囊封半导体装置的环氧树脂组成物和其囊封的半导体封装的制作方法

文档序号:11933157阅读:162来源:国知局

本发明主张2014年9月25日在韩国知识产权局申请的韩国专利申请案第10-2014-0128685号的权益,所述专利申请案的全部揭示内容通过引用结合在此。

技术领域

本发明涉及一种用于囊封半导体装置的环氧树脂组成物和使用其囊封的半导体封装。



背景技术:

最近,随着薄的小规模便携式数字装置的通用,半导体封装变得轻、薄以及小型化,以便提高安装在所述装置中的半导体封装的每单位体积安装效率。随着半导体封装变得轻、薄以及小型化,半导体封装由于半导体芯片、引线框与构成所述封装的环氧树脂组成物之间的热膨胀系数的差异以及囊封所述封装的环氧树脂组成物的热收缩率和固化收缩率而遭受翘曲。封装翘曲可能在半导体后处理焊接时造成焊接缺陷,且因此造成电性故障。因此,需要一种具有极好翘曲抗性的用于囊封半导体装置的环氧树脂组成物。

为了增强环氧树脂组成物的翘曲特性,在相关技术中代表性使用升高环氧树脂组成物的玻璃化转变温度的方法、降低环氧树脂组成物的固化收缩率的方法等。

在衬底上安装半导体封装的过程中,所述封装可暴露于高温(260℃),藉此可对所述封装内部存在的水分进行快速体积膨胀,由此导致所述封装内部分层或所述封装外部破裂。因此,为了防止这些问题,降低用于囊封的环氧树脂组成物的水分吸收速率为确保可靠性的基本要求。当升高环氧树脂组成物的玻璃化转变温度以便改善翘曲特性时,必然提高环氧树脂组成物的水 分吸收速率,由此导致封装可靠性劣化。因此,在封装具有不佳可靠性的情况下,升高玻璃化转变温度以增强翘曲特性可能受限制。

为了降低环氧树脂组成物的固化收缩率,有可能增加具有低热膨胀系数的无机填充剂的量。然而,当增加无机填充剂的量时,环氧树脂组成物可能遭受流动性降低,导致无机填充剂浓度增加的局限性。

具体来说,半导体领域中所用的硅类晶粒附着胶粘剂或硅类晶粒附着膜展现与环氧树脂类可固化晶粒胶粘剂不同的快速固化特性,并且通过瞬时压力和加热实现粘着。在使用材料囊封半导体装置的早期,硅类晶粒胶粘剂由于硅类树脂的优势(即,在固化后已由其形成的固化组成物的柔韧性)而引起关注。然而,随着环氧树脂模制的发展,硅类晶粒胶粘剂的应用已相对受限。近来,就表面安装型板上芯片(board-on-chip,BOC)半导体封装来说,越来越多地使用硅类晶粒胶粘剂以便缩短处理时间,代替需要长时间固化的环氧树脂晶粒胶粘剂。

一般,可缩合固化的硅类组成物展现与可加成固化的硅类组成物相比更好的粘着性。然而,由于缩合反应会形成加合物并且因此会造成孔隙形成,从而导致可靠性失效。因此,可加成固化的组成物适用于半导体。然而,当使用可加成固化的组成物作为半导体芯片的胶粘组成物时,胶粘剂与环氧树脂模制化合物(epoxy molding compound,EMC)之间的界面会展现缺乏粘着性,从而导致可靠性失效。

因此,需要一种用于囊封半导体装置的环氧树脂组成物,其对硅类晶粒胶粘剂具有极好的粘着性并且在半导体装置囊封后具有高抗裂性,从而保持足够可靠性。



技术实现要素:

根据本发明的一个方面,用于囊封半导体装置的环氧树脂组成物包含:(A)环氧树脂;(B)包含由式3表示的重复单元的聚有机硅氧烷树脂;(C)固化剂;(D)固化促进剂;以及(E)无机填充剂。

[式3]

其中R1、R2、R3以及R4各自独立地为经取代或未经取代的C1到C10烷基、经取代或未经取代的C3到C20环烷基、经取代或未经取代的C6到C20芳基、经取代或未经取代的C7到C20芳基烷基、经取代或未经取代的C1到C20杂烷基、经取代或未经取代的C2到C20杂环烷基、经取代或未经取代的C2到C20烯基、经取代或未经取代的C2到C20炔基、经取代或未经取代的C1到C10烷氧基、经环氧基取代的有机基团或经羟基取代的有机基团;R3和R4中的至少一个为含乙烯基的有机基团;并且n平均为0到100。

聚有机硅氧烷树脂可包含由式4表示的重复单元:

[式4]

其中R1和R2与上文所定义相同。

在式3中,R2中的至少一个可为经环氧基取代的有机基团。

聚有机硅氧烷树脂(B)可以环氧树脂组成物的总重量计0.1重量%(wt%)到1.0wt%的量存在。

用于囊封半导体装置的环氧树脂组成物可包含:3wt%到15wt%环氧树脂(A);0.1wt%到1.0wt%聚有机硅氧烷树脂(B);2wt%到10wt%固化剂(C);0.01wt%到1.0wt%固化促进剂(D);以及82wt%到92wt%无机填充剂(E)。

环氧树脂(A)可包含由式1表示的邻甲酚酚醛型环氧树脂和由式2表示的苯酚芳烷基型环氧树脂中的至少一个。

[式1]

其中R为甲基,且n平均为0到7。

[式2]

其中n平均为1到7。

固化剂(C)可包含选自苯酚芳烷基型苯酚树脂、新酚醛树脂(xylok)型苯酚树脂、苯酚酚醛型苯酚树脂、甲酚酚醛型苯酚树脂、萘酚型苯酚树脂、萜烯型苯酚树脂、多官能苯酚树脂、聚芳香苯酚树脂、二环戊二烯苯酚树脂、经萜烯改质的苯酚树脂、经二环戊二烯改质的苯酚树脂、由双酚A和酚醛(resol)树脂制备的酚醛型苯酚树脂、包含三(羟苯基)甲烷和二羟基联苯的多价苯酚化合物、包含顺丁烯二酸酐和邻苯二甲酸酐的酸酐、间苯二胺、二氨基二苯甲烷以及二氨基二苯砜中的至少一种。

固化促进剂(D)可包含三级胺、有机金属化合物、有机磷化合物、咪唑化合物或硼化合物。

无机填充剂(E)可包含选自熔融硅石、结晶硅石、碳酸钙、碳酸镁、氧化铝、氧化镁、粘土、滑石、硅酸钙、氧化钛、氧化锑以及玻璃纤维中的至少一种。

无机填充剂(E)可包含具有0.001微米到30微米的平均粒径的熔融球形硅石。

根据本发明的另一个方面,半导体封装包含:衬底;安装在所述衬底上的半导体装置;电连接所述半导体装置和所述衬底的连接部分;以及用于囊封所述半导体装置和所述连接部分的模制部分,其中所述模制部分包含如上 文所阐述的用于囊封半导体装置的环氧树脂组成物。

半导体装置可经由晶粒胶粘膜安装在衬底上,且晶粒胶粘膜可为硅类胶粘剂。

根据本发明的用于囊封半导体装置的环氧树脂组成物展现高抗裂性和对半导体装置与硅类晶粒胶粘剂极好的粘着性,且使用所述环氧树脂组成物囊封的半导体封装具有高可靠性。

附图说明

图1为根据本发明的一个实施例的半导体封装的示意性截面图。

具体实施方式

根据本发明的用于囊封半导体装置的环氧树脂组成物包含环氧树脂(A)、聚有机硅氧烷树脂(B)、固化剂(C)、固化促进剂(D)以及无机填充剂(E)。

现在将详细描述环氧树脂组成物的每一组分。

(A)环氧树脂

在本发明中,环氧树脂不受特定限制,只要所述环氧树脂常用于囊封半导体即可。在一个实施例中,环氧树脂优选为含有至少两个环氧基的环氧化合物。

环氧树脂的实例可包含通过苯酚或烷基苯酚与羟基苯甲醛的缩合物的环氧化获得的环氧树脂、苯酚酚醛型环氧树脂、甲酚酚醛型环氧树脂、联苯型环氧树脂、苯酚芳烷基型环氧树脂、多官能环氧树脂、萘酚酚醛型环氧树脂、双酚A/双酚F/双酚AD的酚醛型环氧树脂、双酚A/双酚F/双酚AD的缩水甘油基醚、双羟基联苯环氧树脂、二环戊二烯环氧树脂等。

在一个实施例中,环氧树脂可包含邻甲酚酚醛型环氧树脂、联苯型环氧树脂以及苯酚芳烷基型环氧树脂中的至少一个。

举例来说,环氧树脂可包含由式1表示的邻甲酚酚醛型环氧树脂:

[式1]

其中R为甲基,且n平均为0到7。

举例来说,环氧树脂可包含由式2表示的苯酚芳烷基型环氧树脂:

[式2]

其中n平均为1到7。

由式2表示的苯酚芳烷基型环氧树脂的优势在于所述环氧树脂由于形成基于苯酚主链的联苯结构而具有极好的吸湿性、韧性、抗氧化性以及抗裂性,且所述环氧树脂具有低交联密度且因此在高温下燃烧后形成炭化层(char layer),继而可确保一定程度的阻燃性。

这些环氧树脂可单独使用或以其组合形式使用。

在一个实施例中,环氧树脂还可以加成化合物的形式使用,例如通过与如苯酚固化剂、固化促进剂、脱模剂、偶合剂、应变消除剂等的其他组分预反应所获得的熔融母料。另外,为了提高在防潮性方面的可靠性,宜使用含有少量氯离子、钠离子以及其他离子杂质的环氧树脂。

以用于囊封半导体装置的环氧树脂组成物的总重量计,环氧树脂可以2wt%到17wt%(例如3wt%到15wt%)的量存在。在此范围内,环氧树脂组成物可在流动性、阻燃性以及可靠性方面展现极好的特性。举例来说,环氧树脂可以2wt%、3wt%、4wt%、5wt%、5.9wt%、6wt%、6.17wt%、6.38wt%、7wt%、8wt%、9wt%、10wt%、11wt%、12wt%、13wt%、14wt%、15wt%、16wt%或17wt%的量存在。

(B)聚有机硅氧烷树脂

根据本发明,聚有机硅氧烷树脂为包含由式3表示的重复单元的聚有机硅氧烷化合物:

[式3]

其中R1、R2、R3以及R4各自独立地为经取代或未经取代的C1到C10烷基、经取代或未经取代的C3到C20环烷基、经取代或未经取代的C6到C20芳基、经取代或未经取代的C7到C20芳基烷基、经取代或未经取代的C1到C20杂烷基、经取代或未经取代的C2到C20杂环烷基、经取代或未经取代的C2到C20烯基、经取代或未经取代的C2到C20炔基、经取代或未经取代的C1到C10烷氧基、经环氧基取代的有机基团或经羟基取代的有机基团;R3和R4中的至少一个为含乙烯基的有机基团;并且n平均为0到100。

在一个实施例中,本发明的聚有机硅氧烷树脂可包含由式4表示的重复单元:

[式4]

其中n、R1和R2与上文所定义相同。

在另一个实施例中,在式3中,R2中的至少一个可为经环氧基取代的有机基团。经环氧基取代的有机基团可为经环氧基取代的C1到C30烷基、经环氧基取代的C3到C30环烷基、经环氧基取代的C6到C30芳基、经环氧基取代的C7到C30芳基烷基、经环氧基取代的C1到C30杂烷基、经环氧基取代的C2到C30杂环烷基或其组合。在一个实施例中,经环氧基取代的有机基团可为缩水甘油氧基烷基。举例来说,经环氧基取代的有机基团可为缩水甘油氧基丙基。

当用于环氧树脂组成物时,由于聚有机硅氧烷树脂展现对在半导体装置与衬底之间用于粘着的硅类晶粒胶粘剂的良好粘着性,所以聚有机硅氧烷树脂可防止在环氧树脂模制组成物与硅类晶粒胶粘剂之间的界面处开裂,从而提高可靠性。

以环氧树脂组成物的总重量计,聚有机硅氧烷树脂可以0.1wt%到1.0wt%的量存在。在此范围内,聚有机硅氧烷树脂可展现对硅类晶粒胶粘剂提高的界面粘着性以增加可靠性。将聚有机硅氧烷树脂的量保持在1.0wt%或更少可助于确保连续可加工性不会降低,否则由于脱模特性劣化而连续可加工性会降低。举例来说,聚有机硅氧烷树脂可以0.1wt%、0.2wt%、0.3wt%、0.4wt%、0.5wt%、0.6wt%、0.7wt%、0.8wt%、0.9wt%或1.0wt%的量存在。

(C)固化剂

固化剂不受特定限制,只要所述固化剂常用于囊封半导体装置且含有至少两个酚羟基或氨基等即可。固化剂可包含选自单体、寡聚物以及聚合物中的至少一种。

举例来说,固化剂可包含选自苯酚芳烷基型苯酚树脂、新酚醛树脂型苯酚树脂、苯酚酚醛型苯酚树脂、甲酚酚醛型苯酚树脂、萘酚型苯酚树脂、萜烯型苯酚树脂、多官能苯酚树脂、聚芳香苯酚树脂、二环戊二烯苯酚树脂、经萜烯改质的苯酚树脂、经二环戊二烯改质的苯酚树脂、由双酚A和酚醛树脂制备的酚醛型苯酚树脂、包含三(羟苯基)甲烷和二羟基联苯的多价苯酚化合物、包含顺丁烯二酸酐和邻苯二甲酸酐的酸酐、间苯二胺、二氨基二苯甲烷以及二氨基二苯砜中的至少一种。

优选地,使用具有由式5表示的联苯主链的苯酚芳烷基型酚醛树脂或由式6表示的新酚醛树脂型酚醛树脂作为固化剂:

[式5]

其中n平均为1到7。

[式6]

其中n平均为1到7。

固化剂可单独使用或以其组合形式使用。举例来说,固化剂可以通过如固化剂的熔融母料与环氧树脂、固化促进剂以及其他添加剂的预反应制备的加成化合物形式使用。

固化剂可具有50℃到100℃的软化点。在此范围内,环氧树脂具有适合的树脂黏度,从而防止流动性劣化。

固化剂中所含有的酚羟基可具有90克/当量到300克/当量的当量重(equivalent weight)。在此范围内,环氧树脂组成物可在可固化性、阻燃性以及流动性当中展现极好的平衡。举例来说,固化剂中所含有的酚羟基可具有100克/当量到300克/当量的当量重。

另外,可选择环氧树脂与固化剂的组成比率,使得环氧树脂中的环氧基与固化剂中的酚羟基的当量重比率介于0.5∶1到2∶1的范围内。在此范围内,可确保树脂组成物的流动性,且固化时间不会延迟。举例来说,当量重比率可介于0.8∶1到1.6∶1的范围内。

以环氧树脂组成物的总重量计,固化剂可以2wt%到10wt%的量存在。在此范围内,树脂组成物由于未保留大量未反应的环氧基和酚羟基而具有极好的流动性、阻燃性以及可靠性。举例来说,固化剂可以2wt%、3wt%、4wt%、5wt%、5.23wt%、5.41wt%、6wt%、7wt%、8wt%、9wt%或10wt%的量存在。

(D)固化促进剂

固化促进剂用以促进环氧树脂与酚类固化剂之间的反应。固化促进剂的实例可包含(但不限于)三级胺、有机金属化合物、有机磷化合物、咪唑化合物或硼化合物等。举例来说,有机磷化合物可用作固化促进剂。

确切地说,三级胺的实例可包含(但不限于)苯甲基二甲胺、三乙醇胺、三亚乙基二胺、二甲基氨基乙醇、三(二甲基氨基甲基)苯酚、2-2-(二甲基氨基甲基)苯酚、2,4,6-三(二氨基甲基)苯酚或三-2-乙基己酸盐。有机金属 化合物的实例可包含(但不限于)乙酰基丙酮酸铬、乙酰基丙酮酸锌或乙酰基丙酮酸镍。有机磷化合物的实例可包含(但不限于)三-4-甲氧基膦、溴化四丁基鏻、溴化丁基三苯基鏻、苯基膦、二苯基膦、三苯基膦、三苯基膦三苯基硼烷或三苯基膦-1,4-苯醌加合物。咪唑化合物的实例可包含(但不限于)2-甲基咪唑、2-苯基咪唑、2-氨基咪唑、2-甲基-1-乙烯基咪唑、2-乙基-4-甲基咪唑或2-十七基咪唑。硼化合物的实例可包含(但不限于)四苯基硼酸四苯基鏻、四苯基硼酸三苯基膦、四苯基硼酸盐、三氟硼烷-正己胺、三氟硼烷单乙胺、四氟硼烷三乙胺或四氟硼烷胺。另外,可使用1,5-二氮杂二环[4.3.0]壬-5-烯、1,8-二氮杂二环[5.4.0]十一-7-烯、苯酚酚醛树脂盐等。

固化促进剂可以经由与环氧树脂和/或酚类固化剂的预反应制备的加成化合物形式使用。

以环氧树脂组成物的总重量计,固化促进剂可以0.001wt%到1.5wt%的量存在。在此范围内,用于固化反应的时间未延迟且可确保组成物的流动性。举例来说,固化促进剂可以0.01wt%到1wt%的量存在。举例来说,固化促进剂可以0.001wt%、0.01wt%、0.1wt%、0.15wt%、0.16wt%、0.2wt%、0.3wt%、0.4wt%、0.5wt%、0.6wt%、0.7wt%、0.8wt%、0.9wt%或1wt%的量存在。

(E)无机填充剂

无机填充剂用于环氧树脂组成物以改善机械特性且减小应变。无机填充剂的实例可包含(但不限于)熔融硅石、结晶硅石、碳酸钙、碳酸镁、氧化铝、氧化镁、粘土、滑石、硅酸钙、氧化钛、氧化锑或玻璃纤维。这些可单独使用或以其组合形式使用。

举例来说,在应变减小方面,使用具有低线性膨胀系数的熔融硅石为优选的。熔融硅石是指比重不高于2.3的非晶形硅石。熔融硅石可通过熔融结晶硅石来制备或包含由不同原材料制备的非晶形硅石。

无机填充剂的形状和粒径不受特定限制。无机填充剂可具有0.001微米到30微米的平均粒径。举例来说,可使用具有0.001微米到30微米的平均粒径的熔融球形硅石作为无机填充剂。无机填充剂还可为具有不同粒径的熔融球形硅石产物的混合物。举例来说,无机填充剂可包含50wt%到99wt%具有5微米到30微米的平均粒径的熔融球形和1wt%到50wt%具有0.001微 米到1微米的平均粒径的熔融球形硅石的混合物。无机填充剂的粒径还可调整到最大45微米、55微米或75微米,取决于环氧树脂组成物的应用。

在使用前,可用选自环氧硅烷、氨基硅烷、巯基硅烷、烷基硅烷以及烷氧基硅烷的至少一种偶合剂对无机填充剂进行表面处理。

可取决于环氧树脂组成物的所需物理特性(例如可模制性、低应变以及高温强度)而包含适当量的无机填充剂。举例来说,以环氧树脂组成物的总重量计,无机填充剂可以70wt%到94wt%的量存在。在此范围内,组成物可具有极好的流动性和可模制性,同时为封装提供极好的翘曲抗性和高可靠性。举例来说,以环氧树脂组成物的总重量计,无机填充剂可以82wt%到92wt%的量存在。举例来说,无机填充剂可以70wt%、71wt%、72wt%、73wt%、74wt%、75wt%、76wt%、77wt%、78wt%、79wt%、80wt%、81wt%、82wt%、83wt%、84wt%、85wt%、86wt%、87wt%、88wt%、89wt%、90wt%、91wt%、92wt%、93wt%或94wt%的量存在。

添加剂

本发明的环氧树脂组成物可任选地更包含选自着色剂、偶合剂、脱模剂、应变消除剂、交联增强剂、匀化剂以及阻燃剂的添加剂。

着色剂的实例可包含(但不限于)碳黑、有机染料或无机染料。

偶合剂可为硅烷偶联剂。硅烷偶合剂可包含(但不限于)选自环氧硅烷、氨基硅烷、巯基硅烷、烷基硅烷以及烷氧基硅烷中的至少一种。

脱模剂可包含选自石蜡类蜡、酯类蜡、高级脂肪酸、高级脂肪酸的金属盐、天然脂肪酸以及天然脂肪酸的金属盐中的至少一种。

应变消除剂可包含(但不限于)选自改性硅酮油、硅酮弹性体、硅酮粉末以及硅酮树脂中的至少一种。

以环氧树脂组成物的总重量计,可包含0.1wt%到5.5wt%的量的添加剂。举例来说,可包含0.1wt%、0.2wt%、0.3wt%、0.4wt%、0.45wt%、0.5wt%、0.6wt%、0.7wt%、0.8wt%、0.9wt%、0.95wt%、1wt%、1.5wt%、2wt%、2.5wt%、3wt%、3.5wt%、4wt%、4.5wt%、5wt%或5.5wt%的量的添加剂。

环氧树脂组成物可更包含阻燃剂。阻燃剂可为非卤素有机或无机阻燃剂。非卤素有机或无机阻燃剂的实例可包含(但不限于)磷腈、硼酸锌、氢氧化铝或氢氧化镁。

由于阻燃性可取决于无机填充剂的含量和固化剂的种类而改变,所以阻燃剂可以根据所需阻燃性水平的适合的比率包含在环氧树脂组成物中。阻燃剂可以10wt%或小于10wt%(例如8wt%或小于8wt%、例如5wt%或小于5wt%)的量存在于环氧树脂组成物中。

根据本发明的环氧树脂组成物具有高玻璃化转变温度和低固化收缩率,从而使得封装的翘曲抗性极好。此外,组成物展现对构成半导体封装的各种其他材料极好的粘着性和高抗吸湿性,从而提供极好的可靠性,同时在不使用卤素阻燃剂的情况下确保极好的阻燃性。

制备本发明的环氧树脂组成物的方法不受特定限制。举例来说,环氧树脂组成物可通过使用亨舍尔混合器(Henschel mixer)或犁铧式混合器(Ploughshare mixer)使组分均匀化,接着在90℃到120℃下使用辊轧机或捏合机熔融捏合且接着冷却并粉碎来制备。使用环氧树脂组成物囊封半导体装置可一般通过低压传递模制来进行。然而,还可使用压缩模制、注射模制或浇筑模制。通过所述方法,可产生包含铜引线框、铁引线框、或通过将选自镍、铜以及钯中的至少一种预先电镀到上文提及的引线框上所获得的引线框、或有机层压框的半导体装置。

本发明提供如上文所阐述的使用环氧树脂组成物囊封的半导体装置。

尽管本发明不限于用于囊封半导体封装的特定程序,但可经由根据确定的模制方法选择适合的模制机、在所述模制机中使用所制备的环氧树脂组成物囊封模制和固化半导体装置封装以及模制后固化所模制的半导体装置封装来进行所述步骤。囊封模制可在160℃到190℃下进行40秒到300秒,且模制后固化可在160℃到190℃下进行0到8小时。

半导体封装

根据本发明的一个实施例,半导体封装包含:衬底;安装在所述衬底上的半导体装置;电连接所述半导体装置和所述衬底的连接部分;以及用于囊封所述半导体装置和所述连接部分的模制部分。

模制部分由如上文所阐述的用于囊封半导体装置的环氧树脂组成物形成。

可提供多个半导体装置且经由晶粒胶粘膜安装在衬底上。

图1为根据本发明的一个实施例的半导体封装100的示意性截面图。参 照图1,半导体封装100为板上芯片(BOC)型半导体封装,且包含衬底110;放置在衬底110上的晶粒胶粘膜130;放置在衬底110上且经由晶粒胶粘膜130附着到衬底110的半导体装置120;连接部分150,如接合线,用于半导体装置120和衬底110的相互电连接;模制部分140,用于囊封半导体装置120和连接部分150,且保护包含衬底110的安装结构、安装在衬底110上的半导体装置120以及连接部分150。

在面向衬底安装表面与安装在上面的半导体装置120的衬底表面上形成用于将半导体装置120电连接到外部电路(未示出)的多个焊料球160。

可在衬底110上形成模制部分140以完全覆盖半导体装置120和连接部分150。

模制部分140可包含用于囊封半导体装置的环氧树脂组成物,且晶粒胶粘膜130可为硅类晶粒胶粘膜。

当硅类晶粒胶粘剂用作用于安装半导体装置的晶粒胶粘膜时,硅类晶粒胶粘剂可经由硅类晶粒胶粘剂与环氧树脂组成物之间的硅氢化(hydrosilylation)而提供改善的粘着性和抗裂性,从而允许维持高可靠性。

现在将参考一些实例更详细地描述本发明。应理解提供这些实例仅为了说明,且不应以任何方式解释为限制本发明。在此将省略对所属领域的技术人员显而易知的细节描述。

实例和比较实例

实例和比较实例中所用的组分的详情如下。

(A)环氧树脂

使用邻甲酚酚醛型环氧树脂(EOCN-1020-55,日本化药株式会社(Nippon Kayaku Co.,Ltd.))。

(B)聚有机硅氧烷树脂

在制备实例中,制备且使用由式7表示的聚有机硅氧烷树脂。

[式7]

其中R1为甲基,且R2为缩水甘油氧基丙基。

(C)固化剂

使用新酚醛树脂型苯酚树脂(HE100C-10,爱沃特株式会社(Air Water Co.,Ltd.))。

(D)固化促进剂

使用三苯基膦TPP(白光株式会社(Hokko Co.,Ltd.))。

(E)无机填充剂

使用具有16微米的平均粒径的熔融球形硅石和具有0.5微米的平均粒径的熔融球形硅石的9∶1重量比的混合物。

(F)偶合剂

使用(f1)巯基丙基三甲氧基硅烷(KBM-803,信越株式会社(Shinetsu Co.,Ltd.))和(f2)甲基三甲氧基硅烷(SZ-6070,道康宁化学株式会社(Dow Corning Chemical Co.,Ltd.))的混合物。

(G)添加剂

使用(g1)巴西棕榈蜡(Carnauba wax)作为脱模剂和(g2)碳黑(MA-600,松下化学株式会社(Matsushita Chemical Co.,Ltd.))作为着色剂。

制备实例

将水和异丙醇以5∶5重量比混合的1千克混合物溶液放置于3颈烧瓶中,滴加300克缩水甘油氧基丙基二甲氧基甲基硅烷以及0.1摩尔硝酸持续1小时,同时使烧瓶维持在65℃下。在滴加后,加热烧瓶到75℃持续4小时,接着引入40克甲氧基二甲基乙烯基硅烷。接着,在将混合物溶液冷却到室温后,从混合物溶液去除水层,从而制备溶解于异丙醇中的硅氧烷溶液。之后,用水洗涤所获得的硅氧烷溶液以去除副产物,即有机酸。接着,在减压下对硅氧烷溶液进行蒸馏以去除异丙醇,从而获得由式7表示的聚有机硅氧烷。

实例1到实例3以及比较实例1到比较实例3

称重如表1中所列出的量的组分且使用亨舍尔混合器均匀化。随后,使用连续捏合机在90℃到110℃下熔融捏合混合物,接着冷却并粉碎,从而制备用于囊封半导体装置的环氧树脂组成物。就如下特性评估组成物。结果在表1中示出。

物理特性的评估

(1)螺旋流(英寸):使用根据EMMI制备的评估模具,在175℃的模制温度和70千克力/平方厘米的模制压力下测量流动长度(单位:英寸)。

(2)玻璃化转变温度(Tg)和热膨胀系数(微米/米):使用热机械分析仪(thermo-mechanical analyzer,TMA)在以10℃/分钟升高温度时测量玻璃化转变温度和热膨胀系数。

(3)脱模力:使用传递模制按压机在175℃的模制温度、9.3MPa注射压力以及90秒固化时间的条件下持续模制半导体封装(200FBGA,0.22t,SSE)。基于直到出现如闸门堵塞、通风孔堵塞、从模具分离封装、残料脱落的模制失败的拍击数确定脱模失败。结果在表1中示出。

(4)粘着性

通过将硅类晶粒胶粘剂(DA-6633,道康宁化学株式会社)均匀地施加到PCB(200FBGA,0.22t,SSE)的PSR层到20微米的厚度,在具有30毫米×30毫米尺寸的PCB上模制具有3毫米直径的在实例和比较实例中制备的树脂组成物中的每一个,从而获得固化标本。在烘炉中在175℃下对固化标本进行模制后固化(post-molding curing,PMC)4小时,且在85℃和85%RH下静置168小时。接着,使标本在260℃下通过红外线回流焊一次持续30秒。在预先调节的条件下重复程序三次。使用晶粒剪应力测试仪(Dage 4000,DS-200测压元件)就粘着性评估在PMC后的标本和在预先调节处理后的标本中的每一个。

(5)抗裂性评估:可靠性评估

使用在实例和比较实例中制备的树脂组成物中的每一个组装半导体封装,接着在175℃下模制后固化4小时。在所制备的半导体封装中,半导体装置经由硅类晶粒胶粘剂(DA-6633,道康宁化学株式会社)安装在衬底上。半导体封装在125℃下干燥24小时且在85℃和85%RH下静置168小时。接着,使半导体封装在260℃下通过红外线回流焊一次持续30秒。在预先调节的条件下重复程序三次。之后,使用非破坏性检查设备C-SAM(扫描式声波显微镜)评估在模制部分与晶粒胶粘膜之间的介面出现的开裂。

表1

如表1中示出,可见在实例1到实例3中制备的树脂组成物显现极好的粘着性和高抗裂性。

相反地,在比较实例1中在无聚有机硅氧烷树脂的情况下制备的树脂组成物和在比较实例2中使用微量聚有机硅氧烷树脂制备的树脂组成物显现比实例1到实例3的树脂组成物低得多的粘着性和抗裂性。此外,在比较实例3中使用过量聚有机硅氧烷树脂制备的树脂组成物显现低脱模力,导致连续可加工性劣化。

尽管已参考一些实施例描述本发明,但应理解前述实施例仅提供以供说明且不欲以任何方式解释为限制本发明,且所属领域的技术人员可在不脱离本发明的精神和范围的情况下进行各种修改、变化、改变以及等效实施例。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1