线塑变,和正常的小球形状,所有这些都能使引线焊接稳定的进行,即使当线径小到20到30微米。
权利要求
1.一种用于引线焊接的金合金细线,其组成为第一组成分的组成为按重量计钪的百万分率为2到10,按重量计铍的百万分率为3到20,按重量计铟的百万分率为2到50;以及金和不可避免的杂质组成的其余部分。
2.一种用于引线焊接的金合金细线,其组成为如权利要求1所限定的所述第一组成分;由第二组成分中所选择的至少一种成分,第二组成分的组成为按重量计钙的百万分率为1到5、按重量计镱的百万分率为1到5、按重量计至少一种稀土金属的百万分率为1到5,以及按重量计锗的百万分率为10到50;以及金和不可避免的杂质所组成的其余部分。
3.一种用于引线焊接的金合金细线,其组成为由在权利要求1中所限定的第一组成分和在权利要求2中所限定的所述第二组成分中的至少一组成分;按重量计银的百万分率为5到50;按重量计钯的百万分率为5到30;按重量计铜的百万分率为5到40;以及金和不可避免的杂质组成的其余部分。
全文摘要
一种用于引线焊接的金合金细线,其组成为第一组成分组成为按重量计,钪的百万分率为2到10,铍的百万分率为3到20,铟的百万分率为2到50,以及金和不可避免的杂质组成的其余部分。该细线具有的弯线高度为200微米或以上并且在树脂模塑以后细线的塑变不大于5%。
文档编号C22C5/02GK1107641SQ94190223
公开日1995年8月30日 申请日期1994年4月21日 优先权日1993年4月22日
发明者北村修 申请人:新日本制铁株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1