经烧制的耐火陶瓷产品的制作方法

文档序号:74378阅读:305来源:国知局
专利名称:经烧制的耐火陶瓷产品的制作方法
经烧制的耐火陶瓷产品
本发明涉及经烧制的耐火陶瓷产品。根据本发明,该通用术语包括经成型的和未经成型的产品。经成型的产品是指具有特定形状以使得能够由生产商大量生产的产品。经成型的产品包括砖、喷嘴(AusgUsse)、管、塞子(Stopfen)、板等。术语未经成型的产品包括通常由用户从相应的物料制备的产品。未经成型的产品包括由物料浇注而成的炉子设备(Ofenaggregate)底板还有修复物料等。
经成型的产品可以以经烧制或未经烧制形式供应给用户。类似于未经烧制的产品,经成型的产品最迟在其使用时经烧制,其中将该产品至少加热到其中配方组分(Versatzkomponent)烧结的温度。就此而言,术语耐火的配方(Versatz)材料既包括已经具有耐火性质的材料,也包括在温度处理(Temperaturbehandlung)(烧制)期间/之后才耐火的材料。
上述类型的耐火陶瓷产品长久以来以无数实施方案得知。对这些产品的要求视各自的应用而定。原则上要求高的温度耐受性。对于内衬水泥回转窑而言,通常耐受至多1300°C温度的产品就已足够。对于冶金应用的耐火陶瓷产品(内衬熔体容器、喷嘴、塞子、气塞(GasspUlstein)等)通常具有至少1400_1700°C的温度耐受性。用于内衬垃圾焚烧装置的产品的耐火性通常位于1300°C -1500°C。例如对于下列应用要求超过1700°C的温度耐受性玻璃熔槽(Glasschmelzwannen)、用于制造和处理金属熔体的装置。
其它的必要性质是热冲击抗性、腐蚀行为、结构弹性(Gefiigeelastizit0t)、压力下软化性能(Druckerweichen)、透气性、在温度交变后的冷压强度、热抗弯强度。
就此而言,具体的产品要求还取决于具体应用。例如在炉中,例如气化装置和/或燃烧装置(例如垃圾焚化装置)或者在玻璃熔槽的拱顶(Gewdben)中,耐火陶瓷产品的透气性具有重要作用。其中力求低的透气性,以避免耐火陶瓷产品由于渗入腐蚀性气体成分而被腐蚀。
对于用以内衬玻璃熔槽的产品,特别是其中发生玻璃熔体与耐火材料接触的位置,存在其它的标准玻璃熔槽通常用大尺寸的耐火砖内衬(例如O. 6X0. 4X0. 4m)。因此,对于该应用,除了低的腐蚀趋势之外力求改善(降低)脆性。
DE 10054125A1记载了一种用于制备耐火陶瓷产品的配方(Versatz)。该配方作为必要组分包括熔融相形成剂,其在700-130(TC的使用温度形成熔体/玻璃相。该熔融相应当尽可能地填充产品的开孔率(Offene Porositat),以在烧制后得到尽可能致密的产
品O
本发明的任务在于,提供一种耐火的陶瓷产品,其特别适用于高温应用(>1500°C,特别是> 1700°C )和除了高的温度耐受性之外累计具有下列性质的尽可能多个良好的热冲击抗性、好的柔韧性、在温度交变后高的冷压强度、低的透气性。
为了实现该任务,进行了全面的研究。其中特别是得到了如下认知
-除了化学组成,经烧制的产品的结构起到特别重要的作用。
-开孔率的绝对值不是决定性的。取而代之起决定作用的是,构造开孔率使得得到尽可能低的透气性。[0013]-一方面开孔率和另一方面低的透气性又可用来调节结构。
-除了少量粗颗粒之外含占主导地位的细颗粒(feinteilig)基质的结构满足该要求。
-粗颗粒彼此之间的间距就尺寸而言应对应于它们的最大直径的O.7-3倍。
-其中,所述开孔率非常主要地由所述细颗粒的基质决定。但是,所述孔也终止于粗颗粒的结构颗粒处。这在每一情况下产生“盲孔”类型。结果,相关孔部分在透气性方面不起作用。
-细颗粒部分应当占配方的50-90质量%(或者60-90质量%),粗颗粒部分相应地占10-50质量%或者10-40质量%。同时,颗粒尺寸在细颗粒和粗颗粒之间的颗粒部分应限制为小于总配方的10质量%,优选小于5质量%。
-由此得到的颗粒间隙对于经烧制的产品的结构及其性能具有决定作用。
-细颗粒部分的上限值就尺寸而言比粗颗粒材料的下限颗粒尺寸小大约10%。通常,细颗粒的耐火材料位于d9(l < 100 μ m,通常< 50 μ m的颗粒尺寸,而粗颗粒的耐火组分具有d9Q > 500μπι,通常> Imm的颗粒尺寸。
在本发明的一般实施方案中,本发明涉及一种经烧制的耐火陶瓷产品,其由下面配方制备,该配方除了 50-90质量%的颗粒尺寸d9(l < 100 μ m的细颗粒耐火材料之外还具有10-50质量%的颗粒尺寸d9(l > 500 μ m的粗颗粒的耐火材料,和颗粒尺寸d9(l为100-500 μ m的颗粒含量限制为< 10质量%。
根据一个实施方案,细颗粒耐火材料的阈值颗粒尺寸为d9(l < 50 μ m。
细颗粒和粗颗粒耐火材料之间的百分比含量可以如下变化65-85 15_35或者70-80 20-30或者75-85 15-25,其中颗粒尺寸在细颗粒部分和粗颗粒部分之间的颗粒含量可以限制为小于5质量%的值。
配方的具体颗粒选择对于经烧制的产品的结构及其性能是决定性的。已经认识至IJ,配方的粗份额和细份额几乎总是类似于在经烧制的产品中的情况。为了制备,可以将这两种组分加工成丸粒(Granalien)形式。这样,各丸粒具有由上述粗颗粒材料构成的芯体和由上述细颗粒材料构成的壳体(Umhiillung)。在随后的另一后处理中,可以混入其它的细材料。所述配方可以例如被压制成成型件。在通常超过1500°C,大多超过1700°C烧制后,得到例如图I中所示的结构图。
图中示出在或多或少均匀的同样主要由Al2O3构成的细颗粒周围基质中的由Al2O3构成的各粗颗粒。黑的区域表示在样品制备期间没有被树脂填充的孔。对于该实施例,该细颗粒基质的结构区域具有相对高的开孔率(大约15体积% )。可以看出,由无数小孔构成的该孔隙率由无数小孔组成,其中所述孔不形成延伸较长距离的通道。取而代之的是,其在孔网络中产生中断和颈缩。此外,所述孔通道通过或多或少致密的粗颗粒配方成分(其它的结构区域)中断。由此在高开孔率的情况下得到透气性小于lX10_13m2的产品,根据EN993-4测得。
由此,本发明相对于DE 100 54 125A1采取完全不同的途径。在现有技术中,所述开孔有目的地用熔融相/玻璃相填充,所述开孔率在根据本发明烧制的耐火陶瓷产品情况下和在应用(应用温度)下基本得以保留并在每一情况下高于10. O体积%。这是合意的,因为高的开孔率对于产品的有利的结构弹性是决定性的,正如随后列出的楔入劈拉试验(Keilspalttest)结果所示。根据本发明,配方中和最終的经烧制产品中粗颗粒和细颗粒的协调是极为重要的。
根据ー个实施方案,开孔率至多为30体积%。配方组分的协调和随后的产品烧制可以如此实施,使得制得产品的孔具有下列特性分布多于一半的孔具有d9(l < 15 μ m的直径,和多于1/10的孔具有d9(l > 100 μ m的直径,其中15-100 μ m的孔部分为总的开孔率的最多1/7或者甚至最多1/10。细孔和粗孔(上限值和下限值)之间的差距可以大于或等于10%。相应地,多于一半的开孔率由直径d9(l < 10 μ m的孔构成。所述配方主要由氧化物组分构成。所述氧化物组分包括A1203、Al203-Zr02、ZrO2 (经稳定化,例如用CaO或MgO稳定化,或者未经稳定化),莫来石、Mg0、Mg0_Al203、Cr203、Mg0-Cr203、Si02、Al203_Cr203。具有大于1400°C的耐火性的氧化物陶瓷组分的含量可以大于80质量%,特别是大于90质量%。此外,在配方中可以存在非氧化性组分,例如碳化物、氮化物、硼化物或SiAlON。
配方组分的选择应当如此进行使得实现为至少1500°C,优选大于1700-1800°C的耐火性。
此外,可以如此选择材料,使得在上述烧制温度小于5质量%的配方由在该温度形成熔融相的组分组成。由此导致在使用时在产品中最小化直到甚至完全不产生或不存在熔融相部分。
相应地,根据本发明的产品可以具有下列产品性能
-压カ下软化性能[根据EN993-8] T0.5 :大于1500°C,特别是大于1700 °C
-热抗弯强度[根据EN993-7]:在1250°C :大于lOMPa,特别是大于20MPa
-冷压强度[根据EN993-5]:大于50MPa,特别是大于80MPa
-透气性[根据EN 993-4]:小于 5 X 10_13m2,特别是小于 I X 10_13m2
本发明然后根据实施例详述,其有时与已知产品相比较。
图I示出了在1750°C烧制的产品的结构,其含有超过90质量%的氧化铝(实施例I,BI).可以看到近乎致密的粗Al2O3颗粒。相邻的粗Al2O3颗粒之间的距离大致相当于这些粗颗粒的最大直径。在粗颗粒之间可以看到细颗粒的Al2O3基质,其含有无数小孔。细颗粒基质包含显著大干90%的总开孔率。
所述粗颗粒部分在经烧制的产品的结构中占大约20体积%。相应地,细颗粒基质的体积占大约80%。
图2示出了根据图I的总体产物的颗粒尺寸分布。轴⑶上绘出的是直径,単位为微米,轴(A)上绘出的是相对开孔率,单位为%,沿着(C)绘出的是孔分布,单位为%。可以看出,孔极大值(Maximum)出现在1_10微米。总的开孔率的接近80%由具有1_10微米的直径的孔构成。在孔尺寸分布中显著较小突起的第二极大值位于100-1000微米。其例如是在粗颗粒组分的各个颗粒内的单个大孔,或者是粗颗粒表面上的平面状孔。
在该产品上测得如下性能值
开孔率15.5体积%
冷压强度>280MPa
热抗弯强度(1400°C) 18MPa
透气性0.7Xl(T13m2[0044]压カ下软化性质Τα5 > 1700 °C
产品的冷压强度在30次温度交变之后根据DIN 51068,第一部分测得为大约280MPa (根据 DIN EN 993-5 测定)。
实施例2(B2)涉及基于Al2O3-ZrO2的根据本发明的产品。该配方与根据实施例I的配方的区别在于,该配方含有总共8重量%的颗粒尺寸小于10微米的ZrO2,这意味着ニ氧化错是细颗粒配方组分(Versatzkomponent)的成分(Bestandteil)。
类似于实施例I,基于氧化招的粗组分在造粒板(Granulierteller)上用细颗粒包覆。所制得的丸粒(Granalien)具有大约4mm的平均直径。然后由该丸粒压制成尺寸为O. 3X0. 3X0. Im 的砖并在 1740°C烧制。
所述产品的粗密度为3. 5g/cm3。开孔率为13. 5体积%。在1400°C的热抗弯強度为12MPa。类似于实施例1,在30次温度交变之后的冷压强度为120MPa。
根据实施例1、2(B1、B2)的产品随后经所谓的楔入劈拉试验测试,正如在WO2005/085155A1中所记载的。图3示出了测试结果,并与基于Al2O3的产品(这属于现有技术,样品A)进行比较。
楔入劈拉试验于经烧制的产品上于1250°C进行。“V”表示垂直负载FV[N],“D”表示垂直位移Sv[mm]。
更低的最大力和曲线向右推移表明,与现有技术㈧相比,本发明的样品(B1、B2)具有显著更高的结构弹性。
在图3中,在由B3标记的曲线(其涉及实施例3)上,这是特别明显的。作为粗颗粒使用用3质量% MgO稳定化的ZrO2材料(颗粒尺寸O. 5-3mm)。在配方中的细颗粒耐火材料由Al2O3构成。在烧制时,细颗粒的Al2O3与来自粗颗粒的MgO反应并在粗颗粒周围形成尖晶石边缘(Spinellsaum) (MgO-Al2O3-尖晶石)。如图3所示,通过MA尖晶石的混合相明显非常积极地影响了在大于1500°C烧制的产品的弹性行为。该边缘对于整个结构的物理和机械性能而言是必要的。在存在氧化钠时,在层中在粗颗粒周围还可以形成Mg-Na-铝酸盐。
就在前面说明书中关于整体样品的开孔率、孔尺寸和孔尺寸分布的陈述而言,其涉及根据英国标准BS 1902-3. 16 :1990的定义和測定方法。根据该标准借助压汞法的測定借助Micromeritics Auto Pore IV, 9400 VlO5型的仪器以姆压カ阶段(压力水平)10秒平衡时间进行。
除了孔尺寸和孔尺寸分布之外,正如在该标准中给出的一祥,还由该測定得出了整体样品的开孔体积(offenen Porenvolumen)和粗密度,因此所给出的密度值同样基于该标准。
借助于反射光显微镜及其用相关相的体积比进行校正来测定结构中颗粒尺寸利用在Radex-Rundschau 1988,第4卷,第172-182页描述的方法进行。该方法用于测定在各结构区域的开孔率(參见权利要求
12、13),前提是,仅检测在显微照片中长度大于I微米的那些孔。
权利要求
1.经烧制的耐火陶瓷产品,其具有超过10.O体积%且至多30体积%的开孔率和< 5X IO-13Hi2的透气性,并由含有少于5质量%的在最高达1500°C的应用温度下形成熔融相的组分的配方制备,该配方除了 50-90质量%的颗粒尺寸d9(l < 100 μ m的细颗粒耐火材料之外还具有10-50质量%的颗粒尺寸d9(l > 500 μ m的粗颗粒耐火材料,且颗粒尺寸d9(l为100-500 μ m的颗粒份额被限制为< 10质量%。
2.根据权利要求
I的产品,其由其中细颗粒材料的颗粒尺寸d9(l< 50 μ m的配方制备。
3.根据权利要求
I的产品,其由除了65-85质量%的细颗粒材料之外还含有15-35质量%的粗颗粒材料的配方制备。
4.根据权利要求
I的产品,其由其中颗粒尺寸d9(l在细颗粒材料和粗颗粒材料之间的颗粒份额被限制为< 5质量%的配方制备。
5.根据权利要求
I的产品,其中开孔率的超过一半由直径d9(l<15μπι的孔构成,和多1/10由直径d9(l > IOOym的孔构成,其中15-100 μ m的孔份额为总开孔率的最多1/7。
6.根据权利要求
5的产品,其中开孔率的超过一半由直径d9Q< 10 μ m的孔构成。
7.根据权利要求
5的产品,其中15-100μ m的孔份额占开孔率的最多1/10。
8.根据权利要求
I的产品,其至少满足下列测试值之一 a)根据EN993-8的压力下软化性能大于1500°C,特别是大于1700°C b)根据EN993-7的热抗弯强度在1400°C大于IOMPa c)根据EN993-5的冷压强度大于50,特别是大于80MPa。
9.根据权利要求
I的产品,其由具有由所述粗颗粒材料构成的芯体和由所述细颗粒材料构成的壳体的丸粒制备。
10.根据权利要求
I的产品,其由直径d9(l至多4mm的丸粒制备。
11.根据权利要求
I的产品,其中在结构部分中存在<1/10的来自配方的粗颗粒材料的开孔率。
12.根据权利要求
I的产品,其中在结构部分中存在<1/20的来自配方的粗颗粒材料的开孔率。
13.根据权利要求
I的产品,由下面配方制备,该配方含有至少一种下列氧化物材料A1203、Al2O3-ZrO2^ ZrO2、莫来石、MgO、MgO-Al2O3^ Cr2O3> MgO-Cr2O3^ Si02、Al2O3-Cr2O30
14.根据权利要求
I的产品,其由下面配方制备,该配方含有至少一种下列非氧化物材料碳化物、氮化物、硼化物、SiAlON。
专利摘要
本发明涉及经烧制的耐火陶瓷产品。根据本发明,该通用术语包括经成型的和未经成型的产品。成型产品是指具有特定形状以使得能够由生产商以成品形式大量生产的产品。成型产品包括砖、喷嘴、管、塞子、板等。术语未经成型的产品包括通常由用户从相应的物料制备的产品。未经成型的产品包括由物料浇注而成的炉子设备底板还有修复物料等。
文档编号C04B35/66GKCN101500962 B发布类型授权 专利申请号CN 200780030225
公开日2012年9月5日 申请日期2007年8月8日
发明者B·德朱里西克, F·赖特勒 申请人:里弗雷克特里知识产权两合公司导出引文BiBTeX, EndNote, RefMan专利引用 (1),
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1