多元掺杂YIG材料及其制备方法与流程

文档序号:12089357阅读:652来源:国知局
多元掺杂YIG材料及其制备方法与流程
本发明属于微波铁氧体材料领域,尤其是一种多元掺杂YIG材料及其制备方法。
背景技术
:钇铁石榴石(YIG)铁氧体材料及器件工作频率处在微波波段,故称为微波铁氧体材料。又因为其工作原理是利用磁导率的张量特性及铁磁共振效应,即在稳恒磁场H及微波磁场h共同作用下磁化强度M绕H作旋进运动,所以该石榴石铁氧体材料及器件又称为石榴石旋磁材料及器件。微波铁氧体材料与器件是二十世纪五、六十年代发展起来的,经过几十年的发展,已经成为通信设备和系统中不可缺少的元器件,广泛地使用在雷达、通信、电视、人造卫星、导弹系统、电子对抗系统及高能粒子加速器等民用和军事应用的各个方面。这类微波器件主要有隔离器、环行器、相移器、调制器、滤波器、限幅器、振荡器及延迟线等。随着现代化军事的需要和信息社会的飞速发展,对微波铁氧体的器件提出了新的要求,随之亦对微波铁氧体材料提出了更高的要求。微波铁氧体材料发展趋势之一是宽频带、大功率、低温度系数、低损耗的材料。石榴石型铁氧体在微波领域中有着优异的性能,如低损耗,可以很方便地独立改变Ms,ΔH,Tc诸物理量,以适应各种器件的需要,是一种极为重要的磁性材料。然而,钇铁石榴石在领域中的研究,掺杂已偏向成熟,但是电磁损耗还是处于一个比较高的状态。技术实现要素:本发明的目的在于解决现有技术中YIG材料损耗大、功率高等问题,提供一种多元掺杂YIG材料及其制备方法。为实现上述发明目的,本发明技术方案如下:一种多元掺杂YIG材料,化学通式为Y3-xAxFe4.97-yByO12,分为两组:第一组通式中的A为Ca2+,B为Zr4+,化学式为Y3-xCaxFe4.97-yZryO12,分别取掺杂量X=Y=0.1,0.2,0.3,0.4;第二组通式中的A不掺杂,所以X=0,B为Zr4+与Mn2+联合掺杂,代入(ZrMn)1/2,化学式为Y3-xFe4.97-y(ZrMn)1/2yO12,分别取掺杂量Y=0.2,0.4,0.6,0.8。为实现上述发明目的,本发明还提供一种所述多元掺杂YIG材料的制备方法,包括以下步骤:(1)将分析纯碳酸钙、二氧化锆、氧化铁、氧化钇、一氧化锰作为原料,按照化学式配比配料,根据Y3-xAxFe4.97-yByO12中的x,y进行计算并准确称量各原料组分;(2)一次球磨,将原料分别放入球磨钢罐中,球磨剂为去离子水,球磨机转速250-400转/分,球磨时间12-24h,总的原材料:球磨机的小球:球磨机的大球:水的质量比为1:1:(2-4):(1.5-4);(3)在保护气氛电阻炉中进行预烧,从室温以1-4℃/min的升温速度升至1200-1300℃的预烧温度,在1100-1300℃保温5-7h后自然降温;(4)二次球磨:将原材料分别放入球磨钢罐中,球磨剂为去离子水,球磨机转速250-400转/分,球磨时间12-24h,总的原材料:球磨机的小球:球磨机的大球:水的质量比为1:1:(2-4):(1.5-4);将二次球磨后的料烘干过40目筛得到铁氧体粉料;(5)造粒与成型:将胶水和上述铁氧体粉料均匀掺和,胶水的质量为铁氧体粉料的8%-13%,然后用研钵混合研细过40目筛得到小颗粒,并将小颗粒压成样环或样片供测量用;(6)烧结:烧结温度为1420℃-1460℃,保温时间为5-7h,然后1℃/min速率下降至500℃,最后自然降到室温。作为优选方式,所述步骤(5)中,将小颗粒在8*107-12*107Pa的压力下压成内径7.05mm、外径16.35mm、厚度1-3mm的样环,或直径为16.35mm、厚度1-3mm的样片供测量用。作为优选方式,对第一组通式的材料,分别取掺杂量X=Y=0.4,所述步骤(3)中在1200℃保温6h后自然降温,所述步骤(6)中烧结温度为1430℃,保温时间为6h。作为优选方式,对第二组通式的材料,x=0,y=0.4,所述步骤(3)中在1200℃保温6h后自然降温,所述步骤(6)中烧结温度为1450℃,保温时间为6h。本发明的有益效果为:本发明制备的材料的磁损耗和电损耗相对现有材料有明显的下降,电磁性能达到最优值,其晶面结构良好,晶界平整,气孔相对较少,致密度显著上升,微观性质优良,且测出的矫顽力Hc也相对较小,饱和磁化强度相对较高,跟常规烧结温度相比有所下降。附图说明图1是1430℃时掺杂量Y3-xCaxFe4.97-yZryO12(x=y=0.4)的SEM图像;图2是1430℃时不同掺杂量的Y3-xCaxFe4.97-yZryO12比饱和磁化强度图;图3是1450℃温度下Y3Fe4.97-y(ZrMn)1/2yO12,掺杂为y=0.4样品的SEM照片。图4是1450℃时不同掺杂量的Y3Fe4.97-y(ZrMn)1/2yO12比饱和磁化强度图。图5是1450℃时不同掺杂量的Y3Fe4.97-y(ZrMn)1/2yO12的XRD图。具体实施方式以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。实施例一种多元掺杂YIG材料,化学通式为Y3-xAxFe4.97-yByO12,分为两组:第一组通式中的A为Ca2+,B为Zr4+,化学式为Y3-xCaxFe4.97-yZryO12,分别取掺杂量X=Y=0.1,0.2,0.3,0.4;第二组通式中的A不掺杂,所以X=0,B为Zr4+与Mn2+联合掺杂,代入(ZrMn)1/2,化学式为Y3-xFe4.97-y(ZrMn)1/2yO12,分别取掺杂量Y=0.2,0.4,0.6,0.8。为实现上述发明目的,本实施例还提供一种所述多元掺杂YIG材料的制备方法,包括以下步骤:(1)将分析纯碳酸钙、二氧化锆、氧化铁、氧化钇、一氧化锰作为原料,按照化学式配比配料,根据Y3-xAxFe4.97-yByO12中的x,y进行计算并准确称量各原料组分;(2)一次球磨,将原料分别放入球磨钢罐中,球磨剂为去离子水,球磨机转速250-400转/分,球磨时间12-24h,总的原材料:球磨机的小球:球磨机的大球:水的质量比为1:1:(2-4):(1.5-4);(3)在保护气氛电阻炉中进行预烧,从室温以1-4℃/min的升温速度升至1200-1300℃的预烧温度,在1100-1300℃保温5-7h后自然降温;(4)二次球磨:将原材料分别放入球磨钢罐中,球磨剂为去离子水,球磨机转速250-400转/分,球磨时间12-24h,总的原材料:球磨机的小球:球磨机的大球:水的质量比为1:1:(2-4):(1.5-4);将二次球磨后的料烘干过40目筛得到铁氧体粉料;(5)造粒与成型:将胶水和上述铁氧体粉料均匀掺和,胶水的质量为铁氧体粉料的8%-13%,然后用研钵混合研细过40目筛得到小颗粒,将小颗粒在8*107-12*107Pa的压力下压成内径7.05mm、外径16.35mm、厚度1-3mm的样环,或直径为16.35mm、厚度1-3mm的样片供测量用。并将小颗粒压成样环或样片供测量用;(6)烧结:烧结温度为1420℃-1460℃,保温时间为5-7h,然后1℃/min速率下降至500℃,最后自然降到室温。性能分析1、第一组材料烧结温度对材料性能的影响在分析不同Zr4+与Ca2+掺杂量之前,对烧结曲线进行研究,通过烧结温度对材料性能的影响确定最佳烧结温度,然后再进一步研究掺杂量给性能带来的影响。结合具体的Ca2+离子低熔点物质的量,研究烧结温度为1420℃、1430℃、1440℃、1450℃和1460℃的烧结情况。以Y3-xCaxFe4.97-yZryO12(x=y=0.4)来研究以确定的具体的烧结温度曲线。图1为1430℃温度下x=y=0.4样品的SEM照片。因为Ca2+的掺杂是加入CaCO3,在高温下会发生分解反应产生CO2,几乎所有温度点都有着气孔的存在,但相对而言在1430℃时晶面比较平整,气孔和缝隙存在量较小,晶界较小,晶粒致密化程度较高。表5-1不同烧结温度对铁磁共振线宽ΔH与饱和磁化强度Ms的影响样品纯YIG1420℃1430℃1440℃1450℃1460℃ΔH(Oe)372526.326.82930表5-1为不同烧结温度对应的铁磁共振线宽ΔH与比饱和磁化强度Ms的影响。可以看出掺杂Zr4+离子后铁磁共振线宽ΔH明显降低。下降原因不仅是由于a位上的Fe3+离子数目和居里点下降使室温时的K1值下降,还由于Zr4+半径较大,进入a位将引起晶场变化,使其它磁性离子对K1值的贡献亦发生变化。因此,Zr4+离子取代明显降低了K1值,从而降低由磁晶各向异性确定的线宽值,进而降低铁磁共振线宽ΔH。而掺杂Zr4+离子的铁磁共振线宽ΔH随着烧结温度的增大,这是由于材料中存在气孔导致的线宽ΔH气孔,温度上升气孔增多ΔH气孔增加,导致总的铁磁共振线宽ΔH增大。综上所述,在1430℃温度点烧结时,其晶面结构良好,境界平整,气孔相对较少,且测出的矫顽力Hc也相对较小(39.49Oe),饱和磁化强度相对较高。所以,1430℃为Y3-xCaxFe4.97-yZryO12(X=Y=0.1,0.2,0.3,0.4)掺杂量的最佳烧结温度。2、第一组材料不同掺杂量对材料性能的影响研究不同Ca2+与Zr4+离子掺杂量对铁氧体YIG性能的影响,通过分析样品性能,确定最佳的离子掺杂量。通过上小节实验可知,Y3-xCaxFe4.97-yZryO12(x=0.4)确定的烧结曲线,1430℃为最佳烧结温度。本小节样品配方为Y3-xCaxFe4.97-yZryO12(x=y=0.1,0.2,0.3,0.4),烧结曲线为上小节确定的最佳烧结曲线,即烧结温度为1430℃。图1为1430℃时掺杂量Y3-xCaxFe4.97-yZryO12(x=y=0.4)的SEM图像。图2为1430℃时不同掺杂量的Y3-xCaxFe4.97-yZryO12比饱和磁化强度图。表5-2不同添加量对于YIG电磁性能的影响由表5-2可知,与纯的YIG样品相比掺杂Zr4+离子可以明显降低铁磁共振线宽ΔH,但随着掺杂量不断增加,磁共振线宽ΔH有微小的上升趋势,可能是由于样品烧结温度不够,导致气孔存在,致密化不够,因而气孔线宽ΔH气孔较大,因而随着Zr4+离子增加,样品铁磁共振线宽ΔH略微增大。然而电损耗tgδε与纯的YIG相比略微有所下降,这是由于运用缺铁配方导致的。综上所述,对第一组通式的材料,优选取掺杂量X=Y=0.4,所述步骤(3)中在1200℃保温6h后自然降温,所述步骤(6)中烧结温度为1430℃,保温时间为6h。这时磁损耗有明显的下降,电损耗略微下降,电磁性能达到最优值。其晶面结构良好,境界平整,气孔相对较少,且测出的矫顽力Hc也相对较小(39.49Oe),饱和磁化强度相对较高。跟常规烧结温度相比有所下降。YIG有着最优化的电磁性能。3、第二组材料烧结温度对材料性能的影响研究配方为Y3Fe4.97-y(ZrMn)1/2yO12(y=0.4)的样品,在起始预烧最高温度都是为1200℃保温6h、分别研究最高烧结温度在1420℃、1430℃、1440℃、1450℃和1460℃烧结时,烧结温度对微波YIG铁氧体材料微观性能的影响,找到最佳烧结温度。扫描电镜测试如图3中所示,当烧结温度达到1450℃的时候,晶粒生长基本完成,晶界非常薄,气孔率大大降低,致密度显著上升,微观性质优良。表5-3不同烧结温度对不同烧结温度电磁性能的影响样品纯YIG1420℃1430℃1440℃1450℃1460℃ΔH(Oe)3725.025.225.124.825.04πMs(Gs)-1268.21755.51710.21445.71522.8tgδε-0.00640.00620.00580.00530.0054由此可见,掺杂Mn2+与Zr4+的运用,的确可以降低旋磁材料YIG的电磁损耗。再结合SEM的分析,可确定1450℃为Y3Fe4.97-y(ZrMn)1/2yO12的最终烧结温度。4、第二组材料烧结温度对材料性能的影响研究不同Zr4+与Mn2+离子掺杂量对铁氧体YIG性能的影响,通过分析样品性能,确定最佳的离子掺杂量。通过上小节实验可知,1450℃为最佳烧结温度。本小节样品配方为Y3-xFe4.97-y(ZrMn)1/2yO12,分别取掺杂量X=0,Y=0.2,0.4,0.6,0.8,烧结曲线为上小节确定的最佳烧结曲线,即烧结温度为1450℃。图3为1450℃时Y3Fe4.97-y(ZrMn)1/2yO12(y=0.4)SEM图像。图4为1450℃时不同掺杂量的Y3Fe4.97-y(ZrMn)1/2yO12比饱和磁化强度图。图5为1450℃时不同掺杂量的Y3Fe4.97-y(ZrMn)1/2yO12的XRD图。观察图3可以看出,当Zr4+与Mn2+离子的掺杂量为y=0.4的时候,样品的气孔量最少,而且致密度和平整度也好于其它掺杂量的样品。从图5中可以看到,与YIG标准衍射图相比,四种样品的衍射峰基本吻合,基本没有杂峰,也就是说,基本没有杂相。这就表示固相反应比较完全。表5-4不同添加量对于YIG电磁性能的影响样品纯YIGY=0.2Y=0.4Y=0.6Y=0.8ΔH(Oe)3725.024.321.219.84πMs-1750.71445.31355.51298.7tgδε-0.00600.00480.00500.0052我们通过表5-4可以看出,铁磁共振线宽ΔH与纯YIG相比有着明显的下降,而且随着Mn2+与Zr4+掺杂量的增多,降低得越明显。而饱和磁化强度在少量掺杂时有着明显的下降,随着掺杂量的增多,下降趋于平缓。这些都是掺杂了Zr4+的结果。电损耗tgδε随着掺杂量的增加有着大幅度的下降,因为运用缺铁配方的同时,Mn2+的掺杂也起到了很大的作用。综上所述,掺杂Mn2+与Zr4+的运用,可以很大程度上降低旋磁材料YIG的电磁损耗。又结合SEM图片,对第二组通式的材料,优选y=0.4,所述步骤(3)中在1200℃保温6h后自然降温,所述步骤(6)中烧结温度为1450℃,保温时间为6h。此时电损耗和磁损耗都明显下降。在1450℃下烧结,晶粒生长基本完成,晶界非常薄,气孔率大大降低,致密度显著上升,微观性质优良。YIG有着最优化的电磁性能。上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,凡所属
技术领域
中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1