一种交联剂及其制备方法和应用与流程

文档序号:12104176阅读:1111来源:国知局

本发明涉及高分子技术领域,尤其涉及一种交联剂及其制备方法,以及该交联剂的应用。



背景技术:

聚丙烯(PP)作为一种可降解高分子材料,具有优异的力学性能、电性能、耐化学药品性,是目前增长最快、产量最高的高分子材料之一。近年来,在汽车及家装行业,聚丙烯覆膜已逐步取代软质PVC进入中高端领域,其原因是聚丙烯覆膜材料在成型过程中不需要添加增塑剂,大大简化了加工工艺,而且在后期的使用过程中,也不会由于增塑剂的缓慢析出而产生毒性。

但是,传统聚丙烯覆膜材料在热贴合过程中往往由于自身耐热性不足,导致表面图案纹理变形甚至塌陷,影响产品外观。辐射交联作为提高高分子材料耐热性的一种重要手段,在聚丙烯覆膜及泡沫产品的成型中已有应用。聚丙烯属于辐射裂解型材料,因此,在其辐照工艺中通常需要添加液态的乙烯基多官能团单体,如TAIC、TMPTA、PETA、TPGDA等,以降低总的吸收剂量并促进聚丙烯的交联。但是,目前所采用的小分子交联促进剂易挥发,且带有低毒性。因此,辐射过程中未参与反应呈游离状态的交联促进剂,会在产品使用后期缓慢析出,并向周围环境中释放一定气味。



技术实现要素:

为了克服现有技术的不足,本发明的目的在于提供一种交联剂及其制备方法,其为端烯基改性的聚烯烃,与聚丙烯基体具有良好的相容性,在辐照条件下可有效促进聚丙烯的交联。

本发明的另一目的在于提供由该交联剂制备的聚丙烯覆膜材料及其制备方法,该聚丙烯覆膜材料在后期使用过程中稳定性高,不会产生异味。

本发明的目的采用以下技术方案实现:

一种交联剂,其特征在于,所述交联剂是由马来酸酐接枝聚烯烃和甲基丙烯酸缩水甘油酯反应得到的;

其中,所述马来酸酐接枝聚烯烃的接枝率高于5%。

接枝率的高低与聚烯烃上酯化反应的位点的多少直接相关,进而会影响酯化反应后生成的大分子交联剂上端烯基的数量。本方案中,马来酸酐接枝聚烯烃的接枝率高于5%,使得交联剂上具有足够数量的端烯基,从而保证了交联剂的交联效果。

优选的,所述马来酸酐接枝聚烯烃为PP-g-MAH、POE-g-MAH、SEBS-g-MAH和SBS-g-MAH中的一种。

本发明还公开了该交联剂的制备方法,包括如下步骤:

取马来酸酐接枝聚烯烃加入到密炼机中密炼,设定温度160~180℃,转速40~60rpm;待马来酸酐接枝聚烯烃完全熔融后,依次加入三正丁胺和甲基丙烯酸缩水甘油酯,反应5~15分钟后出料,冷却,破碎,即得所述交联剂;所述甲基丙烯酸缩水甘油酯与马来酸酐接枝聚烯烃的质量比为(0.5~5):100,所述三正丁胺与马来酸酐接枝聚烯烃的质量比为(0.1~1):100。

上述反应中,三正丁胺(TBA)作为反应的催化剂,在TBA催化作用下,马来酸酐接枝聚烯烃上的酸酐与甲基丙烯酸缩水甘油酯上的环氧基发生反应,生成带有端烯基的大分子交联剂。

本发明还公开了一种使用上述交联剂制备的聚丙烯覆膜材料,所述聚丙烯覆膜材料是由所述交联剂和聚丙烯经辐照交联制得。

优选的,所述交联剂和聚丙烯的质量比为(10~30):100。

优选的,所述辐照的剂量为10~60kGy。

优选的,所述马来酸酐接枝聚烯烃为PP-g-MAH、POE-g-MAH、SEBS-g-MAH和SBS-g-MAH中的一种。

本发明还公开了上述聚丙烯覆膜材料的制备方法,包括以下步骤:

1)将交联剂和聚丙烯共混,得到共混物;

2)将得到的共混物成型、辐照交联,得到聚丙烯覆膜材料。

优选的,所述交联剂和聚丙烯的质量比为(10~30):100,所述辐照的剂量为10~60kGy。

优选的,所述马来酸酐接枝聚烯烃为PP-g-MAH、POE-g-MAH、SEBS-g-MAH和SBS-g-MAH中的一种。

相比现有技术,本发明的有益效果在于:

本发明的交联剂是一种带有端烯基的聚烯烃,其与聚丙烯基体具有良好的相容性,在辐射条件下可有效促进聚丙烯的交联。

本发明的交联剂是一种大分子的交联剂,利用该交联剂制备得到的聚丙烯覆膜材料,受自身尺寸限制,残留的交联剂很难从聚丙烯基体中析出,因此提高了聚丙烯覆膜材料产品在后期使用过程中的稳定性;由于交联剂很难析出,使得聚丙烯覆膜材料不会释放异味,安全无毒。

具体实施方式

下面,结合具体实施方式,对本发明做进一步描述:

实施例1

称取100g的POE-g-MAH加入到密炼机中,设定温度170℃,转速50rpm,待其完全熔融后,先加入0.5g的TBA,然后加入1g的GMA,反应5分钟后出料,冷却,破碎,获得端烯基改性POE。

将聚丙烯和端烯基改性POE按100:10在高速混合机中混合均匀后,添加到双螺杆挤出机中,在170~190℃共混挤出,料条过水冷却后通过切粒机,获得长度为3~5mm的共混粒子,将共混粒子烘干至水分含量小于0.02%后,加入到流延机中,制备成厚度为0.5mm流延膜,然后将流延膜置于电子加速器中,在氮气保护下,经过20kGy的辐照,得到聚丙烯覆膜材料。

实施例2

称取100g的PP-g-MAH加入到密炼机中,设定温度170℃,转速50rpm,待其完全熔融后,先加入0.5g的TBA,然后加入1g的GMA,反应8分钟后出料,冷却,破碎,获得端烯基改性PP。

将聚丙烯和端烯基改性PP按100:10在高速混合机中混合均匀后,添加到双螺杆挤出机中,在170~190℃共混挤出,料条过水冷却后通过切粒机,获得长度为3~5mm的共混粒子,将共混粒子烘干至水分含量小于0.02%后,加入到流延机中,制备成厚度为0.5mm流延膜,然后将流延膜置于电子加速器中,在氮气保护下,经过20kGy的辐照,得到聚丙烯覆膜材料。

实施例3

称取100g的POE-g-MAH加入到密炼机中,设定温度170℃,转速50rpm,待其完全熔融后,先加入0.5g的TBA,然后加入2g的GMA,反应8分钟后出料,冷却,破碎,获得端烯基改性POE。

将聚丙烯和端烯基改性POE按100:15在高速混合机中混合均匀后,添加到双螺杆挤出机中,在170~190℃共混挤出,料条过水冷却后通过切粒机,获得长度为3~5mm的共混粒子,将共混粒子烘干至水分含量小于0.02%后,加入到流延机中,制备成厚度为0.5mm流延膜,然后将流延膜置于电子加速器中,在氮气保护下,经过40kGy的辐照,得到聚丙烯覆膜材料。

实施例4

称取100g的SEBS-g-MAH加入到密炼机中,设定温度170℃,转速50rpm,待其完全熔融后,先加入0.5g的TBA,然后加入5g的GMA,反应12分钟后出料,冷却,破碎,获得端烯基改性SEBS。

将聚丙烯和端烯基改性SEBS按100:20在高速混合机中混合均匀后,添加到双螺杆挤出机中,在170~190℃共混挤出,料条过水冷却后通过切粒机,获得长度为3~5mm的共混粒子,将共混粒子烘干至水分含量小于0.02%后,加入到流延机中,制备成厚度为0.5mm流延膜,然后将流延膜置于电子加速器中,在氮气保护下,经过40kGy的辐照,得到聚丙烯覆膜材料。

对比例1

将聚丙烯与三烯丙基异氰脲酸酯(TAIC)按100:2的重量比在高速混合机中混合均匀后,添加到双螺杆挤出机中,在170~190℃共混挤出,料条过水冷却后通过切粒机,获得长度为3~5mm的共混粒子,将共混粒子烘干至水分含量小于0.02%后,加入到流延机中,制备成厚度为0.5mm流延膜,然后将流延膜置于电子加速器中,在氮气流保护下,经过25kGy的辐照,得到聚丙烯覆膜材料。

实验例

取实施例1-4和对比例1的聚丙烯覆膜材料,分别测定其凝胶含量、气味等级和耐热温度,所得结果如表1所示。

表1实施例1-4和对比例1的聚丙烯覆膜材料的性能测试结果

从表1中可以看出,实施例2-4的聚丙烯覆膜材料,其凝胶含量都达到了46%以上,耐热温度都达到了114℃以上,且气味等级都明显低于对比例1,说明该聚丙烯覆膜材料,在保证良好的交联程度和耐热性能的基础上,还减少了对外界的异味的释放,更加安全环保。

对本领域的技术人员来说,可根据以上描述的技术方案以及构思,做出其它各种相应的改变以及形变,而所有的这些改变以及形变都应该属于本发明权利要求的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1