一种提升YAG基透明陶瓷掺杂离子固溶度的方法与流程

文档序号:19489005发布日期:2019-12-21 04:10阅读:483来源:国知局
一种提升YAG基透明陶瓷掺杂离子固溶度的方法与流程

本发明涉及先进陶瓷制备技术领域,具体涉及一种提升yag(钇铝石榴石,y3al5o12)基透明陶瓷掺杂离子固溶度的方法。



背景技术:

固体激光器以其峰值功率高、效率高、寿命长、安全可靠等优点,在激光器应用领域中已处于主导地位,在国防军工、工业加工、和科研等领域应用广泛。固体激光器的核心部件是增益介质,其对激光输出性能的好坏起着决定性的作用,因此,对固体激光器增益介质进行深入研究具有十分重要的意义。目前固体激光器增益介质主要为单晶材料,然其具有成本高、生产周期长、工艺复杂、难以实现高浓度及均匀掺杂和大尺寸制备等缺陷,难以满足日新月异的激光技术发展的需求。

透明陶瓷作为一种全新的固体激光材料,其无论是制备技术还是材料性能等方面都具有传统单晶材料和玻璃材料无可比拟的优势,能够完全克服单晶材料的缺陷,发展极为迅速,已经成为激光材料研究的热点和重点,被认为是继单晶材料之后的下一代激光材料。目前,各种稀土离子掺杂激光透明陶瓷材料层出不穷,如yag、倍半氧化物、尖晶石、氟化物等体系,各种陶瓷基激光输出也相继被报导,并已经在许多重要领域中获得初步应用,其取代单晶成为下一代激光增益介质正逐步成为现实。在所有的透明陶瓷材料体系中,yag基透明陶瓷以其易于制备和良好的物理化学性能等优势,是激光材料研究领域的热点和重点,目前已经成为研究成果最为丰硕、应用最为广泛的透明陶瓷材料体系,发展前景十分广阔。

众所周知,单晶材料受分凝系数制约,极大地限制了掺杂离子的固溶度。以nd3+离子为例,其在yag单晶中的分凝系数仅为0.2,因此几乎没有nd3+离子掺杂浓度高于1.0at.%的nd:yag单晶。对于透明陶瓷材料,其本征“晶界效应”能够适当缓解由于离子掺杂导致的晶格内应力,可在一定程度上增大掺杂离子的固溶度,但尽管如此,在较高离子掺杂浓度下极易造成晶间相析出,降低陶瓷光学质量。文献1(jingli,etal.,opt.mater.,35(2013),748-752.)采用固相反应法真空烧结制备了ho:yag透明陶瓷,其仅能在ho3+离子掺杂浓度为0.3at.%时获得最佳光学质量,随着ho3+离子掺杂浓度增加,陶瓷光学质量逐渐下降。文献2(a.ikesue,etal.,j.am.ceram.soc.,79(1996),1921-1926.)研究发现,在nd:yag透明陶瓷中,当nd3+离子的掺杂浓度超过1.1at.%时,由离子掺杂导致的晶界偏析效应抑制了陶瓷的晶粒生长,降低陶瓷光学质量,提升了激光震荡阈值。文献3(t.zhou,etal.,ceram.int.,44(2018),13820-13826.)报道了不同cr离子掺杂浓度下cr,nd:yag透明陶瓷,当cr离子掺杂浓度高于0.9at.%时可观察到晶内气孔,这是由于未固溶的cr2o3在陶瓷烧结时与yag基质相互作用形成共熔物,加剧晶界迁移使气孔被包裹在晶粒内部的缘故。文献4(w.zhao,etal.,opt.mater.,33(2011),684-687.)报道了ce:yag透明陶瓷的ce3+离子晶界偏析情况,研究发现即使是0.1at.%ce:yag透明陶瓷,其晶界处的ce3+离子浓度明显高于晶粒内部。

以上文献所报道的高掺杂稀土及过渡金属离子的yag基透明陶瓷普遍存在透过率偏低等问题,远不及yag单晶的光学质量,无法满足固体激光应用需求,其主要原因在于高掺杂导致的晶界偏析效应,造成光散射,导致透明陶瓷光学质量降低。考虑到固体激光器集成化、小型化发展趋势,特别是光纤和碟片激光器发展势头强劲,目前已取代nd:yag激光器的大部分功能,使高掺杂增益介质的市场需求日益增大。因此,如何实现不损害yag透明陶瓷光学质量的前提下,尽可能提升其掺杂浓度,是本领域发展的主要瓶颈之一。然而迄今为止,本领域尚未开发出高质量、高掺杂浓度yag基透明陶瓷材料及其制备方法。

因此,本领域迫切需要开发出一种既能够有效提升离子掺杂浓度,又能够满足固体激光应用需求的yag基透明陶瓷材料的制备方法。



技术实现要素:

本发明的目的是提供一种提升yag基透明陶瓷掺杂离子固溶度的方法,在不影响透明陶瓷光学质量的前提下,提升掺杂离子固溶度。

为实现上述目的,本发明采用的技术方案如下:一种提升yag基透明陶瓷掺杂离子固溶度的方法,所制备的yag基透明陶瓷组分满足下式:

(rexy1-x)3(cryal1-y-z)5o12

式中x的取值范围是0≤x≤0.08,y的范围是0≤y≤0.05,z的范围是-0.028≤z≤0.020,re为ce、nd、ho的一种。

所制备的yag透明陶瓷1064nm处线透过率高于83.5%-84.6%。陶瓷晶粒尺寸为5.5-12.6μm,粒径分布均匀,可完全满足固体激光器应用需求。

具体步骤如下:

s1.浆料配制:根据化学式(rexy1-x)3(cryal1-y-z)5o12,0≤x≤0.08,0≤y≤0.05,-0.028≤z≤0.020中各元素的化学计量比分别称取y2o3粉体、α-al2o3粉体、re2o3粉体或reo2粉体、cr2o3粉体,称量后置于球磨罐中,加入烧结助剂、分散剂和无水乙醇配制浆料;

s2.球磨及粉体处理:将装有浆料和磨球的球磨罐置于球磨机中进行球磨,得到混合浆料,将混合浆料置于烘箱中干燥,再将干燥后的粉料研磨过筛;

s3.粉体成型:将步骤s2中过筛后的粉体置于模具中,采用10mpa-80mpa压力压制成素坯,将获得的素坯置于密封袋中,于80mpa-300mpa压力下冷等静压成型,保压时间为1-40min;将上述冷等静压压制后的素坯置于马弗炉中,在空气或氧气气氛下于400-1200℃预煅烧2-16h,并降温至20-50℃;

s4.素坯烧结:将步骤s3中预煅烧后的素坯置于真空烧结炉中,首先于1300-1600℃保温1-10h使陶瓷实现完全纯相转变,然后升温至1660℃-1850℃真空烧结陶瓷4-90h,并降温至30-50℃,真空度为10-3-10-5pa;

s5.退火:将真空烧结后的陶瓷在空气或氧气气氛下,于850-1550℃退火2-80h,并降温至室温;

s6.磨砂抛光:退火后的陶瓷进行磨砂减薄和抛光处理,得到厚度为1-5mm的yag基透明陶瓷材料。

优选的,步骤s1中,所述烧结助剂为正硅酸乙酯(teos)、氧化镁(mgo)、氧化钙(cao)、氟化镁(mgf2)、氟化钙(caf2)的一种或多种,烧结助剂总添加量为y2o3粉体、α-al2o3粉体质量总和的0.02-0.80wt.%;所述分散剂为ds005,分散剂添加量为y2o3粉体、α-al2o3粉体质量总和的0.03-1.20wt.%;最终配制的浆料固含量为25%-60vol.%。

优选的,所述球磨罐为氧化铝球磨罐、尼龙球磨罐或聚四氟乙烯球磨罐的一种;所述磨球为高纯氧化铝球、高纯氧化锆球或玛瑙球的一种。

优选的,步骤s2中,球磨转速为80-300r/min,球磨时间为8-40h;干燥温度为35-150℃,干燥时间为2-50h;过筛的目数为50-200目,过筛次数为1-10次。

优选的,步骤s3中,预煅烧阶段的升温速率为0.3-20℃/min,降温速率为2-40℃/min。

优选的,步骤s4中,真空烧结阶段的升温速率为0.5-15℃/min,降温速率为1-55℃/min。

优选的,步骤s5中,退火阶段的升温速率为2-50℃/min,降温速率为5-55℃/min。

当y过量时,陶瓷在烧结过程中,稀土掺杂离子起初更倾向于占据al3+格位,以弥补由y过量导致的yal反位缺陷导致的晶格内应力,进而再占据与其离子半径相近的y3+格位,从而提升稀土离子在yag晶格中的固溶度;对于cr离子,y过量则能够进一步增大其在yag晶格中占据al3+离子时的固溶度。同样地,当al过量时,能够进一步促进稀土掺杂离子占据y3+离子时的固溶度,来弥补由al过量导致的aly反位缺陷导致的晶格内应力;对于cr离子,al过量则使其优先占据yag晶格中y3+格位,进而再占据与其离子半径相近的al3+格位,提升其固溶度。同时,掺杂离子在yag晶格中固溶度提升能够有效中和由于y或al过量可能导致的晶界偏析,确保陶瓷光学质量。

小阳离子半径的烧结助剂(如si助剂等)取代yag晶格中al3+离子格位时会导致al偏析,可中和取代y3+离子格位的掺杂离子掺杂时导致的y偏析,从而提升掺杂离子的固溶度;同时,小阳离子半径烧结助剂晶格取代会造成晶格收缩,可中和大半径掺杂离子(如nd3+离子等)取代导致的晶格膨胀应力,提升大半径掺杂离子的固溶度。同理,采用大阳离子半径的烧结助剂(如ca助剂等),其取代y3+离子格位造成的y偏析可中和cr离子取代al3+离子格位导致的al偏析,提升cr离子的固溶度;同时大阳离子半径的烧结助剂导致的晶格膨胀会中和小离子半径掺杂离子(如ho3+离子等)取代造成的晶格收缩应力,提升小半径掺杂离子的固溶度。

与现有技术相比,本发明具有如下有益效果:

(1)本发明在制备高质量yag透明陶瓷的同时,实现了掺杂离子固溶度的本质提升。所制备的陶瓷致密度高、均匀性好,无偏析,无晶内以及晶间气孔,透过率高,满足作为激光增益介质的条件。

(2)本发明仅通过真空烧结法实现不同离子掺杂浓度下yag透明陶瓷的致密化,无需气氛辅助和昂贵的压力烧结设备,经济节能效果明显。

(3)本发明实现了在不同稀土离子掺杂浓度下yag透明陶瓷晶粒尺寸均匀化制备,粒级配分布合理,无异常晶粒长大。

(4)工艺流程简单,制备周期短,有利于降低成本要求,实现技术推广和商业推广。

附图说明

图1为本发明实施例1,2,3,4,5制得的yag基透明陶瓷的的xrd图谱;

图2为本发明实施例1,4制得的yag基透明陶瓷抛光表面sem图;

图3为本发明实施例2制得的yag基透明陶瓷的线透过率曲线;

图4为本发明实施例1制得的yag基透明陶瓷的光学显微镜明场图像,说明该陶瓷具有良好的光学均匀性。

图5为本发明实施例3,4制得的yag基透明陶瓷断面sem图谱。

图6为本发明实施例1,2制得的yag基透明陶瓷的实物照片。

具体实施方式

下面结合附图和具体实施例对本发明作进一步详细说明。

实施例1

①将市售纯度为99.999%的y2o3、99.99%的α-al2o3和99.9%的cr2o3按y3(cr0.05al0.978)5o12(x=0,y=0.05,z=-0.028)化学计量比称量后,置于聚四氟乙烯球磨罐中,随后加入0.01wt.%cao和0.01wt.%mgo为烧结助剂,0.5wt.%ds005(美国polymerinnovation,inc.的强聚合分散剂)作为分散剂,加入无水乙醇配制成固含量为55vol.%的浆料。

②将步骤①中得到的浆料置于行星式球磨机上采用高纯氧化锆球球磨混合15小时,转速为250r/min,球磨后的浆料置于120℃烘箱中干燥10h,干燥后的前驱体进行过筛,采用200目网筛过筛1次。

③将步骤②所得到的过筛粉体置于不锈钢模具中,采用10mpa干压压制成圆片,再经过250mpa冷等静压制得素坯,保压时间为5min。素坯于空气气氛中采用1000℃煅烧,保温5小时,并降温至35℃;煅烧升温速率为10℃/min,降温速率为30℃/min。

④将步骤③所得到的煅烧后的素坯置于真空烧结炉中,先于1600℃保温1h陶瓷实现完全纯相转变,接着采用1820℃真空烧结8h,真空度为10-4pa,随后降温至30℃;烧结升温速率为0.5℃/min,降温速率为35℃/min,得到致密的yag透明陶瓷。

⑤陶瓷样品采用空气气氛于850℃退火80h,退火的升温速率为50℃/min,降温速率为5℃/min,得到致密的yag透明陶瓷,并磨砂、抛光至4mm厚。

陶瓷样品的xrd图谱(brukerd2)见图1,为纯yag相。1064nm处透过率为84.3%,光学性能优异。样品的抛光表面sem图谱(jeol,jsm6510)见图2,表明该陶瓷具有完全的致密化显微结构,无气孔及晶间相存在,平均晶粒尺寸5.5μm。样品光学显微镜图像见图4(zeiss,axioscope.a1),可以观察到无散射中心存在。样品的实物图见图6,绿色透明陶瓷下字迹清晰,表明样品具有良好的透光性。

实施例2

①将市售纯度为99.999%的y2o3、99.999%的α-al2o3和99.999%的nd2o3按(nd0.06y0.94)3al4.95o12化学计量比称量后(x=0.06,y=0,z=0.01),置于氧化铝球磨罐中,随后加入0.7wt.%teos为烧结助剂,0.03wt.%ds005(美国polymerinnovation,inc.的强聚合分散剂)作为分散剂,加入无水乙醇配制成固含量为45vol.%的浆料。

②将步骤①中得到的浆料置于行星式球磨机上采用高纯氧化铝球球磨混合25小时,转速为200r/min,球磨后的浆料置于80℃烘箱中干燥20h,干燥后的前驱体进行过筛,采用80目网筛过筛7次。

③将步骤②所得到的过筛粉体置于不锈钢模具中,采用20mpa干压压制成圆片,再经过200mpa冷等静压制得素坯,保压时间为15min。素坯于氧气气氛中采用800℃煅烧,保温8小时,并降温至50℃。煅烧升温速率为0.3℃/min,降温速率为2℃/min。

④将步骤③所得到的煅烧后的素坯置于真空烧结炉中,先于1350℃保温8h陶瓷实现完全纯相转变,接着采用1780℃真空烧结20h,真空度为10-5pa,随后降温至50℃。烧结升温速率为1℃/min,降温速率为10℃/min,得到致密的yag透明陶瓷。

⑤陶瓷样品采用氧气气氛于1450℃退火10h,退火的升温速率为20℃/min,降温速率为25℃/min,得到致密的yag透明陶瓷,并磨砂、抛光至2mm厚。

陶瓷样品的xrd图谱(brukerd2)见图1,为纯yag相。样品平均晶粒尺寸9.8μm。样品退火前后的线透过率图谱(lambda950,perkinelmer)见图3,可见其退火后在1064nm处线透过率为84.6%,达到yag理论透过率,表明样品具有良好的光学质量。样品的实物图见图6,紫色透明陶瓷下字迹清晰,表明样品具有良好的透光性。

实施例3

①将市售纯度为99.999%的y2o3、99.99%的α-al2o3和99.99%的ceo2按(ce0.02y0.98)3al4.94o12化学计量比称量后(x=0.02,y=0,z=0.012),置于尼龙球磨罐中,随后加入0.6wt.%teos和0.2wt.%mgo为烧结助剂,1.2wt.%ds005(美国polymerinnovation,inc.的强聚合分散剂)作为分散剂,加入无水乙醇配制成固含量为60vol.%的浆料。

②将步骤①中得到的浆料置于卧式球磨机上采用玛瑙球球磨混合8小时,转速为300r/min,球磨后的浆料置于150℃烘箱中干燥2h,干燥后的前驱体进行过筛,采用50目网筛过筛10次。

③将步骤②所得到的过筛粉体置于橡胶模具中,采用80mpa干压压制成圆片,再经过300mpa冷等静压制得素坯,保压时间为1min。素坯于氧气气氛中采用1200℃煅烧,保温2小时,并降温至20℃。煅烧升温速率为20℃/min,降温速率为40℃/min。

④将步骤③所得到的煅烧后的素坯置于真空烧结炉中,先于1300℃保温10h陶瓷实现完全纯相转变,接着采用1660℃真空烧结90h,真空度为10-3pa,随后降温至40℃。烧结升温速率为15℃/min,降温速率为1℃/min,得到致密的yag透明陶瓷。

⑤陶瓷样品采用空气气氛于1550℃退火2h,退火的升温速率为2℃/min,降温速率为50℃/min,并磨砂、抛光至5mm厚。

陶瓷样品的xrd图谱(brukerd2)见图1,为纯yag相;样品的断面sem图谱(jeol,jsm6510)见图5,表明该陶瓷具有完全的致密化显微结构,无气孔及晶间相存在,断裂形式主要为沿晶断裂,平均晶粒尺寸为11.5μm,1064nm处透过率为83.5%,光学性能优异。

实施例4

①将市售纯度为99.99%的y2o3、99.999%的α-al2o3、99.99%的ceo2和99.999%的cr2o3按(ce0.015y0.985)3(cr0.04al0.97)5o12化学计量比称量后(x=0.015,y=0.04,z=-0.01),置于聚四氟乙烯球磨罐中,随后加入0.6wt.%teos和0.1wt.%caf2为烧结助剂,0.8wt.%ds005(美国polymerinnovation,inc.的强聚合分散剂)作为分散剂,加入无水乙醇配制成固含量为35vol.%的浆料。

②将步骤①中得到的浆料置于行星式球磨机上采用高纯氧化铝球球磨混合32小时,转速为150r/min,球磨后的浆料置于55℃烘箱中干燥35h,干燥后的前驱体进行过筛,采用150目网筛过筛3次。

③将步骤②所得到的过筛粉体置于不锈钢模具中,采用40mpa干压压制成圆片,再经过150mpa冷等静压制得素坯,保压时间为30min。素坯于空气气氛中采用600℃煅烧,保温12小时,并降温至30℃。煅烧升温速率为2℃/min,降温速率为8℃/min。

④将步骤③所得到的煅烧后的素坯置于真空烧结炉中,先于1400℃保温9h陶瓷实现完全纯相转变,接着采用1720℃真空烧结50h,真空度为10-4pa,随后降温至45℃。烧结升温速率为2℃/min,降温速率为20℃/min,得到致密的yag透明陶瓷。

⑤陶瓷样品采用空气气氛于1300℃退火20h,退火的升温速率为35℃/min,降温速率为10℃/min,并磨砂、抛光至3mm厚。

陶瓷样品的xrd图谱(brukerd2)见图1,为纯yag相。样品的表面sem图谱见图2,其平均晶粒尺寸为12.6μm。样品的断面sem图谱(jeol,jsm6510)见图5,表明该陶瓷具有完全的致密化显微结构,无气孔及晶间相存在,其断裂形式主要以穿晶断裂。样品在1064nm处线透过率为84.5%,达到yag理论透过率,表明样品具有良好的光学质量。

实施例5

①将市售纯度为99.999%的y2o3、99.99%的α-al2o3和99.99%的ho2o3按(ho0.08y0.92)3al4.9o12化学计量比称量后(x=0.08,y=0,z=0.02),置于聚四氟乙烯球磨罐中,随后加入0.02wt.%cao和0.05wt.%mgf2为烧结助剂,0.2wt.%ds005(美国polymerinnovation,inc.的强聚合分散剂)作为分散剂,加入无水乙醇配制成固含量为25vol.%的浆料。

②将步骤①中得到的浆料置于行星式球磨机上采用高纯玛瑙球球磨混合40小时,转速为80r/min,球磨后的浆料置于35℃下干燥50h,干燥后的前驱体进行过筛,采用100目网筛过筛5次。

③将步骤②所得到的过筛粉体置于橡胶模具中,采用60mpa干压压制成圆片,再经过80mpa冷等静压制得素坯,保压时间为40min。素坯于空气气氛中采用400℃煅烧,保温16小时,并降温至45℃。煅烧升温速率为5℃/min,降温速率为15℃/min。

④将步骤③所得到的煅烧后的素坯置于真空烧结炉中,先于1550℃保温2h陶瓷实现完全纯相转变,接着采用1850℃真空烧结6h,真空度为10-4pa,随后降温至35℃。烧结升温速率为10℃/min,降温速率为55℃/min,得到致密的yag透明陶瓷。

⑤陶瓷样品采用空气气氛于1200℃退火40h,退火的升温速率为10℃/min,降温速率为35℃/min,并磨砂、抛光至1mm厚。

陶瓷样品的xrd图谱(brukerd2)见图1,为纯yag相;平均晶粒尺寸7.2μm,1064nm处透过率为84.0%,光学性能优异。

在不降低透明陶瓷光学质量的前提下,对于nd:yag透明陶瓷,当z的范围取0.005~0.02时,采用0.4~0.8wt.%teos为烧结助剂,陶瓷先于1300~1500℃保温4~10h,并于1660~1820℃真空烧结4~30h可获得高质量纯立方相yag透明陶瓷,nd3+离子的掺杂浓度可提升至6.0at.%;

对于ce,cr:yag透明陶瓷,当z的范围取-0.018~0.01时,采用0.3~0.6wt.%teos和0.03~0.4wt.%caf2为烧结助剂,陶瓷先于1350~1580℃保温2~9h,并于1660~1820℃真空烧结6~50h可获得高质量纯立方相yag透明陶瓷,ce离子的掺杂浓度可提升至1.5at.%,cr离子的掺杂浓度可提升至4.0at.%;

对于ho:yag透明陶瓷,当z的范围取-0.01~0.02时,采用0.03~0.4wt.%cao和0.02~0.6wt.%mgf2为烧结助剂,陶瓷先于1400~1600℃保温1-10h,并于1700~1850℃真空烧结5~90h可获得高质量纯立方相yag透明陶瓷,ho离子掺杂浓度可提升至8.0at.%;

对于cr:yag透明陶瓷,当z的范围取-0.028~0.01时,采用0.01~0.2wt.%cao和0.01~0.3wt.%mgo为烧结助剂,陶瓷先于1330~1550℃保温3~8h,并于1720~1850℃真空烧结6~50h可获得高质量纯立方相yag透明陶瓷,cr离子掺杂浓度可提升至5.0at.%;

对于ce:yag透明陶瓷,当z的范围取-0.015~0.02时,采用0.03~0.6wt.%teos和0.08~0.2wt.%mgo为烧结助剂,陶瓷先于1300~1520℃保温2~9h,并于1660~1820℃真空烧结7~90h可获得高质量纯立方相yag透明陶瓷,ce离子掺杂浓度可提升至2.0at.%。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1