一种由钛酸铋钾和氧化锌构成的无铅复合铁电陶瓷及制备的制作方法

文档序号:12089423阅读:457来源:国知局
一种由钛酸铋钾和氧化锌构成的无铅复合铁电陶瓷及制备的制作方法与工艺

本发明涉及一种新型的K0.5Bi0.5TiO3:ZnO无铅复合铁电陶瓷,是由钙钛矿型K0.5Bi0.5TiO3和纳米半导体ZnO复合而成,在居里点前避免由正常铁电体转变为弛豫铁电体,具有高的铁电性能的温度稳定性,属于铁电陶瓷技术领域。

技术背景

压电陶瓷是一种对电、力、热、光敏感的材料,是对铁电陶瓷进行人工极化的产物,在超声换能、传感器、无损检测及通讯等领域已获得广泛的应用。目前通用的铁电陶瓷以Pb(Zr,Ti)O3(PZT)陶瓷为主,其中铅含量一般都在70%以上,在高温下和使用时易挥发,在制备、使用及废弃后处理过程中都会给环境和人类带来损害。美国、日本及欧盟等发达国家已经通过立法方式限制含铅陶瓷的制造与使用。寻找能够替代PZT的无铅压电陶瓷材料是目前电子材料领域紧迫的课题之一。

无铅铁电陶瓷是指既有良好环境协调性又有较好的使用性的一类新型功能陶瓷材料。目前研究的主要无铅压电陶瓷体系有钛酸钡(BaTiO3,BT)基无铅压电陶瓷、钛酸铋钠(Na0.5Bi0.5TiO3,NBT)基无铅压电陶瓷、钛酸铋钾(K0.5Bi0.5TiO3,KBT)基无铅压电陶瓷和铌酸钾钠(Na0.5K0.5NbO3,KNN)基无铅压电陶瓷等。其中,钙钛矿结构K0.5Bi0.5TiO3(简称为KBT)是二十世纪六十年代年由Smolenskii等发现的一种A位复合钙钛矿结构铁电体,室温时属四方铁电相,居里温度较高(410℃),且烧结温度低(<1100℃),与目前研究较多的Na0.5Bi0.5TiO3(简称为BNT)结构十分相似。与BNT相比,KBT具有更高的居里温度和较低的矫顽场EC=1.5kV/mm,因此,KBT具有更宽的温度使用区间及较低的极化难度,成为一种优秀的无铅铁电材料。通过与它复合形成的多元固溶体系,可进一步改善KBT陶瓷的烧结和电学性能。但是,在高温下,KBT是立方顺电相,当降温到380℃时,体系将发生立方-四方相的转变。在T=300℃时,发生第二相转变,并且在270℃附近有热滞现象的存在。这种转变和NBT的相转变一样是人们争论的焦点,也限制了KBT基体系的应用范围和温度稳定性。

在介电和压电陶瓷中,ZnO作为一种烧结助剂被广泛使用,它的加入促进了液相的形成,导致在烧结过程中大量的离子迁移,从而提高了陶瓷的致密性,促进了晶粒长大。研究表明,Zn2+可以替代钙钛矿结构中的B位,从而改变了相转变的温度,提高铁电陶瓷的电学性能。Zn2+的替代提高了三元固溶体PbMg1/3Nb2/3O3–PbZn1/3Nb2/3O3–PbTiO3体系的钙钛矿相结构的稳定性。

将ZnO引入KBT之中,形成一种复合材料。利用ZnO的半导体特性,ZnO所形成的内建电场抑制了KBT的退化现象,提高了相结构的稳定性。这解决了KBT在应用前景上的一个重大问题,为KBT的应用发展建立了坚实的基础。



技术实现要素:

本发明的目的是通过在K0.5Bi0.5TiO3与半导体ZnO的复合,抑制K0.5Bi0.5TiO3由正常铁电体转变为弛豫铁电体的相转变,提高K0.5Bi0.5TiO3相结构的稳定型。

为达到发明目的,本发明通过引进纳米ZnO进入K0.5Bi0.5TiO3中,以形成K0.5Bi0.5TiO3:ZnO复合陶瓷,以期达到预期的效果,其中ZnO的摩尔百分含量为20%~30%。

一种由K0.5Bi0.5TiO3和ZnO构成的无铅复合铁电陶瓷,其特征在于,由钙钛矿结构的K0.5Bi0.5TiO3和纳米级的ZnO半导体复合而成的晶体结构,通式为(1-x)K0.5Bi0.5TiO3:xZnO,0.20≤x≤0.30。

K0.5Bi0.5TiO3为具有四方钙钛矿晶相K0.5Bi0.5TiO3,ZnO为纤锌矿相ZnO。

本发明的由K0.5Bi0.5TiO3和ZnO构成的无铅复合铁电陶瓷的制备方法,其特征在于,采用二步固相法的制备工艺,第一步为制备结构稳定的K0.5Bi0.5TiO3陶瓷粉体,第二步为引入ZnO,与K0.5Bi0.5TiO3形成复合陶瓷。

K0.5Bi0.5TiO3陶瓷粉体的制备过程如下:按照K0.5Bi0.5TiO3的元素计量比称量原料K2CO3,Bi2O3,TiO2,在无水乙醇中球磨至少12h以使原料充分混合均匀,烘干后,在800℃~850℃下煅烧2~5h,再次球磨12h使粉体磨细,烘干,获得纯钙钛矿相结构K0.5Bi0.5TiO3粉体。为提高K0.5Bi0.5TiO3的相稳定性,将煅烧得到的K0.5Bi0.5TiO3粉体在980℃~1020℃预烧结2~4h,经球磨至少12h、烘干,用于K0.5Bi0.5TiO3:ZnO复合陶瓷的制备。

K0.5Bi0.5TiO3:ZnO复合陶瓷的制备过程如下:按通式(1-x)K0.5Bi0.5TiO3:xZnO(0.20≤x≤0.30)的摩尔比,称量预烧结获得的K0.5Bi0.5TiO3粉体和ZnO纳米粉体,球磨至少12h,烘干,掺入黏结剂PVB,压制成型,坯体在650℃排胶后,以3℃/min的速率升温至1000℃~1050℃进行烧结,保温1~3h,获得K0.5Bi0.5TiO3:ZnO复相陶瓷。优选在在1020℃进行烧结,保温1.5小时。

烧结后的陶瓷片被上银电极,用于对样品进行各项性能的测试。

进一步:表明:K0.5Bi0.5TiO3中引入20%(摩尔百分数)的ZnO后,复合陶瓷中生成了第三相Zn2TiO4,特别是,ZnO的引入抑制了K0.5Bi0.5TiO3由正常铁电体向弛豫铁电体的相转变,对K0.5Bi0.5TiO3的应用和研究有着重要的作用。

本发明通过构建K0.5Bi0.5TiO3和ZnO的0-3型结构,成功实现了对K0.5Bi0.5TiO3基无铅铁电陶瓷各项性能的改良,抑制了K0.5Bi0.5TiO3由正常铁电体向弛豫铁电体的相转变。

附图说明

采用德国Bruker公司D8-Advance型X射线衍射仪测定样品的相结构,Hitachi S–4800扫描电子显微镜测定所制备材料的显微形貌。采用铁电测试仪(Premier II,Radiant Technologies,USA),测试铁电性能。采用配有温度加热单元的精密LCR表(E4980,Agilent,USA)测试样品的介电特性。

图1为本发明实施例5在800℃下煅烧4h,1000℃预烧结3h,1020℃烧结1.5h的(1-x)K0.5Bi0.5TiO3:xZnO(x=0和0.2)的扫描电镜图

图2为本发明实施例5在800℃下煅烧4h,1000℃预烧结3h,1020℃下烧结1.5h的(1-x)K0.5Bi0.5TiO3:xZnO(x=0和0.2)的XRD图谱。

图3为本发明实施例5在800℃下煅烧4h,1000℃预烧结3h,1020℃下烧结1.5h的(1-x)K0.5Bi0.5TiO3:xZnO(x=0和0.2)的介电温谱图。

具体实施方式

下面结合实施例对本发明做进一步说明,但本发明并不限于以下实施例。

实施例1

配方:0.8K0.5Bi0.5TiO3:0.2ZnO

K0.5Bi0.5TiO3粉体的制备以分析纯K2CO3(99.99%)、Na2CO3(99.99%)和Bi2O3(99.99%)为原料,按照K0.5Bi0.5TiO3的元素计量比称量原料,在无水乙醇中球磨12h、烘干后,在800℃下煅烧2h,再次球磨12h、烘干,获得纯钙钛矿相结构K0.5Bi0.5TiO3粉体。为提高K0.5Bi0.5TiO3的相稳定性,将煅烧得到的K0.5Bi0.5TiO3粉体在980℃预烧结2h,经球磨12h、烘干,用于K0.5Bi0.5TiO3:ZnO复相陶瓷的制备。

0.8K0.5Bi0.5TiO3:0.2ZnO复相陶瓷样品的制备按摩尔比称量预烧结获得的K0.5Bi0.5TiO3粉体和ZnO纳米粉体(粒径约30nm),球磨12h,烘干,掺入黏结剂PVB,在400MPa的压力下压制成直径为11.5mm的圆片。坯体在650℃排胶后,以3℃/min的速率升温至1000℃进行烧结,保温1h,获得0.8K0.5Bi0.5TiO3:0.2ZnO复相陶瓷。

实施例2

配方:0.75K0.5Bi0.5TiO3:0.25ZnO

K0.5Bi0.5TiO3粉体煅烧温度为840℃,保温4h,预烧温度为1010℃,保温3h,K0.5Bi0.5TiO3:ZnO复相陶瓷的烧结温度为1030℃,保温2h。其它同实施例1。

实施例3

配方:0.75K0.5Bi0.5TiO3:0.25ZnO

K0.5Bi0.5TiO3粉体煅烧温度为820℃,保温3h,预烧温度为1000℃,保温2.5h,K0.5Bi0.5TiO3:ZnO复相陶瓷的烧结温度为1020℃,保温2.5h。其它同实施例1。

实施例4

配方:0.7K0.5Bi0.5TiO3:0.3ZnO

K0.5Bi0.5TiO3粉体煅烧温度为850℃,保温5h,预烧温度为1020℃,保温4h,K0.5Bi0.5TiO3:ZnO复相陶瓷的烧结温度为1050℃,保温3h。其它同实施例1。

实施例5

配方:0.8K0.5Bi0.5TiO3:0.2ZnO

K0.5Bi0.5TiO3粉体煅烧温度为800℃,保温4h,预烧温度为1000℃,保温3h,K0.5Bi0.5TiO3:ZnO复相陶瓷的烧结温度为1020℃,保温1.5h。其它同实施例1。

由图1可知制备的陶瓷样品均呈现致密的显微组织结构,缺陷较少。并且,ZnO的引入促使K0.5Bi0.5TiO3的颗粒增大。ZnO具有助烧作用,会在K0.5Bi0.5TiO3陶瓷内部形成液相,导致其晶粒长大。

由图2可知制备的K0.5Bi0.5TiO3粉体室温下为四方钙钛矿结构(JCPDS36-0339),加入ZnO后,K0.5Bi0.5TiO3仍为四方相结构,但其四方度明显减小。观察2θ为56°处的(211)/(112)衍射峰可以发现,加入ZnO后,其劈裂程度明显降低。同时还可以观察到第三相Zn2TiO4相(JCPDS 73-0578)。

由图3可知纯K0.5Bi0.5TiO3种,除了温度T=380℃附近介电常数实部出现极大值外,K0.5Bi0.5TiO3样品的介电常数虚部在270℃左右有一个峰,表明在此温度附近K0.5Bi0.5TiO3由正常铁电体转变为弛豫铁电体,称之为K0.5Bi0.5TiO3的退化温度。加入20%的纳米ZnO以后,在介电实部和虚部的频谱图中在270℃附近没有观察到异常现象,说明K0.5Bi0.5TiO3在温度上升过程中没有出现退极化现象,说明ZnO的加入抑制了K0.5Bi0.5TiO3的退化现象。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1