C0G微波介质材料及制备方法及陶瓷材料的制备方法与流程

文档序号:18429520发布日期:2019-08-13 21:33阅读:676来源:国知局
本发明涉及微波介质材料
技术领域
,尤其涉及C0G微波介质材料及制备方法及陶瓷材料的制备方法。
背景技术
:随着现代通信和雷达技术的迅速发展,微波通讯己成为现代通信技术的重要组成部分。与普通无线电波相比,微波具有频率高、波长短、抗干扰能力强、能穿透电离层等特点,适合作大容量、高质量、远距离通信的信号载体。另一方面,由于微波通信采用的是无线通信方式,无需铺设线路、资金投入少、建设周期短、受自然环境和地形条件的影响小、抗灾害性能强,与其它通信方式相比具有明显的优越性。近年来,便携式移动电话、车载电话、卫星直播电视、4G/5G通信系统、蓝牙技术、全球卫星定位系统和军用制导系统等微波通信系统得到了迅速发展,小型化、频率高端化、集成化、高质量化和低成本化已成为微波技术发展的必然趋势。纯MgTiO3陶瓷作为一种传统的微波介质材料,在毫米波段仍然具有优异的微波介电性能如εr=17.8、Q·f值≈49000GHz(7GHz)、τε=93ppm/℃、ρ=1.2×1012Ω·cm,但烧结温度高达1450℃且烧结温区过窄(5~10℃)。该材料过烧容易引起晶粒生长过快、气孔率增加,从而使电性能恶化,因此调节谐振频率温度系数符合C0G标准,并有效降低烧结温度、拓宽烧结范围,这成为材料领域技术人员需要科研的一个技术方向。技术实现要素:针对上述问题中存在的不足之处,本发明提供一种C0G微波介质材料及制备方法及陶瓷材料的制备方法。为实现上述目的,本发明提供一种C0G微波介质材料,包括:主成分、改性添加剂和烧结助剂;其中,所述主料为Mg(1-x-y)CaxSryTiO3(0.1<x≤0.6,0.1≤y≤0.6);所述改性添加剂为Al2O3、MnO、CeO2、CoO、Nb2O5的一种或多种;所述烧结助剂为B2O3、SiO2、ZnO、Li2CO3、Bi2O3中的一种或多种。上述的C0G微波介质材料中,优选为,各成分摩尔份数为:所述Mg(1-x-y)CaxSryTiO3为70~95份;所述Al2O3为2~20份;所述MnO为0.1~0.5份;所述CeO2为0~0.5份;所述CoO为0.1~1份;所述Nb2O5为0~8份;所述烧结助剂共1~6份。一种C0G微波介质材料的制备方法,包括如下步骤:将MgO的前驱体、TiO2的前驱体、CaO的前驱体、SrO的前驱体按比例混合,进行球磨、烘干、过筛后在1000℃~1150℃煅烧2.5~5小时后获得Mg(1-x-y)CaxSryTiO3;所述Mg(1-x-y)CaxSryTiO3与Al2O3、MnO、CeO2、CoO、Nb2O5的一种或多种、由B2O3、SiO2、ZnO、Li2CO3、Bi2O3中的一种或多种组成的烧结助剂按比例混合,球磨、烘干、过筛后获得微波介质材料。上述的C0G微波介质材料的制备方法中,优选为,所述MgO的前驱体为MgO、Mg(OH)2、MgCO3中的一种或多种;所述TiO2的前驱体为TiO2、Ti(OH)4中的一种或两种;所述CaO的前驱体为CaO、Ca(OH)2、CaCO3中的一种或多种;所述SrO的前驱体为SrO、Sr(OH)2、SrCO3中的一种或多种。一种C0G微波介质材料制备微波介质陶瓷材料的方法,包括以下步骤:将微波介质材料造粒后在4~6MPa压力下制成坯体,再将坯体排胶,排胶温度为500℃,升温速率为2℃/min,保温1小时,再以3~8℃/min升温至1260~1320℃对排胶后的坯体进行烧结保温2~5小时后随炉自然冷却。在上述技术方案中,本发明实施例提供的C0G微波介质材料、制备方法,与现有技术相比具有以下优点:1、能够在较高温度(1260~1320℃)下烧结,陶瓷粉具备成分均一、粒度分布窄、分散性好、成型性工艺好,烧结后瓷体致密、无杂质和少缺陷,其相对介电常数在10~20系列变化、室温损耗角正切<4×10-4、绝缘电阻>1×1012Ω、在-55~125℃范围内电容温度系数为0±30ppm/℃、容量温度特性稳定、品质因数Q·f值很高。2、此C0G微波介质材料制备方法及工艺简单、设备成熟及投入成本较低、易于实现工业化生产,可快捷、稳定实现从材料配方向微波介质材料产品批量生产转化。具体实施方式下面结合具体实施方式对本发明做进一步说明。应该强调的是,下述说明仅仅是示例性的,而不是为了限制本发明的范围及其应用。(1)主成分的制备主成分Mg0.90Ca0.05Sr0.05TiO3的制备方法:将纯度均为99.0%以上的Mg(OH)20.09mol、CaCO30.005mol、SrCO30.005mol和TiO20.1mol混合,加入氧化锆球和去离子水进行球磨混合,球磨时间6小时,在120℃烘5小时至干燥,过40目筛后,在1100±30℃煅烧混合物2.5h,即得主成分Mg0.90Ca0.05Sr0.05TiO3。主成分Mg0.92Ca0.02Sr0.06TiO3的制备方法:将纯度均为99.0%以上的Mg(OH)20.092mol、CaCO30.002mol、SrCO30.006mol和TiO20.1mol混合,加入氧化锆球和去离子水进行球磨混合,球磨时间6小时,在120℃烘5小时至干燥,过40目筛后,在1100±30℃煅烧混合物2.5h,即得主成分Mg0.92Ca0.02Sr0.06TiO3。主成分Mg0.93Ca0.06Sr0.01TiO3的制备方法:将纯度均为99.0%以上的Mg(OH)20.093mol、CaCO30.006mol、SrCO30.001mol和TiO20.1mol混合,加入氧化锆球和去离子水进行球磨混合,球磨时间6小时,在120℃烘5小时至干燥,过40目筛后,在1080±30℃煅烧混合物2.5h,即得主成分Mg0.93Ca0.06Sr0.01TiO3。主成分Mg0.95Ca0.02Sr0.03TiO3的制备方法:将纯度均为99.0%以上的Mg(OH)20.095mol、CaCO30.002mol、SrCO30.003mol和TiO20.1mol混合,加入氧化锆球进行球磨均匀,球磨时间6小时,在120℃烘5小时至干燥,过40目筛后,在1080±30℃煅烧混合物2.5h,即得主成分Mg0.95Ca0.02Sr0.03TiO3。其中,主成分MgTiO3、SrTiO3和CaTiO3在高温烧结时可以形成共溶固溶体,从而可以有效的改善体系的结构,拓宽烧温,改善介电性能和频率特性。而且SrTiO3和CaTiO3的添加,可以抑制样品晶粒的过度增长,使粒度分布更均匀,晶粒结合更加紧密,样品气孔减少,同时调节介电常数温度系数,从实验发现MgTiO3体系材料中加入一定比例的SrTiO3和CaTiO3比单加入SrTiO3或CaTiO3中一种成分的瓷体烧结更致密,电性能优良(介质损耗角正切低)。(2)烧结助剂的制备烧结助剂的制备方法:按质量比例为1:2.5:0.3称取原料B2O3、ZnO、SiO2混合,加入氧化锆球进行球磨,球磨时间为6小时,在80℃烘10小时至干燥,过100目筛后,在600℃煅烧4小时后获得。而烧结助剂的主要作用是降低本发明陶瓷材料的烧结温度,使材料能在较低的温度下进行烧结,保证烧结后陶瓷体晶粒生长均匀、具有高致密度。(3)配方设计及圆片性能高可靠C0G特性微波介质材料的制备方法:配方如表1所示,按设计比例在主成分中添加烧结助剂和改性添加剂,加入氧化锆球进行球磨,球磨时间为5小时,在120℃烘6小时至干燥,过100目筛后获得。改性添加剂的加入,能够使材料保持一定的介电常数同时可以调整本发明材料的介电常数温度系数;其中某些氧化物的加入还能抑制瓷体晶粒的异常生长,使晶粒生长均匀,这对提高介质材料的耐压强度起到很好的作用。而改性添加剂中MnO保证电容器在高频段下有较低的介质损耗,提高陶瓷电容器的Q值,如果太少,导致损耗上升,电容器发热;过量,则烧结性能差,瓷体结构疏松,本微波介质材料一般优选0.1~0.5份之间。改性添加剂中Al2O3可以改善瓷体的烧结特性,增强瓷体的机械强度,提高电容器高频段下的品质因数,具有优良的频率特性,本微波介质材料一般优选2~20份之间。改性添加剂中Nb2O5可以增加晶格活性,利于烧结,提高陶瓷电容器的可靠性,本微波介质材料一般优选0~8份之间。改性添加剂中CeO2有效地改善了陶瓷的微波损耗和绝缘特性,一般优选在0~0.5份。改性添加剂中CoO有效地改善了陶瓷的微波损耗和提高品质因素,一般优选在0.1~1份。微波介质陶瓷材料的制备:将微波介质材料加入6.5wt%的PVA(聚乙烯醇)水溶液粘合造粒;分别在4Mpa和6MPa压力下压制成圆片和圆柱坯体,将坯体排胶,排胶温度为500℃,升温速率为2℃/min,保温1小时,去除粘合剂;将排胶后的坯体在1260~1320℃下烧结,保温2~5小时,随炉自然冷却降至室温,制得微波介质陶瓷材料。将烧制完的圆片两表面涂覆银浆、烧制银电极,制成电容器后测试其室温电学性能,结果见表2:相对介电常数16±3,损耗角正切角正切<3×10-4,绝缘电阻>1×1012Ω,在-55~125℃范围内电容温度系数为-30~30ppm/℃。所述圆柱样品的直径为8.2±0.5mm,厚度为5.0±1.0mm,圆柱样品的Q·f值为34792~71053GHz。表1高可靠C0G特性微波介质材料配方(mol%)表2微波介质陶瓷材料的性能高可靠C0G特性微波介质材料及其制备方法,广泛应用于微波陶瓷电容器、GPS天线、介质滤波器、谐振器、电容器等微波器件的制造。尤其涉及一种符合C0G特性瓷料,且能与钯电极匹配的微波介质材料,该材料制备的微波多层片式瓷介电容器FSR高、ESR低、Q值高、击穿电压高且瓷体致密,适用于高温高湿的恶劣环境。(4)微波多层片式瓷介电容器(MLCC)的工艺及性能验证选择配方17,按瓷料生产工艺流程制备一批瓷料,然后按MLCC的制作流程加入有机粘合剂和乙醇等溶剂,从而形成浆料,把浆料流延制作成薄膜片,在膜片上印刷钯内电极,交替层叠所需层数,形成生坯电容器芯片,然后在280~400℃温度热处理生坯电容器芯片,以排除有机粘合剂和溶剂,在1260~1320℃烧结2.5~5小时,然后经表面抛光处理,再在电容器芯片的两端封上一对外部银电极,使外部电极与内部电极连接,在750~850℃温度范围内热处理外电极,再经电镀处理等工艺,即可得到微波多层片式瓷介电容器。获得的MLCC满足C0G特性要求(在-55~125℃范围内,电容温度系数变化为0±30ppm/℃),室温损耗角正切≤1×10-4、ESR(1050MHz测试)可低至20mΩ,按照国军标GJB192B-2011鉴定该电容器合格可用。表3微波MLCC(型号CC41Q-0505-C0G-150V-180K)的性能表4本公司MLCC产品的命名CC41Q0505C0G150V180K产品型号外形尺寸温度系数额定电压标称电容量电容量允许偏差以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1