含氟单体的含水聚合反应中的成核作用的制作方法

文档序号:11893777阅读:447来源:国知局

技术领域

本发明涉及含氟单体的含水聚合反应,并且更具体地涉及成核位点的形成,所述成核位点用于吸引聚合的含氟单体以在含水聚合反应介质中形成含氟聚合物颗粒。



背景技术:

美国专利3,391,099(Punderson)公开了四氟乙烯在含水介质中的分散体聚合反应,所述反应在聚合反应过程引发后包括两个不同的阶段,首先形成聚合物核作为成核位点,然后是涉及在已形成颗粒上的聚合反应的生长阶段。“引发”是聚合反应的开始(起始),由含氟单体加压反应器内压力下降示出,所述压力下降是由反应器内的气态含氟单体变成含氟聚合物以及由气态凝结变成分散的含氟聚合物颗粒导致的。



技术实现要素:

本发明涉及聚合反应引发之前成核位点的形成。

本发明可描述为在聚合反应器中使含氟单体聚合以形成含氟聚合物颗粒在含水介质中的分散体的方法,所述方法包括初始阶段,所述初始阶段包括向所述聚合反应器加入:

(a)含水介质,

(b)水溶性含烃化合物,

(c)降解剂,

(d)含氟单体,和

(e)聚合引发剂,

其中在初始阶段期间不添加含氟表面活性剂,并且其中降解剂在聚合引发剂之前加入。

本发明聚合反应方法的一些优选要求包括独立和组合形式的下列这些:

优选地,含氟单体(d)在聚合引发剂(e)之前加入。

优选地,水溶性含烃化合物以不大于50ppm的量,优选以不大于40ppm的量加入。

优选地,水溶性含烃化合物包含至少一个亲水部分和至少一个疏水部分。

优选地,水溶性含烃化合物选自阳离子表面活性剂、非离子表面活性剂和阴离子表面活性剂。

优选地,水溶性含烃化合物为含乙氧基的表面活性剂。

优选地,所述降解剂为与所述聚合引发剂相同或不同的化合物,优选与所述聚合引发剂相同。

优选地,以足够的量加入降解剂以获得基本上不含水溶性含烃化合物的含水介质。

优选地,加入降解剂,通过降解水溶性含烃化合物,致使亲油性成核位点形成。降解剂在聚合引发剂之前加入,优选在由聚合引发剂引起的含氟单体聚合反应引发之前,致使亲油性成核位点形成,或至少开始形成。所述过程初始阶段期间,聚合反应引发形成含氟聚合物颗粒的初始分散体。

优选地,水溶性无机盐在降解剂之前加入聚合反应器中。

优选地,水溶性无机盐以不大于125ppm的量加入聚合反应器中。

优选地,含氟单体为全氟单体。

优选地,所述方法包括继初始阶段之后的稳定阶段。

优选地,在稳定阶段期间加入含烃表面活性剂。至多稳定阶段时含氟单体的聚合提供含氟聚合物颗粒的初始分散体。稳定阶段中的持续聚合致使这些颗粒生长。优选地,在初始阶段中形成后,该表面活性剂稳定含氟聚合物颗粒的初始分散体,通过聚合反应颗粒生长阶段,在聚合反应结束时获得含氟聚合物颗粒的最终稳定分散体。

优选地,在稳定阶段期间加入的含烃表面活性剂与在初始阶段期间加入的含烃化合物不同。

优选地,含烃表面活性剂为烃表面活性剂。优选地,稳定阶段期间加入的含烃表面活性剂为阴离子型的。

优选地,稳定阶段期间不添加含氟表面活性剂。

优选地,所述过程期间不添加含卤素表面活性剂。优选地,在所述过程期间不添加含氟表面活性剂。

本发明还提供能够通过所述方法以及任何公开优选要求获得的含氟聚合物分散体。此外,本发明还提供能够通过从含氟聚合物分散体中分离获得的含氟聚合物树脂,所述含氟聚合物分散体能够通过所述方法以及任何公开的优选要求获得。

本发明还可描述为在聚合反应器内的含水介质中使含氟单体聚合的方法,所述方法包括在所述介质中形成含烃亲油性成核位点的分散体,所述分散体基本上不含表面活性剂,并且之后引发含氟单体的聚合,以在亲油性成核位点处形成含氟聚合物颗粒的分散体。因此,成核位点的分散体基本上不含所有表面活性剂,包括含卤素表面活性剂如含氟和含氯表面活性剂以及含烃表面活性剂。

分散于含水介质中的亲油性成核位点不是聚合物晶种,并且形成时优选不含聚合的含氟单体。

亲油性成核位点s在没有表面活性剂辅助下存在亲油性成核位点分散体以保持这些位点分散是意料不到的。然而,通过位点的形成方式,可达到该矛盾的条件。亲油性成核位点分散体优选通过降解包含亲水部分和疏水部分的水溶性含烃化合物而形成,所述亲水部分向所述化合物赋予水溶解度。因此,这些位点优选为降解反应的产物。在降解前,化合物的亲水部分以亲水性掩蔽疏水部分,从而使所述化合物是水溶性的。化合物的降解,降解了所述化合物的亲水性,即化合物的亲水部分,从而有效地使含烃化合物的疏水部分能够成为均匀分散的亲油性成核位点。这些位点是含烃的,来源于疏水部分前体的烃成分。这些位点是可接触的,并且对聚合反应过程开始时形成的沉淀含氟聚合物具有亲和力。导致水溶性含烃化合物降解的优选方法是使含烃化合物与降解剂反应。降解剂优选为氧化剂,其中降解反应优选为氧化反应。在此方面,亲油性成核位点可为降解反应,优选氧化反应的产物。

为简化和简短起见,本文降解反应、降解剂和降解等的公开分别包括优选的氧化反应、氧化剂和氧化,而无需重复这些优选要求。

化合物亲水性降解后成核位点保持分散是亲油性成核位点优选衍生自可溶于含水介质中的化合物的结果。溶解的含烃化合物在含水介质内分布是基于分子的。得自化合物的亲油性成核位点享有该相同的分布,从而不需要表面活性剂来保持亲油性成核位点的分散体。

亲油性成核位点衍生的水溶性含烃化合物优选为表面活性剂。表面活性剂是具有疏水和亲水部分的化合物,所述亲水部分能够使表面活性剂是水溶性的,这能够使其在含水介质中分散并且稳定疏水性实体如含氟聚合物颗粒。水溶性含烃化合物或含烃表面活性剂(统称为含烃化合物/表面活性剂)是亲油性成核位点的降解前体。亲油性成核位点分散体的形成伴随着化合物/表面活性剂亲水性(即亲水部分)的降解。

亲油性位点的分散体基本上不含表面活性剂。优选地,以足够的量加入降解剂以获得基本上不含水溶性含烃化合物的含水介质。无论它是含烃表面活性剂,含卤素表面活性剂如含氟表面活性剂,还是任何其它表面活性剂,基本上不含含烃化合物/表面活性剂是指(a)成核位点的含烃化合物/表面活性剂前体在降解时丧失亲水性以及在表面活性剂的情况下的表面活性剂功效,并且(b)在亲油性成核位点形成期间含水介质中基本上不存在附加的表面活性剂。优选地,在初始阶段期间仅将少量含烃化合物/表面活性剂加入含水介质中以被降解剂降解。下文将该少量量化。基本上不存在附加的表面活性剂是指此少量与残余化合物/表面活性剂(如果有的话)的组合应不超过50ppm。如果附加的表面活性剂是含卤素的如含氟表面活性剂,则在聚合反应引发后的后续聚合反应期间,如果不阻碍降解反应或不显著不利于成核位点在含氟聚合物颗粒形成中作为位点的性能,该量应优选不大于50ppm,更优选不超过40ppm,甚至更优选不大于30ppm,最优选小于20ppm,优选小于10ppm,更优选小于5ppm。优选不存在附加的表面活性剂,即在亲油性成核位点形成之前或期间,不向含水介质加入附加的表面活性剂。

可通过与不存在这些成核位点情况下实施聚合反应相比所形成含氟聚合物颗粒的小粒度来判断成核位点的性能。该性能示出在聚合反应引发之前存在亲油性成核位点分散体,其作为含氟聚合物颗粒分散体的前体。降解反应对含烃化合物/表面活性剂的效应由调聚作用降低或消失示出,调聚作用来源于存在于含烃化合物/表面活性剂中的烃部分的C-H键的断裂。调聚作用主要是聚合体系中含烃表面活性剂与自由基之间反应的结果。实际上,调聚作用的结果是抑制聚合反应。

有许多途径显现调聚作用,但是无论何种途径,调聚行为是致使生长的聚合物链数减少,从而致使聚合物产率降低和/或聚合物分子量显著降低的行为。

为获得亲油性成核位点分散体且所述分散体基本上不含含烃化合物(优选含烃表面活性剂)和任何其它表面活性剂的引发前条件,仅少量(重量)的含烃化合物/表面活性剂用作降解前体,例如不超过50ppm。本文所公开的所有ppm量全部相对于此时存在的水量,全部以重量计。当情况为形成成核位点在含水介质中的分散体时,水量为与此形成相关联的水量。在这种情况下,ppm基于至多成核位点分散体至少开始形成时加入反应器中的水量之和。为简化起见,该水可被称为含水介质。该水量不包括加入后的水,如加入致使聚合反应引发的聚合引发剂和用于稳定引发后形成的含氟聚合物颗粒的增稳表面活性剂的水溶液形式。少量含烃化合物/表面活性剂连同其亲水性降解的组合提供了调聚性的降低或消失。

涉及通过含烃化合物/表面活性剂降解形成的亲油性成核位点在含水介质中的分散体的本发明优选实施例如下:在降解或氧化时,水溶性无机盐也可优选存在于含水介质中以有助于含烃亲油性成核位点分散体的形成。盐的有益效果在于(a)增加亲油性成核位点的数目,从而获得更小的含氟聚合物颗粒,和/或(b)就给定粒度而言,能够减少由含烃化合物/表面活性剂形成的亲油性成核位点的量。就(a)而言,含氟聚合物粒度的这种降低是相对于存在于降解反应中的指定少量含烃化合物/表面活性剂而言的。就(b)而言,这能够使降解反应中存在更少量的含烃化合物/表面活性剂,从而降低降解反应产物抑制后续聚合反应的可能性。盐的有益效果还不包括阻止有益效果(a)或(b)出现的任何盐,如被降解的盐而不是含烃化合物/表面活性剂。

加入含水介质中的该水溶性无机盐的量是有效提供有益结果的量。该量也是小的,以便不会不利地影响亲油性成核位点或随后的聚合反应的性能。对成核位点性能的不利影响在于致使含氟聚合物粒度不可取的增加,据信其是过量的盐致使含氟聚合物颗粒结合而不是自亲油性成核位点生长的结果。对聚合反应的不利影响在于导致形成过量的含氟聚合物凝结物。凝结物包含聚合反应期间形成的不可分散的含氟聚合物,并且是未分散含氟聚合物例如不可逆附聚物与附着于聚合反应器内壁的含氟聚合物的和。凝结物作为废弃物被抛弃。加入含水介质中的水溶性无机盐的有益有效量将随用作降解反应前体的含烃化合物/表面活性剂而变化。一般来讲,该量在含水介质中将不大于125ppm。

含烃化合物/表面活性剂的优选降解剂为水溶性聚合引发剂,其也可用于含氟单体的聚合。当以适当量使用时,聚合引发剂不认为有害于含氟单体的聚合,从而将其作为降解剂引入含水介质中以致使含烃化合物/表面活性剂氧化,这不应对随后的聚合反应造成任何问题。此外,用作降解剂的引发剂的量小,但仍有效致使所期望的含烃化合物/表面活性剂氧化以形成亲油性成核位点分散体,例如不大于50ppm。含烃化合物/表面活性剂降解后余量的降解剂/引发剂(如果有的话)的量优选不足以致使聚合反应引发。优选地,该不足性还适用于加入含水介质中以致使降解反应的降解剂/引发剂的量。该不足性优选避免了过早的聚合反应,即在发生聚合反应引发之前,聚合反应在用含氟单体加压聚合反应器期间发生。将反应器加压是将含氟单体加入反应器中以将反应器内部压力增至聚合反应聚合反应开始和/或实施时的压力。将自由基聚合引发剂加入加压反应器的含水介质中以提供聚合反应的引发。因此,在其中降解剂为聚合引发剂的一个优选实施例中,实施聚合引发剂的两次加入,第一次少量加入以降解含烃化合物/表面活性剂,而不导致过早的聚合反应,并且第二次足量加入以致使聚合反应发生。

如果使用,优选在降解反应之前,即将引发剂加入含水介质中之前,将上述水溶性无机盐加入含水介质中,以在降解剂与含烃化合物/表面活性剂之间进行降解反应时存在,从而提供上述有益效果。

本发明的成核位点形成步骤致使含氟单体聚合的方法在引发直至聚合反应过程结束的聚合反应条件选择方面具有很大的自由度。此类聚合反应当然需要将含氟单体加入聚合反应器中,并且在含水介质中存在引发剂以使引发能够发生。还将表面活性剂加入含水介质中以在聚合反应引发时或引发后存在,以稳定含氟聚合物颗粒作为其中形成它们的含水介质中的分散体。该表面活性剂在本文中被称为增稳表面活性剂,以区别于优选以少量使用以在引发前的工序中形成亲油性成核位点的表面活性剂(成核表面活性剂)。增稳表面活性剂的用量和它加入含水介质中的时间将取决于增稳表面活性剂本体和所制得的含氟聚合物。增稳表面活性剂可为含氟的。

优选地,使用含烃表面活性剂作为增稳表面活性剂来实施含氟单体的聚合。优选地,在引发剂的存在下,该聚合反应引发时的含水介质基本上不含所有表面活性剂,包括含水介质中的含烃增稳表面活性剂,并且在聚合反应引发后第一次将该表面活性剂加入含水介质中。

形成亲油性成核位点分散体和增稳聚合反应引发后加入的表面活性剂的优选条件如下:成核位点为包含疏水部分的水溶性含烃化合物降解的产物,并且增稳表面活性剂也是含烃的。优选地,含烃化合物为含烃表面活性剂,并且成核位点是含烃的。最优选地,含烃化合物为烃化合物或烃表面活性剂,从而亲油性成核位点为烃,并且增稳表面活性剂为烃表面活性剂,从而为含氟单体含水分散体聚合反应提供全烃成核/增稳体系。优选地,在整个聚合反应过程中,无含卤素表面活性剂加入或存在于反应器的含水聚合反应介质中或反应器中。

本文所用表达含烃是指含烃化合物/表面活性剂中存在的碳原子可被卤素如氟或氯取代,而实际上被氢取代。因此,化合物或表面活性剂的碳原子上的来自元素周期表的元素的一价取代基的至少75%,优选至少85%,还更优选至少95%是氢。最优选地,化合物或表面活性剂为包含亲水和疏水部分的烃化合物。烃是指碳原子上的元素周期表元素的一价取代基的100%为氢。因此,本文所述烃化合物和表面活性剂不含卤素如氯和氟。本文关于含烃化合物和含烃表面活性剂的论述,无论是亲油性成核位点降解前体还是增稳表面活性剂,均适用于烃化合物和烃表面活性剂。

本发明还被描述为在聚合反应器含水介质中使含氟单体聚合以形成含氟聚合物颗粒在含水介质中的分散体的方法,所述方法包括(i)在反应器中提供含水介质,(ii)将包含疏水部分和亲水部分的水溶性烃化合物加入含水介质中,(iii)在含水介质中使所述化合物经历降解(优选氧化)以降解亲水部分,从而使疏水部分能够在含水介质中以形成烃亲油性成核位点的分散体,亲油性成核位点分散体基本上不含表面活性剂,(iv)用含氟单体将反应器加压至实施聚合反应时的压力,以及(e)将聚合引发剂加入含水介质中以引发含氟单体的聚合。

在附加聚合引发剂(如果需要的话)和有效量增稳表面活性剂(优选烃表面活性剂)的存在下,含氟单体的聚合可在含水介质中引发聚合反应后继续进行,所述增稳表面活性剂稳定在含水介质中形成的含氟聚合物颗粒分散体。

优选地,该方法具有在步骤(iii)之前将水溶性无机盐加入含水介质中以有助于形成亲油性成核位点分散体的附加特征。

优选地,加入含水介质中的烃化合物的量不大于50ppm,并且加入含水介质中的盐的量不大于120ppm。

另一个优选要求在于,通过将降解剂加入含水介质中并且在含水介质中使降解剂与烃化合物反应实施降解,降解剂的量不足以致使引发含氟单体聚合反应。优选地,加入含水介质中的降解剂的量不大于50ppm。优选地,降解剂为聚合引发剂。

这些优选要求可单独使用或组合使用。

具体实施方式

含氟单体/含氟聚合物

除非另外指明,术语“含氟聚合物”在本文具有通用含义,即它包括含氟塑料和含氟弹性体。该术语也包括为含氟塑料或含氟弹性体的一般性和特定的聚合物,包括作为一类含氟塑料的全氟塑料,以及下文该部分中公开的一般性和特定的聚合物如PTFE、PFA和FEP。因此,实施本发明聚合反应过程制备含氟聚合物颗粒分散体的各种优选要求也适用于制备下文部分中包括的一般性和特定的任何和所有聚合物的分散体。对于用于制备亲油性成核位点的成分的各种浓度和本体以及含水聚合反应介质基本上不含含烃化合物/表面活性剂和含卤素表面活性剂也是如此。

由本发明形成的含氟聚合物含水分散体由含氟聚合物颗粒构成,所述含氟聚合物颗粒由至少一种氟化单体(含氟单体)制成,即其中至少一种单体包含氟,优选具有至少一个氟的烯属单体或附接到双键碳上的全氟烷基。用于本发明方法中的氟化单体和由此获得的含氟聚合物各自优选包含至少35重量%的F,优选至少50重量%的F,并且氟化单体优选独立地选自四氟乙烯(TFE)、六氟丙烯(HFP)、三氟氯乙烯(CTFE)、三氟乙烯、六氟异丁烯、全氟烷基乙烯、氟代乙烯基醚、氟乙烯(VF)、偏二氟乙烯(VF2)、全氟-2,2-二甲基-1,3-二氧杂环戊烯(PDD)、全氟-2-亚甲基-4-甲基-1,3-二氧杂环戊烷(PMD)、全氟(烯丙基乙烯基醚)和全氟(丁烯基乙烯基醚)、以及它们的混合物。优选的全氟烷基乙烯单体是全氟丁基乙烯(PFBE)。优选的氟代乙烯基醚包括全氟代(烷基乙烯基醚)单体(PAVE),诸如全氟代(丙基乙烯基醚)(PPVE)、全氟代(乙基乙烯基醚)(PEVE)和全氟代(甲基乙烯基醚)(PMVE)。非氟化烯属共聚单体诸如乙烯和丙烯可与氟化单体共聚。

氟代乙烯基醚还包括可用于将官能团引入含氟聚合物中的那些。这些包括CF2=CF-(O-CF2CFRf)a-O-CF2CFR'fSO2F,其中Rf和R'f独立地选自F、Cl或具有1至10个碳原子的全氟化烷基,a=0、1或2。此类聚合物公开于美国专利3,282,875(CF2=CF-O-CF2CF(CF3)-O-CF2CF2SO2F,全氟(3,6-二氧杂-4-甲基-7-辛烯磺酰氟))以及美国专利4,358,545和4,940,525(CF2=CF-O-CF2CF2SO2F)中。另一个实例是美国专利4,552,631中公开的CF2=CF-O-CF2-CF(CF3)-O-CF2CF2CO2CH3,全氟(4,7-二氧杂-5-甲基-8-壬烯酸)的甲基酯。具有腈、氰酸酯、氨基甲酸根和膦酸官能团的类似氟代乙烯基醚公开于美国专利5,637,748、6,300,445和6,177,196中。

本发明尤其可用于制备聚四氟乙烯(PTFE)(包括改性的PTFE)在含水介质中的分散体时的聚合反应。聚四氟乙烯(PTFE)是指(a)不存在任何显著共聚单体的聚合的四氟乙烯自身,即均聚物,和(b)改性的PTFE,其为TFE与此类低浓度共聚单体的共聚物,所得聚合物的熔点不显著降低至低于PTFE熔点。改性的PTFE包含少量共聚单体调节剂,所述改性剂降低结晶度以改善加工,此类单体的例子如全氟烯烃(尤其是六氟丙烯(HFP)或全氟(烷基乙烯基醚)(PAVE),其中烷基包含1至5个碳原子,优选全氟(乙基乙烯基醚)(PEVE)和全氟(丙基乙烯基醚)(PPVE))、三氟氯乙烯(CTFE)、全氟丁基乙烯(PFBE)或将大体积侧基引入分子中的其它单体。以PTFE中存在的TFE和共聚单体的总重量计,此类共聚单体的浓度优选小于1重量%,更优选小于0.5重量%。优选使用至少约0.05重量%的最小量以获得显著的效果。PTFE(和改性的PTFE)通常具有至少约1×106Pa·s,并且优选至少1×108Pa·s的熔融蠕变粘度,并且在如此高的熔融粘度下,所述聚合物在熔融态下不流动,因此不是可熔融加工的聚合物。熔融蠕变粘度的测量公开于美国专利7,763,680的第4栏中。PTFE的高熔融粘度起因于其极高的分子量(Mn),例如至少106。PTFE的特征还在于其至少330℃(第1次加热),通常至少331℃,并且最通常至少332℃(均是第1次加热)的高熔融温度。根据ASTM D 1238在372℃下并且使用5kg砝码测定熔体流动速率(MFR)时,起因于其极高熔融粘度的PTFE的不可熔融流动性使自身表现为不可熔融流动状态。该不可熔融流动状态是MFR为0。PTFE的高熔融粘度降低了熔融PTFE在第一次加热冷却后重新形成“原生态聚合”晶体结构的能力。因此,与第一次加热熔融PTFE相比(例如至少75J/g),该高熔融粘度致使第二次加热获得的熔解热更低(例如至多55J/g),从而表现出至少20J/g的熔解热差值。PTFE的高熔融粘度能够使其标准比重(SSG)可测,以作为成为极高分子量的特征。SSG测量方法(ASTM D 4894,还描述于美国专利4,036,802中)包括在高于其熔融温度下烧结自立式SSG样本(无容器)而不改变SSG样本的尺寸。SSG样本在烧结期间不流动。

本发明的方法还可用于使低分子量的PTFE聚合,其被通常称为PTFE超细粉,以与上述PTFE区分。PTFE超细粉的分子量相对于PTFE较低,即分子量(Mn)一般在104至105的范围内。PTFE超细粉的该较低分子量效果在于,它在熔融态具有流动性,与不可熔融流动的PTFE形成对照。PTFE超细粉具有熔融流动性,其特征在于根据ASTM D 1238,在372℃下使用5kg砝码对熔融聚合物测得至少0.01g/10min,优选至少0.1g/10min,还更优选至少5g/10min,并且还更优选至少10g/10min的熔体流动速率(MFR)。

虽然PTFE超细粉的低分子量向聚合物赋予熔融流动性,但是PTFE超细粉自身是不可熔融加工成形的,即由PTFE超细粉熔体模塑的制品由于极脆而是无用的。由于其低分子量(相对于不可熔融流动的PTFE),它没有强度。PTFE超细粉的挤出长丝非常脆以至于在弯曲时折断。一般来讲,不能制成用于本发明的PTFE超细粉的拉伸或挠曲测试用压缩模板,因为当从压缩模具中取出时,所述板断裂或碎裂,从而不能测试拉伸特性或MIT挠曲寿命。实际上,该聚合物不具有(0)拉伸强度并且MIT挠曲寿命为零循环。相比之下,PTFE是柔性的而不是脆性的,由例如至少1000个循环,优选至少2000个循环的MIT挠曲寿命(ASTM D-2176,使用8密耳(0.21mm)厚的压缩模制膜)示出。

本发明可用于制备可熔融加工的含氟聚合物分散体,其也是可熔融加工成形的。可熔融加工的是指含氟聚合物可以熔融态加工,即使用常规加工设备如挤出机和注塑机由熔体制成成型制品如膜、纤维和管材。可熔融加工成形的是指所得加工成形的制品表现出足够的强度和韧性,以可用于它们的指定用途。该足够的强度可表征为,含氟聚合物自身表现出如上所述测得的至少1000个循环,优选至少2000个循环的MIT挠曲寿命。含氟聚合物的强度由它不是脆性的来表示。除非另外指明,下文所述的含氟聚合物是可熔融加工的并且可熔融加工成形的。

此类可熔融加工的含氟聚合物的例子包括均聚物如聚三氟氯乙烯和聚偏二氟乙烯(PVDF),或四氟乙烯(TFE)与至少一种氟化的可共聚单体(共聚单体)的共聚物,所述氟化的可共聚单体通常以足量存在于所述聚合物中,以将所述共聚物的熔点显著降低至PTFE熔点以下,例如降低至不大于315℃的熔融温度。

可熔融加工的TFE共聚物通常将一定量的共聚单体掺入所述共聚物中,以提供具有0.1至200g/10min熔体流动速率(MFR)的共聚物,所述熔体流动速率根据ASTM D-1238,在熔融聚合物上使用5kg砝码以及对具体共聚物而言标准的熔融温度测得。MFR范围优选为1至100g/10min,最优选约1至约50g/10min。其它可熔融加工成形的含氟聚合物是乙烯(E)或丙烯(P)与TFE或CTFE的共聚物,值得注意的是ETFE和ECTFE。

优选可用于本发明实施中的可熔融加工成形的共聚物包含至少40-99摩尔%的四氟乙烯单元和1-60摩尔%的至少一种其它单体。其它可熔融加工成形的共聚物是包含60-99摩尔%的PTFE单元和1-40摩尔%的至少一种其它单体的那些。与TFE形成全氟聚合物的优选共聚单体是全氟单体,优选具有3至8个碳原子的全氟烯烃,如六氟丙烯(HFP)和/或全氟(烷基乙烯基醚)(PAVE),其中直链或支化烷基包含1至5个碳原子。优选的PAVE单体是其中烷基包含1、2、3或4个碳原子的那些,并且所述共聚物可使用若干PAVE单体制得。优选的TFE共聚物包括FEP(TFE/HFP共聚物)、PFA(TFE/PAVE共聚物)、TFE/HFP/PAVE(其中PAVE为PEVE和/或PPVE)、MFA(TFE/PMVE/PAVE,其中PAVE的烷基具有至少两个碳原子)和THV(TFE/HFP/VF2)。

还可用的聚合物是聚偏氟乙烯(PVDF)的成膜聚合物和偏二氟乙烯以及聚氟乙烯(PVF)的共聚物,以及氟乙烯的共聚物。

所有这些可熔融加工成形的含氟聚合物可以可熔融加工成形的TFE共聚物的如上所述MFR为特征,即为测定PFA和FEP的MFR,根据ASTM 1238方法,采用具体聚合物的标准条件,包括塑度计中熔融聚合物上的5kg砝码。所有上述含氟聚合物为含氟塑料,包括全氟塑料,而不是含氟弹性体。含氟塑料不具有含氟弹性体的基本特征,即低挠曲模量、高伸长率、以及交联后快速由变形恢复的组合。含氟塑料(包括全氟塑料)最通常表现出结晶度和熔融温度。优选的含氟塑料和全氟塑料具有足够的结晶度,使得根据ASTM D-4591测得,它们具有经由差示扫描量热法(DSC)至少9J/g的熔解热,或如果它们是无定形的如TFE/PDD共聚物,则具有50℃或更高的玻璃化转变温度。

当制备氟碳弹性体(含氟弹性体)时,本发明也是有用的。这些弹性体通常具有低于25℃的玻璃化转变温度,并且在室温下几乎不或不表现出结晶度,并且无熔融温度。由本发明方法制得的含氟弹性体通常是包含按所述含氟弹性体的总重量计25至75重量%第一氟化单体共聚单元的共聚物,所述第一氟化单体共聚单元可为偏二氟乙烯(VF2)或四氟乙烯(TFE)。含氟弹性体中的余量单元可由一种或多种与所述第一单体不同的其它共聚单体构成并且选自氟化单体、烯烃、以及它们的混合物。由本发明方法制得的含氟弹性体还可任选包含一种或多种固化位点单体单元。如果存在的话,按所述氟碳弹性体的总重量计,共聚固化位点单体的含量通常为0.05至7重量%。适宜固化位点单体的例子包括:i)包含溴-、碘-、或氯-的氟化烯烃或氟化乙烯基醚;ii)含腈基的氟化烯烃或氟化乙烯基醚;iii)全氟(2-苯氧基丙基乙烯基醚);和iv)非共轭双烯。

优选的TFE基含氟弹性体共聚物包括TFE/PMVE、TFE/PMVE/E、TFE/P和TFE/P/VF2。优选的VF2基氟碳弹性体共聚物包括VF2/HFP、VF2/HFP/TFE和VF2/PMVE/TFE。这些弹性体共聚物中的任何一种还可包含固化位点单体单元。

在上文公开的含氟塑料中,优选的含氟塑料为全氟塑料,由于它们的高分子量和存在于含水聚合反应介质中时阻止获得该高分子量的易调聚活性,这些是最难制备的。对于PTFE尤其如此,与由交联获得它们强度的含氟弹性体的极低分子量相比,PTFE具有至少1,000,000,通常超过2,000,000的分子量(Mn)。全氟塑料是其中形成聚合物链或主链的碳原子上的一价取代基均为氟原子的聚合物,可能的例外是共聚单体、端基或侧基结构。优选地,共聚单体、端基或侧基结构将提供相对于所述全氟塑料的总重量计不超过2重量%的C-H部分,更优选不大于1重量%的C-H部分。优选地,全氟塑料的氢含量(如果存在的话)以所述含氟塑料的总重量计不大于0.2重量%。含氟弹性体经由交联获得它们的尺寸完整性,从而如果聚合方法制得较低分子量的聚合物则是符合要求的,即与制备PTFE相比,制备含氟弹性体可更耐受含水聚合反应介质中存在的调聚活性。制备PTFE的聚合反应因其上述极高分子量而是困难的。本发明的具体成就是其使用全烃基成核/增稳体系制备该高分子量PTFE的能力,即使用烃化合物/表面活性剂作为成核位点前体,并且使用烃表面活性剂作为增稳表面活性剂,即含水聚合反应介质中不使用或不存在含卤素表面活性剂。

另一类优选的含氟塑料是其中聚合物链包含大于75重量%的全氟单体单元(优选TFE、HFP、以及它们的混合物),优选至少78重量%的此类重复单元,更优选至少80重量%的此类重复单元,并且最优选至少85重量%的此类单元的那些。TFE是优选的全氟单体重复单元。达到共计100重量%共聚物的余量重复单元可选自包含C-H的共聚单体或卤化碳共聚单体,优选上述全氟烯烃HFP和PAVE,以形成全氟塑料。优选的含氟塑料包含25重量%或更少,更优选20重量%或更少,甚至更优选15重量%或更少的VF2。

引发之前成核位点的形成

在本发明优选实施例的实践中,可在聚合反应器中实施成核位点的形成。所述反应器配备用于反应器内含水介质的搅拌器,以在聚合反应引发时和之后提供自由基与单体如TFE之间的最终充分相互作用,以获得适宜的反应速率和共聚单体(如果用于聚合反应中)的均匀掺入。所述反应器优选包括围绕所述反应器的夹套,以便通过控温热交换介质的循环便利地调节反应温度。

在形成亲油性成核位点分散体的典型过程中,向反应器中加入加入时脱气或加入反应器中后脱气的去离子水。加入反应器中的任何附加水如包含溶解的引发剂、水溶性含烃化合物、盐或增稳表面活性剂的水也是去离子型的且脱气的。通过将水溶性含烃化合物/表面活性剂以所期望的少量加入含水添加物中,可方便地在加入反应器内的含水介质内原位形成亲油性成核位点。优选地,还将水溶性无机盐加入该含水添加物中,并且将这两种化合物混合在一起。通过在反应器含水介质中并且在水溶性盐的存在下降解含烃化合物/表面活性剂,可便利地将水溶性含烃化合物/表面活性剂转变成亲油性成核位点。所述盐未必受降解反应的影响。来源于溶液中的盐的离子的存在提供上述有益功效。降解剂可为氧化剂,其可便利地为加入含水介质中的少量水溶性聚合引发剂。含水介质的温度为有效致使降解反应发生的温度,并且一般为25至120℃,优选40至120℃,更优选50至120℃,甚至更优选60至120℃,并且最优选70至120℃,并且该相同温度可与聚合反应实施时的温度相同或相近。所用的温度主要取决于稍后聚合反应步骤所需的温度,该温度还将足够高,以使降解剂(优选聚合引发剂)变成活性的。降解反应充分实施,以降解含烃化合物/表面活性剂的亲水部分,以使化合物/表面活性剂的残基变成亲油性成核位点。虽然亲油性成核位点是亲油的,但是在含水介质中无法看到。在成核位点分散体的形成开始时,降解反应开始。预期随着用加入反应器中的含氟单体加压反应器以达到引发所需的反应器压力,该反应可持续进行。在含氟单体聚合反应开始时(引发时)存在成核位点,以作为含氟聚合物沉淀的位点。

成核位点的存在由后续聚合反应结果证实,与不存在亲油性成核位点的情况下实施的聚合反应相比,以形成相同量的分散含氟聚合物颗粒即含水介质中相同的分散固体含量,所述后续聚合反应制得更小尺寸的含氟聚合物颗粒。成核位点数目越大,由聚合反应形成的指定量(重量)的含氟聚合物颗粒的含氟聚合物粒度越小。

选择水溶性含烃化合物/表面活性剂,以容易经由亲水性丧失而发生形成亲油性成核位点的降解反应。表面活性剂的含烃化合物是含烃表面活性剂,其例子示于下文中。

表面活性剂在同一分子上具有亲水部分和疏水部分。这些可为阳离子型的、非离子型的、或阴离子型的。典型的阳离子表面活性剂具有带正电的亲水部分如烷基化卤化铵如烷基化溴化铵,以及疏水部分如长链脂肪酸。阴离子表面活性剂具有带负电的亲水部分如羧酸盐、磺酸盐或硫酸盐,以及作为疏水部分的长链烃部分如烷基。非离子表面活性剂不包含带电基团,但是具有疏水部分,与其它两类表面活性剂相似,所述疏水部分通常为长链烃。非离子表面活性剂的亲水部分通常包含水溶性官能团如来源于与环氧乙烷聚合反应的亚乙基醚链。水溶解度归因于醚氧原子与来自水的质子的氢键。在稳定环境下,表面活性剂通过用朝向水相中颗粒和表面活性剂亲水部分的表面活性剂疏水部分覆盖颗粒来稳定聚合物颗粒。在带电表面活性剂的情况下,一部分稳定性还归因于颗粒间电荷的相斥作用。表面活性剂通常显著降低其中溶解表面活性剂的含水介质的表面张力。在表面活性剂为形成亲油性成核位点分散体的前体的情况下,疏水和亲水部分是表面活性剂的关键部分,但是原因不同。亲水部分向表面活性剂赋予水溶解度,而疏水部分在表面活性剂亲水性降解后变成亲油性成核位点。为形成亲油性成核位点的前体的优选表面活性剂是含乙氧基的表面活性剂。通常,此类表面活性剂为非离子、阳离子和阴离子表面活性剂,最优选非离子表面活性剂。优选地,表面活性剂是成核位点的唯一前体,并且不含芳族部分。

除非另外指明,下文论述的表面活性剂例子是成核前体表面活性剂。这些表面活性剂可单独使用或组合使用。

非离子烃成核表面活性剂包括聚氧乙烯烷基醚、聚氧乙烯烷基苯基醚、聚氧乙烯烷基酯、脱水山梨糖醇烷基酯、聚氧乙烯脱水山梨糖醇烷基酯、甘油酯、它们的衍生物等。更具体地,聚氧乙烯烷基醚的例子是聚氧乙烯月桂基醚、聚氧乙烯鲸蜡基醚、聚氧乙烯硬脂基醚、聚氧乙烯油基醚、聚氧乙烯二十二烷基醚等;聚氧乙烯烷基苯基醚的例子是聚氧乙烯壬基苯基醚、聚氧乙烯辛基苯基醚等;聚氧乙烯烷基酯的例子是聚乙二醇一月桂酸酯、聚乙二醇一油酸酯、聚乙二醇一硬脂酸酯等;脱水山梨糖醇烷基酯的例子是聚氧乙烯脱水山梨糖醇一月桂酸酯、聚氧乙烯脱水山梨糖醇一棕榈酸酯、聚氧乙烯脱水山梨醇一硬脂酸酯、聚氧乙烯脱水山梨糖醇一油酸酯等;聚氧乙烯脱水山梨糖醇烷基酯的例子是聚氧乙烯脱水山梨糖醇一月桂酸酯、聚氧乙烯脱水山梨糖醇一棕榈酸酯、聚氧乙烯脱水山梨醇一硬脂酸酯等;并且甘油酯的例子是一肉豆蔻酸甘油酯、一硬脂酸甘油酯、一油酸甘油酯等。而且它们的衍生物的例子是聚氧乙烯烷基胺、聚氧乙烯烷基苯基甲醛缩合物、聚氧乙烯烷基醚磷酸酯等。尤其优选聚氧乙烯烷基醚和聚氧乙烯烷基酯。此类醚和酯的例子是HLB值为10至18的那些。更具体地是聚氧乙烯月桂基醚(EO:5至20,EO代表环氧乙烷单元)、聚乙二醇一硬脂酸酯(EO:10至55)和聚乙二醇一油酸酯(EO:6至10)。

适宜的非离子成核烃表面活性剂包括辛基苯酚乙氧基化物,如由Dow Chemical Company提供的X系列:

X15(n~1.5)

X45(n~4.5)

X100(n~10)

优选的非离子成核烃表面活性剂是支链醇乙氧基化物如由Dow Chemical Company提供的15-S系列,以及支链仲醇乙氧基化物如同样由Dow Chemical Company提供的TMN系列:

TMN-6(n~8)

TMN-10(n~11)

TMN-100(n~10)

环氧乙烷/环氧丙烷共聚物如由Dow Chemical Company提供的L系列表面活性剂也可用作本发明中的非离子成核表面活性剂。

另一类可用的适宜非离子成核烃表面活性剂是以商品名R系列由BASF提供的双官能嵌段共聚物,如:

R

31R1(m~26,n~8)

17R2(m~14,n~9)

10R5(m~8,n~22)

25R4(m~22,n~23)

另一类适宜的非离子成核烃表面活性剂是以商品名TDA系列由BASF Corporation提供的十三烷基醇烷氧基化物。

TDA-6(n=6)

TDA-9(n=9)

TDA-10(n=10)

在另一个实施例中,烃成核表面活性剂为阴离子烃表面活性剂。一个此类例子是以10由Resolution Performance Products提供的高度支化的C10叔羧酸。

10

新癸酸(n+m=7)

另一种可用的阴离子成核烃表面活性剂为聚直链烷基醚磺酸钠,其以商品名Avanel S系列由BASF提供。环氧乙烷链向所述表面活性剂提供了非离子特性,并且磺酸根基团提供了一定的阴离子特性。

S-70(n=7,m=11-14)

S-74(n=3,m=8)

另一类烃成核表面活性剂是由式R-L-M表示的那些阴离子表面活性剂,其中R为包含6至17个碳原子的直链烷基,L选自-ArSO3-、-SO3-、-SO4-、-PO3-和-COO-,并且M为一价阳离子,所述一价阳离子优选选自H+、Na+、K+和NH4+。-ArSO3-为芳基磺酸根。这些表面活性剂中优选的是由式CH3-(CH2)n-L-M表示的那些,其中n为6至17的整数,并且L为-SO3M、-PO3M、或-COOM,并且L和M具有与上文相同的含义。尤其优选R-L-M表面活性剂,其中R基团为具有12至16个碳原子的烷基,并且其中L为硫酸根及其混合物,如十二烷基硫酸钠(SDS)。就商业用途而言,SDS(有时称为月桂基硫酸钠)通常得自椰子油或棕榈仁油给料,并且主要包含十二烷基硫酸钠,但是可包含微量的其它具有不同R基团的R-L-M表面活性剂。

所有这些表面活性剂具有亲水部分和疏水部分,所述疏水部分是亲油的。亲水部分充分占据主导地位,使得表面活性剂在用于形成亲油性成核位点的浓度下是水溶性的。

另一类可用作含烃水溶性化合物的成核表面活性剂是含烃硅氧烷表面活性剂。具体地,此类硅氧烷表面活性剂和聚二甲基硅氧烷(PDMS)表面活性剂描述于“Silicone Surfactants”(R.M.Hill,Marcel Dekker,Inc.,ISBN:0-8247-00104)中。硅氧烷表面活性剂的结构包括定义的疏水和亲水部分,后者向表面活性剂赋予水溶解度。疏水部分包含一个或多个二烃基硅氧烷单元,其中硅原子上的取代基完全是烃:

在可被卤素如氟取代的烃基碳原子全部被氢原子取代的情况下,这些硅氧烷表面活性剂也可被认为是烃表面活性剂,即烃基碳原子上的一价取代基为氢。

硅氧烷表面活性剂的亲水部分可包含一个或多个极性部分,包括离子基团如硫酸根、磺酸根、膦酸根、磷酸酯、羧酸根、碳酸根、磺基琥珀酸根、牛磺酸根(为游离酸、盐或酯)、氧化膦、甜菜碱、甜菜碱共聚多元醇、或季铵盐。离子亲水部分还可包含离子官能化硅氧烷接枝,包括聚电解质。包含此类基团的硅氧烷表面活性剂包括例如,聚二甲基硅氧烷-接枝-(甲基)丙烯酸盐、聚二甲基硅氧烷-接枝-聚丙烯酸盐和聚二甲基硅氧烷接枝的季铵。

硅氧烷成核表面活性剂亲水部分中的极性部分可包含非离子基团,所述非离子基团可由聚醚如聚环氧乙烷(PEO)和混合的聚环氧乙烷/聚环氧丙烷聚醚(PEO/PPO);单糖和二糖;和水溶性杂环如吡咯烷酮形成。在混合的聚环氧乙烷/聚环氧丙烷聚醚中,环氧乙烷与环氧丙烷(EO/PO)的比率可不同。

硅氧烷成核表面活性剂的亲水部分还可包含离子和非离子部分的组合。此类部分包括例如,离子端官能化的或无序官能化的聚醚或多羟基化合物。优选用于本发明实践中的是具有非离子部分的硅氧烷,即非离子硅氧烷表面活性剂。

硅氧烷表面活性剂结构中疏水部分和亲水部分的排列可采取两嵌段聚合物(AB)、三嵌段聚合物(ABA)形式或多嵌段聚合物的形式,其中“B”代表分子的硅氧烷部分。作为另外一种选择,所述硅氧烷表面活性剂可包含接枝聚合物。术语“接枝聚合物”是指包含具有一种或多种聚合物官能团的分子的聚合物,所述聚合物官能团作为侧链连接到聚合物主链上,其中所述侧链或接枝具有与聚合物主链特性不同的结构或官能团特性。连接到聚合物主链的每一个聚合物官能团接枝均是“侧”基。接枝的结构可为直链的、支链的或环状的。

硅氧烷表面活性剂的其它详情公开于美国专利6,841,616(Wille等人)中,并且可用于本发明实施中的硅氧烷表面活性剂的代表性例子列于该专利的表1中。

基于硅氧烷并且为阴离子型的烃表面活性剂的例子是购自Consumer Specialties(Lubrizol Advanced Materials,Inc.分部)的如下表面活性剂:

可用于本发明的另一个阴离子烃表面活性剂例子是购自Akzo Nobel Surface Chemistry LLC的磺基琥珀酸酯表面活性剂K8300。所述表面活性剂报告如下:

丁二酸,磺基-,4-(1-甲基-2-((1-氧代-9-十八烯基)氨基)乙基)酯,二钠盐;CAS号:67815-88-7

可用于本发明的其它磺基琥珀酸酯烃表面活性剂为以商品名SB10得自Clariant的磺基琥珀酸二异癸酯钠盐,以及以商品名TR/LNA得自Cesapinia Chemicals的磺基琥珀酸二异十三烷基酯钠盐。

上述表面活性剂既是水溶性烃化合物也是烃表面活性剂(统称-烃化合物/表面活性剂),因为存在的可被氟取代的所有碳原子实际上被氢取代。碳原子上的为元素周期表元素的所有一价取代基均为氢。与这些碳原子上不含卤素取代基如不含氟或不含氯相反,上述少量碳原子可包含这些卤素原子。然而,优选要求为上述水溶性含烃化合物/表面活性剂为烃化合物/表面活性剂。

可用于本发明中的其中碳原子上仅少量一价取代基为氟而不是氢的含烃成核表面活性剂的例子是下述购自Omnova Solutions,Inc.的表面活性剂。

分子量~1900,X=1至7

分子量~1600,X=1至7

加入含水介质中以形成亲油性成核位点的少量含烃化合物/表面活性剂和烃化合物/表面活性剂优选不大于50ppm,优选不大于40ppm,甚至更优选不大于30ppm,并且最优选不大于20ppm,所有量均以成核位点形成时存在的含水介质中的水的重量计。存在于含水介质中的亲油性成核位点的ppm量将由于氧化反应降解亲水部分而小于加入含水介质中的本文公开的ppm量。降解后的含烃化合物也是如此,它不再是原本加入的化合物。因此,成核位点的量将分别小于上述50ppm、40ppm、30ppm和20ppm量。由于据信成核位点以分子形式存在,因此仅少量的含烃化合物/表面活性剂或烃化合物/表面活性剂可制得大量的亲油性成核位点。因此,向含水介质中加入低达1ppm的此类化合物/表面活性剂可提供有益功效。

可用于辅助成核位点形成过程的水溶性无机盐例子包括包含碱金属阳离子如Na和K或NH4+以及阴离子如-SO3-、-HSO3-、-NO3-、-CL-、-CO3-、-B4O7-和-HPO4-的那些。当由聚合反应制得的含氟聚合物经由熔融挤塑加工时,所述盐优选为铵盐。

选择所述盐,使得它有效地提供上述有益功效,并且既不使引发剂失活而阻止降解反应发生,也不与引发剂反应而阻止引发剂与含烃化合物/表面活性剂的反应,还不抑制最终的聚合反应。因此,与不使用盐情况下相比,可使用更少量的含烃化合物/表面活性剂来形成亲油性成核位点。这在制备最高分子量含氟聚合物PTFE的聚合反应过程中是尤其重要的。所述盐可为还原剂,但不必须如此。在水溶性无机盐的存在下,含烃化合物/表面活性剂与降解剂(优选聚合引发剂)之间降解或氧化反应的实施包括盐还经历某些转化如氧化/还原反应的可能性。显然,含水介质中盐的电离对成核位点的形成具有积极的影响。然而,如果盐的量过大,则结果可能是不利的,即成核位点数减少并且含氟聚合物粒度增大。由积极效应转向负面效应时的量主要取决于盐,但是该转变一般发生在以形成成核位点时反应器中的水的重量计大于125ppm盐时。

一般来讲,为向成核位点形成过程提供有益效果并且不有害于它或随后含氟单体的聚合,氧化反应时存在于含水介质中的水溶性无机盐的量优选不大于100ppm,优选不大于75ppm,甚至更优选不大于50ppm,并且最优选不大于25ppm,并且优选至少1ppm。

可在亲油性成核形成步骤中用作降解剂的水溶性自由基聚合引发剂的例子是在聚合反应器内可达到的含水介质温度下快速氧化水溶性含烃化合物/表面活性剂以形成所期望亲油性成核位点的那些。期望快速反应,以便现存在于基本上不含表面活性剂的含水介质中的所得亲油性成核位点能够作为分散体用于聚合反应。优选用于此目的的引发剂是高度活性的无机引发剂如无机过酸的水溶性盐。优选的引发剂为过硫酸盐,例如过硫酸铵或过硫酸钾。优选的过硫酸盐引发剂基本上不含金属离子,并且最优选的是铵盐。可用于本发明实践中的附加引发剂是水溶性有机偶氮化合物,如偶氮脒化合物。

优选地,加入含水介质中以实施氧化反应的降解剂/引发剂的量小于可致使将在反应器中实施的最终聚合反应引发的量。该量将取决于优选包含过氧-O-O-基团的所用降解剂/引发剂的分子量。成核位点形成步骤中用作降解剂的降解剂/引发剂过多,可致使成核位点不稳定,并且随着含氟单体加入反应器中加压至引发,其聚合反应过早开始,从而导致聚合反应步骤中形成较大的含氟聚合物颗粒。因此,加入含水介质中的降解剂/引发剂的量以成核位点形成步骤时反应器中水的重量计优选不大于40ppm,更优选不大于30ppm,甚至更优选不大于20ppm,并且最优选不大于约15ppm。加入含水介质中的降解剂/引发剂最小量可低达1ppm。由于降解反应致使引发剂降解,成核位点分散体形成后存在于含水介质中的降解剂/引发剂的ppm量将小于本文所公开的加入含水介质中的ppm量。这些量适用于不作为降解剂的聚合引发剂的降解剂。

上述含烃化合物/表面活性剂、水溶性无机盐和降解剂的这些量中的每一个可以所述量的任何组合使用。因此,量不足以致使含氟单体聚合反应引发的降解剂/引发剂可与上述任何量的含烃化合物/表面活性剂和盐一起使用,并且化合物/表面活性剂和盐的量可为上述它们的量的任何组合。当指定降解剂/引发剂的数量时也是如此,例如不超过50ppm。例如,可将下列成分的组合加入含水介质:

(a)不大于40ppm的含烃化合物/表面活性剂,伴随下列任何量的水溶性无机盐(不大于125ppm、100ppm、75ppm、50ppm、或25ppm),以及下列任何量的降解剂/引发剂(不大于50ppm、40ppm、30ppm、20ppm、或15ppm);

(b)不大于100ppm的水溶性无机盐,伴随下列任何量的含烃化合物/表面活性剂(不大于50ppm、40ppm、30ppm、或20ppm),以及任何下列量的降解剂/引发剂(不大于50ppm、40ppm、30ppm、20ppm、或15ppm);和

(c)不大于30ppm的降解剂/引发剂,伴随下列任何量的含烃化合物/表面活性剂(不大于50ppm、40ppm、30ppm、或20ppm),以及任何下列量的水溶性无机盐(不大于125ppm、100ppm、75ppm、50ppm、或25ppm)等。

在每种成分量的这些组合的每一个中,存在至少1ppm的每种成分。这些成分的优选组合是不超过20ppm的含烃化合物/表面活性剂与不超过100ppm的盐成分,并且就降解剂/引发剂而言,其量不足以致使含氟单体聚合反应引发,或不超过下列任何量:50ppm、40ppm、30ppm、20ppm或15ppm。

还优选至少在成核位点形成步骤开始以及同时发生的亲油性成核位点分散体形成时,反应器中基本不存在反应性含氟单体,即这些位点优选在不存在含氟单体的情况下形成,所述含氟单体将与少量用作氧化剂的引发剂反应。

下列是本发明的若干实施例:

在本发明的一个实施例中,其中形成亲油性成核位点分散体的含水介质可表征为聚合反应预载组合物,其中含水介质包含由水溶性含烃化合物/表面活性剂制得的亲油性聚合反应成核位点分散体、包含亲水部分和疏水部分的化合物/表面活性剂,所述亲水部分向所述化合物提供水溶解度,所述疏水部分在化合物亲水部分降解后形成亲油性成核位点。该组合物的预载特征是指它在聚合反应引发前就存在。该实施例可概述为包含含水介质的聚合反应预载组合物,所述含水介质包含聚合反应的亲油性成核位点分散体,所述位点由包含亲水部分和疏水部分的含烃水溶性化合物制得,所述亲水部分向含水介质中的化合物提供溶解度,所述疏水部分在亲水部分降解后形成亲油性成核位点。所述化合物优选为表面活性剂。正是由于加入含水介质中的此类化合物/表面活性剂的量可不超过50ppm或不超过40ppm或不超过30ppm或不超过20ppm或不超过15ppm,成核位点的量将分别小于这些量中的每一个。

在本发明的另一个实施例中,预载组合物还可表征为含水聚合反应介质中的反应混合物,包含不大于50ppm的包含疏水部分和亲水部分的水溶性含烃化合物/表面活性剂、不大于125ppm的水溶性无机盐和不大于50ppm的加入含水介质中的降解剂。可将该预载组合物加热至降解剂与化合物/表面活性剂反应降解亲水部分时的温度,从而疏水部分变为亲油性成核位点在含水介质中的分散体。降解剂优选为聚合引发剂。该实施例还可描述为上文(a)下描述的聚合反应预载组合物,其中亲油性成核位点为将化合物、降解所述化合物的试剂加入含水介质中的结果,其中所述化合物可为表面活性剂,并且所述降解剂可为如上所述的聚合引发剂。优选地,加入含水介质中的化合物和降解剂的量可各自不大于50ppm。水溶性无机盐也可存在于预载组合物中,优选在亲油性成核位点形成之前,并且优选以不大于120ppm的量。

在本发明的另一个实施例中,制备亲油性成核位点的过程的特征在于,提供用于使含氟单体聚合并且包含含水介质的反应器,在含水介质中使包含疏水部分和亲水部分的水溶性含烃化合物/表面活性剂与任何有效量的降解剂(优选聚合引发剂)反应以降解亲水部分,但是不在具有含氟单体的反应器加压期间有效致使含氟单体聚合,亲水部分的降解使疏水部分能够成为含氟单体聚合反应的亲油性成核位点分散体。所述反应优选在如上所述水溶性无机盐的存在下实施。

在本发明的另一个实施例中,所述过程的特征还在于,向含水聚合反应介质中加入(预载)包含疏水部分和亲水部分的含烃化合物/表面活性剂以及水溶性无机盐(如果有的话),然后向该含水介质中加入降解剂(优选聚合引发剂),并且使降解剂与含烃化合物/表面活性剂反应以形成得自水溶性含烃化合物/表面活性剂疏水部分的亲油性成核位点分散体。

这些实施例中的每一个均在聚合反应引发前的背景下,并且成分本体(化合物/表面活性剂、盐和降解剂(优选聚合引发剂))、反应温度和它们的量可为如上公开的这些方面中的任何一个,从而获得亲油性成核位点分散体,包括其中形成分散体的基本上不含表面活性剂的含水介质。聚合反应的引发优选在用待聚合的含氟单体加压聚合反应器之后,并且将足量的自由基聚合引发剂加入含水介质中以致使发生聚合反应引发。

在上述所有组合物和实施例中,优选的含烃化合物/表面活性剂为烃化合物/表面活性剂。因此,优选的亲油性成核位点为烃亲油性成核位点。

聚合反应的引发

在初始阶段期间聚合反应器含水介质中开始出现和/或形成亲油性成核位点分散体后,用将通过加成聚合反应聚合的含氟单体加压反应器。通过将气态含氟单体如TFE注入存在于反应器内含水介质表面上方的反应器内蒸气空间中来进行加压。实施注入以在反应器内获得至少开始聚合反应所需的压力,所述压力通常是实施聚合反应时的压力(操作压力)。旨在在聚合反应中与例如TFE共聚的相对惰性的含氟单体如HFP可在用较活泼的含氟单体加压之前就已存在于反应器中。将采用的实施聚合反应的典型操作压力将为30至1000psig(0.3至7.0MPa),优选1至800psig(0.1至5.6MPa)。然后可将水溶性自由基聚合引发剂的水溶液以足量泵送到反应器中,以致使聚合反应引发。该引发是聚合反应的开始。为简化起见,该起始的证据可由反应器压力降低示出,例如10psi(69kPa)的压降,从而表示聚合过程中含氟单体消耗的开始,并且从而表示聚合反应开始。取该压降值表示压降是由含氟单体消耗造成的,而不是因反应器内的温度波动。如果确信较小的压降不只是非聚合反应开始的内部反应器压力的变化,则本领域技术人员可依靠更小的压降。本领域技术人员可依靠不同的所有参数来示出聚合反应的开始。例如在压力需求体系中,反应器压力的降低由进入反应器的单体流立即补偿以保持压力。在该体系中,认为进入反应器的一定量的压力需求单体流指示聚合反应的开始。无论依靠什么参数,批料之间应采用相同的参数来提供可比较的结果如批加工时间。

搅拌含水介质以获得所期望的聚合反应速率和共聚单体(如果存在)的均匀掺入。稳定阶段优选在初始阶段之后。加入表面活性剂以稳定由此形成的含氟聚合物颗粒的时间点和量将取决于所用的表面活性剂。稳定含氟聚合物颗粒分散体是指,聚合反应期间这些颗粒伴随搅拌分散于含水介质中,而不是彼此凝聚以形成凝结物。该分散体在聚合反应结束以及停止搅拌后持续存在。

含水介质优选在聚合反应引发时基本上不含表面活性剂,优选在含水介质中存在即使有也是极少量的表面活性化合物,以影响用于沉淀含氟聚合物的亲油性成核位点分散体的亲和力。以少量用作亲油性成核位点前体的含烃表面活性剂在转变成这些位点时,已基本上丧失其大部分表面活性。向含水聚合反应介质中加入增稳表面活性剂基本上是为此目的的表面活性剂的第一次加入。

根椐所聚合的含氟单体,用含氟单体加压反应器后加入含水聚合反应介质中以致使加成聚合反应引发的水溶性自由基聚合引发剂可与用作降解剂的引发剂相同或不同。在一个优选的实施例中,如果引发剂也为降解剂,则加入聚合引发剂以致使聚合反应引发是引发剂向含水介质的第二次加入,第一次加入是降解含烃化合物/表面活性剂以致使形成亲油性成核位点所需的少量。优选的自由基聚合引发剂是高度活性的无机引发剂如无机过酸的水溶性盐。优选的引发剂为过硫酸盐,例如过硫酸铵(APS)或过硫酸钾(KPS)。优选的过硫酸盐引发剂基本上不含金属离子,并且最优选的是铵盐。就TFE至PTFE的聚合反应而言,优选的引发剂为有机过酸如过氧化二琥珀酸(DSP),它需要较大的量例如至少200ppm来致使引发,有时与较小量的高度活性引发剂如过硫酸盐一起以致使引发。如果降解剂为APS并且引发剂为DSP/APS,则导致聚合反应的引发剂将实际上与用作降解剂的APS引发剂不同。然而,DSP/APS聚合引发剂中的APS组分将是将APS向反应器内的含水介质的第二次加入。聚合引发剂活性的参照涉及引发剂形成自由基的能力,所述自由基能够在含水聚合反应介质中在上文所述的25、40、50、60或70至120℃的反应器内介质温度下引发聚合反应。引发剂和聚合反应温度的选择优选相匹配,以便无论自由基是热引发的,还是它们的形成是因促进剂或还原剂的存在而促成的,由引发剂生成自由基是由含水介质温度引起的。聚合引发剂优选不含碱金属离子。加入以致使引发的引发剂可增补随着聚合反应的进行可能需要的附加引发剂。

在优选的聚合反应步骤中,增稳表面活性剂为含烃(优选烃)表面活性剂。基本上在不存在含烃表面活性剂或烃表面活性剂的情况下实施聚合反应的引发,并且优选将表面活性剂延迟加入含水介质中。该延迟有益地降低增稳表面活性剂对聚合反应的任何调聚效应。该延缓可由开始将增稳表面活性剂加入含水介质中时在含水聚合反应介质中形成的含氟聚合物浓度来测定,并且可由下式表示:

以重量%为单位的含氟聚合物浓度=([A÷(B+A)]×100,

其中A为开始加入表面活性剂之前形成的分散含氟聚合物的重量,并且B为开始加入增稳表面活性剂时聚合反应器中的水的重量。加入反应器中的包含B(上式)的水可包含溶解的成分如引发剂。为简化起见,由实例1中示出的全氟聚合物浓度通过计算示出,水添加物各自被认为完全是水。认为所形成的所有含氟聚合物均存在于含水介质中。A可由直至开始加入表面活性剂时消耗的含氟单体量(重量)确定,因为在聚合反应中不会过早形成凝结物。当含氟单体是保持反应器内聚合过程压力(操作)的单体时,所消耗的含氟单体的量是加入反应器中以保持(补足)该压力直至开始加入增稳表面活性剂时的量。当存在共聚单体并且其量不由补充以保持压力来测定时,假定掺入含氟聚合物中的共聚单体是均匀的。从而产生的聚合物的量(A)可通过加入反应器中的所消耗含氟单体例如TFE除以数量1,减去含氟聚合物中共聚单体的重量分数来计算。B是加入反应器中直至开始加入表面活性剂时所有水添加物的重量之和。因此,B包括加入反应器中的初始水量和所有附加水加入量的重量,其形式如成核表面活性剂溶液、盐(如果存在的话)溶液、降解剂溶液、用于引发聚合反应的引发剂溶液、以及泵送到含水介质中直至开始加入增稳表面活性剂时的附加引发剂溶液。

已发现,过早将含烃增稳表面活性剂加入含水聚合反应介质中,极度抑制了含氟单体聚合成含氟聚合物。因此,优选在开始加入表面活性剂之前,含水聚合反应介质中的含氟聚合物浓度为至少0.6重量%,更优选至少0.7,或至少0.8,或至少1重量%。甚至更优选地,含氟聚合物浓度为至少1.2重量%,并且最优选至少1.6重量%。就可熔融加工的全氟塑料如FEP和PFA而言,所述浓度为优选至少2重量%,并且就PTFE而言,所述浓度为优选至少1重量%,更优选至少1.6重量%。开始计量增稳表面活性剂的最大延迟度将取决于所聚合的一种或多种含氟单体以及就所获得的分散体的固体含量而言认为可接受的凝结物重量%。

相对于用于形成亲油性成核位点的原料成核表面活性剂(前体),可使用的优选含烃增稳表面活性剂为上述阴离子表面活性剂。最优选的表面活性剂为上述R-L-M表面活性剂,尤其是十二烷基硫酸钠。已发现,优选使用非离子烃表面活性剂作为亲油性成核位点的成核表面活性剂前体并且优选使用阴离子烃表面活性剂作为聚合反应步骤中的增稳表面活性剂,并且将它们延迟加入,从而导致可接受的反应速率、含氟聚合物颗粒的小粒度、以及聚合反应步骤期间较少的凝结物形成。

聚合反应引发后含烃增稳表面活性剂(优选烃表面活性剂)的加入以如上所述的延迟开始时,以在降低增稳表面活性剂调聚活性的同时,保持表面活性以形成含水聚合反应介质中稳定的含氟聚合物颗粒分散体的速率计量加入。计量速率的例子为0.005至1.4g/l-hr,更优选0.005至1.0g/l-hr,并且甚至更优选0.01至0.8g/l-hr。在表达g/L-hr中,g为表面活性剂自身的重量,以克为单位,l为反应器体积,以升为单位,并且hr为时间的单位。计量速率适用于表面活性剂,不适用于加入聚合反应器内的含水介质时其内存在表面活性剂的水溶液。聚合反应期间含烃增稳表面活性剂的添加时间增量优选为至少每20分钟,优选至少每10分钟,更优选至少每5分钟,和/或最优选连续的。所加入的此类表面活性剂的量及其加入时间将取决于所聚合的一种或多种含氟单体。过少的表面活性剂致使凝结物增加,并且过多的表面活性剂减缓聚合反应,就开始加入表面活性剂而言,这些计量速率中的每一个可与每一个上述重量%浓度一起使用。

当含烃表面活性剂(尤其是烃表面活性剂)为优选用于本发明中的增稳表面活性剂时,其中不使用或存在含卤素表面活性剂,预计稳定聚合反应步骤期间形成的含氟聚合物颗粒所需的表面活性剂可包括含卤素表面活性剂如含氟表面活性剂。含卤素表面活性剂(包括含氟表面活性剂)是其中表面活性剂中碳原子上取代的卤素(包括氟)加氢原子的总数的至少约50%为卤素原子的表面活性剂。更优选地,含卤素表面活性剂中卤素和氢原子总数的至少约75%,最优选至少约90%为卤素原子。全氟化表面活性剂(碳原子上无取代的氢原子)可用于本发明的稳定(聚合反应)步骤中。

在一个实施例中,含氟表面活性剂为短链含氟酸或盐,其可单独使用或与其它表面活性剂组合使用。当与其它表面活性剂一起使用时,所述组合可提供所需的表面活性以稳定聚合反应步骤中形成的高浓度的分散含氟聚合物颗粒。有助于稳定的其它材料的例子为长链含氟表面活性剂或含烃表面活性剂,优选烃表面活性剂。含烃表面活性剂的使用最大程度降低了稳定含氟聚合物颗粒分散体所需的含氟表面活性剂的量。

短链增稳含氟表面活性剂可由下式表征:

[R1-On-L-A-]Y+ (I)

其中:

R1为可包含醚键的直链或支化的部分或完全氟化的脂族基团;

n为0或1;

L为可非氟化的、部分氟化的或完全氟化的并且可包含醚键的直链或支化亚烷基;

A-为阴离子基团,其选自羧酸根、磺酸根、磺酰胺阴离子和膦酸根;并且

Y+为氢、铵或碱金属阳离子;

前提条件是,R1-On-L-的链长不大于6个原子。

如本专利申请中所用,“链长”是指本发明方法中所用的含氟表面活性剂疏水末端中最长直链的原子数。除了表面活性剂疏水末端链中的碳以外,链长还包括诸如氧原子的原子,但是不包括最长直链的分支,或者不包括阴离子基团中的原子,例如不包括羧酸根中的碳。如本专利申请中所用,“短链”是指长度不大于6的链。“长链”是指长度大于6的链,例如链长为7至14个原子的含氟表面活性剂。

R1-On-L-的链长优选为3至6个原子。根据本发明的一个优选的形式,R1-On-L-的链长为4至6个原子。根据本发明的另一个优选的形式,R1-On-L-的链长为3至5个原子。最优选地,R1-On-L-的链长为4至5个原子。

一类增稳含氟表面活性剂是氟醚酸或盐,即其中在上文式I中n为1。根据本发明,此类氟醚酸或盐是符合式I的含氟表面活性剂,其中:R1为具有1至3个碳原子的部分或完全氟化的直链或支化烷基,其可包含醚键;并且L为亚烷基,选自-CX(R2)-(其中R2为氟或全氟甲基,并且X为氢或氟)和-CZ1Z2CZ3Z4-(其中Z1、Z2、Z3和Z4独立地选自氢或氟)。

在另一个实施例中,式I中的L为亚烷基,所述亚烷基选自-CF(CF3)-、-CF2-、-CF2CF2-、-CHFCF2-和-CF2CHF-。

如果R1或L包含醚键,则增稳含氟表面活性剂可为二醚。此类化合物可根据例如WO 01/46116 A1(Hintzer等人)中的教导内容制得。优选的氟醚酸或盐是其中R1和L不包含醚键的氟单醚。

在又一个实施例中,式I中的R1为具有2至3个碳原子的部分或完全氟化的直链烷基。R1可为完全氟化的。

在本发明的另一个实施例中,含氟表面活性剂为下式的化合物:

[CF3CF2CF2OCF(CF3)COO-]Y+ (II)

其中Y+为氢、铵或碱金属阳离子。这是由式I表示的化合物,其中R1为CF3CF2CF2-;L为-CF(CF3)-;A-为羧酸根;并且Y+为氢、铵或碱金属阳离子。优选地,Y+为氢或铵。

在本发明的另一个实施例中,含氟表面活性剂为下式的化合物:

[CF3CF2OCF(CF3)COO-]Y+ (III)

其中Y+为氢、铵或碱金属阳离子。

在本发明的另一个实施例中,含氟表面活性剂为下式的化合物:

[CF3CF2CF2OCF2CF2COO-]Y+ (IV)

其中Y+为氢、铵或碱金属阳离子。

在本发明的另一个优选的实施例中,含氟表面活性剂为式I的化合物,其中n为0和R1;L总地包括具有4-6个碳的全氟烷基;并且A-为磺酸根和磺酰胺阴离子。在该形式的本发明的一个优选的实施例中,A-为磺酰胺阴离子,式IV的磺酰胺化合物的结构如下:

[CF3CF2SO2N-CH2CH2OH]Y++ (V)

其中Y+为氢、铵或碱金属阳离子。

该式的作为铵盐的表面活性剂可以商品名NOVECTM4200从3M商购获得。

根据本发明的另一个实施例,含氟表面活性剂为下式的化合物:

[CF3CF2CF2CF2CH2CH2SO2-]Y+ (VI)

其中Y+为氢、铵或碱金属阳离子。

这些短链含氟表面活性剂的其它详情公开于美国专利7,705,074(Brothers等人)中。可与短链含氟表面活性剂组合使用的长链氟聚醚酸或盐的例子也公开于该专利中。优选地,所述氟聚醚为全氟聚醚酸或其盐。氟聚醚酸或其盐中的酸性基团优选为选自羧酸、磺酸、磺酰胺、膦酸的酸性基团。在优选的实施例中,氟聚醚酸或盐中的酸性基团为羧酸。在聚合反应期间,所述氟聚醚酸优选作为盐使用,最优选作为铵盐使用。

优选的全氟聚醚(PFPE)酸及其盐可具有任何链结构,其中分子主链中的氧原子被具有1-3个碳原子的饱和氟碳基隔开。在所述分子中可存在多于一种类型的氟碳基。代表性结构具有由下式表示的重复单元:

(-CFCF3-CF2-O-)n (VII)

(-CF2-CF2-CF2-O-)n (VIII)

(-CF2-CF2-O-)n-(-CF2-O-)m (IX)

(-CF2-CFCF3-O-)n-(-CF2-O-)m (X)

这些结构论述于Kasai的J.Appl.Polymer Sci.57,797(1995)中。如其中所公开,此类PFPE可在一端或两端处具有羧酸基团或其盐。类似地,此类PFPE可在一端或两端处具有磺酸或膦酸基团或其盐。此外,在两端处具有酸性官能团的PFPE可在每个末端具有不同的基团。对于一官能PFPE,所述分子的另一末端通常被全氟化,但是可包含氢或氯原子。可用于本发明的在一端或两端处具有酸性基团的PFPE具有至少2个醚氧,优选至少4个醚氧,并且甚至更优选至少6个醚氧。优选地,至少一个间隔醚氧的氟碳基,并且更优选至少两个此类氟碳基具有2或3个碳原子。甚至更优选地,间隔醚氧的氟碳基中的至少50%具有2或3个碳原子。PFPE还优选具有总计至少15个碳原子,例如上文重复单元结构中n或n+m的优选最小值为至少5。多于一种在一端或两端处具有酸性基团的PFPE可用于如本发明所述的方法中。通常,除非投入特别的关注来制备单个特殊的PFPE化合物,否则PFPE可在平均分子量附近的分子量范围内以不同比例包含多种化合物。

聚氟醚酸或其盐具有的平均分子量能够使其与氟代单醚酸或盐组合用作如本发明方法中所述的聚合剂。根据本发明的该实施例,所用聚氟醚酸或盐的数均分子量大于约800g/mol。具有大于约800g/mol的数均分子量的氟聚醚酸或盐在本专利申请中被定义为“聚合的氟聚醚”。所用氟聚醚酸或盐的数均分子量通常小于约6000g/mol,因为具有非常高分子量的氟聚醚酸或盐一般难以分散于含水聚合反应介质中。根据本发明所用的氟聚醚酸或其盐具有更优选约800至约3500g/mol,并且最优选1000至约2500g/mol的数均分子量。

上述为亲油性成核位点前体的含烃表面活性剂(优选烃表面活性剂)可与作为增稳表面活性剂的短链或长链含氟表面活性剂组合使用。

当使用短链含氟表面活性剂本身或与作为增稳表面活性剂的长链氟聚醚酸或盐组合使用时,在将该组合加入含水介质中时无需延时,即可将该组合加入含水介质中以在引发时存在。当含烃表面活性剂与短链或长链含氟表面活性剂组合用作增稳表面活性剂时,优选至少如上所述将含烃增稳表面活性剂延时加入,直至引发后。

引发时存在的含氟单体的量和本体将取决于所制备的含氟聚合物。在改性的PTFE的情况下,改性单体一般在预载到反应器中时全部加入。对于用于与TFE聚合以形成可熔融加工的含氟聚合物的共聚单体而言也是如此,虽然共聚单体可随着聚合反应的进行加入。聚合反应开始后,加入附加的TFE(和共聚单体,如果有的话)以保持所期望的反应器压力。当期望分子量调节时,可加入链转移剂。通常使用不溶于含水介质中的石蜡作为聚合制备PTFE期间含水介质中凝结物的清除剂,并且通常加入预载物中而进入反应器。还可将琥珀酸加入含水介质中以减少凝结物的形成。

聚合反应介质优选在聚合反应引发时基本上不含含氟聚合物晶种。聚合反应位点由上述亲油性成核位点形成,而不是由至少一种聚合的含氟单体的聚合晶种形成。在本发明的该优选形式中,不向含水介质中加入含氟聚合物晶种,即分散体形式的独立聚合的含氟聚合物小颗粒。

就一些聚合反应而言,可在聚合反应期间加入附加的引发剂和/或增稳表面活性剂。

聚合反应完成后(通常若干小时),当已获得所需量的聚合物或固含量时,停止搅拌并且停止进料,从而停止聚合反应。排空反应器,并且将反应器内含氟聚合物颗粒的原生分散体转移到冷却或保温容器中。亲油性成核位点分散体的形成、随后聚合反应的引发及其实施至反应完成,将通常为间歇过程。

由本发明方法制得的含氟聚合物分散体的固含量优选为至少约10重量%,优选至少16重量%。优选地,所述含氟聚合物固含量为至少约20重量%。固含量是以反应器内分散的含氟聚合物颗粒的总重量加上水的总重量计分散于含水介质中的含氟聚合物颗粒的重量%。其含水分散体中含氟聚合物颗粒的优选粒度(Dv(50))为优选100至300nm。对固含量的主要限制是凝结物的形成;固含量越高,形成更大量凝结物的趋势越大。

优选地,凝结物占所制得含氟聚合物总量的不大于5重量%。在本发明的优选方法中,聚合反应制得不大于3重量%,甚至更优选不大于2重量%或1重量%,最优选不大于0.5重量%的凝结物。最优选地,凝结物小于这些量中的每一个。优选地控制最低固含量,以将凝结物最小化至上述量。凝结物重量%=[凝结物重量/制得的总聚合物重量]×100。制得的总聚合物为凝结物与分散含氟聚合物颗粒的混合重量。所有重量为干燥聚合物的量度。

可将原生态聚合的分散体转移到分散体浓缩操作过程中,所述操作通过已知方法制得通常用非离子烃表面活性剂稳定的浓缩分散体。由于聚合反应已经完成,因此可使用含烃表面活性剂用于此目的。浓缩分散体的固含量通常为约35重量%至约70重量%。作为另外一种选择,为用作模塑树脂,通常通过凝结将含氟聚合物树脂从分散体中分离出来,并且移除含水介质。然后干燥含氟聚合物,接着加工成便利形式诸如薄片、碎片或小丸,以用于后续熔融加工操作中。可制备某种等级的PTFE分散体以用于产生精细粉末。为此用途,将分散体凝结,除去含水介质,并且使PTFE干燥以产生精细粉末。

含烃增稳表面活性剂的钝化

加入聚合反应器中以稳定反应器内含氟聚合物颗粒在含水介质中分散体的含烃表面活性剂的钝化降低了表面活性剂的调聚性。优选在钝化辅助剂的存在下,通过将表面活性剂氧化来实施钝化。氧化反应涉及在含水介质中使表面活性剂与氧化剂接触,所述含水介质可与其内实施聚合反应的聚合反应器内的含水介质相同或不同。还优选的是,钝化的增稳表面活性剂为阴离子。

在一个实施例中,在加入含水介质中之前,将加入聚合反应器内的含水聚合反应介质中的增稳表面活性剂钝化。优选地,钝化的增稳表面活性剂为该表面活性剂与氧化剂如过氧化氢的反应产物。优选在含水介质中,在不大于50℃的温度下实施形成该反应产物的反应。该反应温度与最通常在其中实施聚合反应的含水介质的温度即至少60℃的温度形成对比。

由钝化造成的增稳表面活性剂调聚性的降低提供了改善,包括下列中的一种或多种:1)减少了在含水介质中获得所需含氟聚合物固含量的聚合反应时间,而无任何可观的凝结物增加,和/或2)减少了聚合反应引发之后,可将增稳表面活性剂加入含水介质中之前的延迟时间,这些将在下文中进一步论述。因此,钝化提高了表面活性剂的功效。虽然调聚性因钝化而降低,但是钝化的表面活性剂仍执行其稳定含水介质中含氟聚合物颗粒分散体的表面活性剂功能。

可通过使增稳表面活性剂与过氧化氢水溶液反应来实施钝化。还优选使用用于氧化反应的水溶性钝化辅助剂,以加速(催化)氧化反应。该辅助剂优选为金属离子,其优选以可溶于聚合反应器内的含水介质中的形式提供。通过使金属离子为盐形式,即金属离子为盐的阳离子,可达到该溶解度。优选地,所述盐是无机的,并且盐的阴离子可为提供该溶解度的任何阴离子,盐中包含或不包含水合水。然而,所述阴离子不应对聚合反应或含氟聚合物产物具有不利影响。金属盐的优选阴离子的例子包括硫酸根、亚硫酸根和氯离子。

优选地,金属离子的金属具有多个正价,有时称为多个氧化态。用于与过氧化氢氧化反应的金属离子催化剂的例子包括Fe、Mn和Cu。

即使加速,氧化反应仍较慢,花费例如至少30分钟来完成。实施氧化反应的方法如下:形成增稳表面活性剂的水溶液。以硫酸铁水合物钝化辅助剂形式加入Fe+2金属离子,并且使其溶于该溶液中。可通过加入适宜的试剂来调节所述溶液的pH,以促进氧化反应。搅拌溶液,并且将过氧化氢缓慢加入溶液中。过氧化物与Fe+2的重量比一般可为20:1至400:1,优选30:1至300:1,并且更优选60:1至200:1。过氧化物与增稳表面活性剂如SDS的重量比可为0.15:1至3.5:1,优选0.3:1至2.6:1,并且更优选0.5:1至1.6:1。在过氧化氢加入结束后,可使用所得水溶液,以上述方式在聚合反应期间将钝化的表面活性剂加入含水聚合反应介质中。因此,水溶液中的水优选是脱气的且去离子型的,如含水聚合反应介质那样,使得与钝化表面活性剂一起加入反应器中的水不会不利于聚合反应或所得含氟聚合物。反应物与钝化辅助剂(如果存在的话)的这些比例适于钝化任何和所有的上述用于稳定含氟聚合物颗粒分散体的含烃表面活性剂,包括烃表面活性剂。

当与含水聚合反应介质分别制备时,在其中实施钝化反应的水溶液中,钝化表面活性剂在其组成上是均匀的。这是指,聚合反应结束时加入反应器含水介质中的钝化表面活性剂组成与其开始加入反应器中时的组成相同。

使用过氧化氢钝化增稳表面活性剂不生成任何将伴随钝化表面活性剂溶液加入反应器中的盐。当在聚合反应期间以足量存在时,盐可能是有害的,如致使凝结物增加。

其中使用过氧化氢作为氧化剂实施钝化反应的水溶液的温度是重要的。有效致使过氧化物与增稳表面活性剂进行氧化反应的优选温度范围为1至50℃,优选5至45℃,并且最优选10至45℃。随着温度自45℃上升,反应性急剧降低,并且在高于50℃的温度下几乎不存在。因此,在60℃及更高的常见聚合反应温度下,不能获得所期望的钝化效果。因此,使用过氧化氢的钝化反应优选与含水聚合反应介质分别实施。

通过在不同的水溶液温度下实施增稳表面活性剂与过氧化氢之间的氧化反应,并且之后使用钝化表面活性剂作为增稳表面活性剂,加入含氟单体聚合反应的含水聚合反应介质中,并且比较获得含水聚合反应介质中指定含氟聚合物固含量所需的聚合反应(批加工)时间,来确定钝化效果。优选地,钝化是有效的,使得与其中增稳表面活性剂未被钝化的相同聚合反应相比,批处理时间减少至少10%,优选至少20%,更优选至少35%,并且最优选至少50%。聚合反应过程产量提高的另一个量度是聚合反应的空间-时间-收率(STY)的提高。在STY中,空间是反应器体积,时间是自聚合反应引发至其完成的时间,而收率是形成的分散聚合物的重量。STY在本文表示为g(分散聚合物)/L-hr。在实例10的表1的实验1和2中,批加工时间减少约66%,并且STY提高约300%。

在另一个实施例中,使用不是过氧化氢的氧化剂,增稳表面活性剂在加入聚合反应器内的含水介质之前、期间或之后钝化,这些中的每一个均是钝化反应的优选时间点。实际上,该钝化时间点为反应器外钝化和反应器内钝化。最优选在表面活性剂进入反应器后发生钝化,使得含水介质中的钝化发生于反应器内。在该实施例中,钝化的增稳表面活性剂为该表面活性剂与作为氧化剂的水溶性聚合引发剂的反应产物,优选使用所述引发剂引发聚合反应以形成含氟聚合物颗粒在含水介质中的分散体。

优选地,该钝化反应在钝化辅助剂的存在下实施,所述钝化辅助剂优选为向该反应提供的金属离子,其形式在上文关于用于催化过氧化氢与增稳表面活性剂之间反应的金属离子中进行了描述。

实验已示出,金属离子的存在,还可将实例10的批加工时间减少66%(参见表1中的实验1和2)。

优选的金属离子包括元素周期表第2-12族的那些。此周期表是由McGraw-Hill Higher Education(2009)公布的M.S.Silverberg的“Chemistry,The Molecular Nature of Matter and Change”第5版封面背面上所公开的。根据2010IUPAC格式(有时称为“新命名法”),该表的族编号为1至18。本文参考该族编号。该族编号适用于周期表中的竖列元素。

最优选的金属离子为过渡金属,尤其是第3-12族中的那些,并且在这些中,最优选的是第6-12族中的那些,甚至更优选第7-12族中的那些,并且最优选第7-11族中的那些。元素周期表还具有元素的水平分组,称为周期,编号为1-7,从第1族元素H开始,并且以第7周期的第1族元素Fr结束。在过渡金属中,最优选第4水平周期中的那些。术语“过渡金属”中包括“内过渡金属”,即镧系元素和锕系元素。

优选的过渡金属包括Mn、Fe、Co、Ni、Cu、Zn、Ce和Ag,最优选Fe和Cu。优选用于本发明中的大部分过渡金属的一个特征在于,它们具有多个正价,有时称为多个氧化态。例如,Fe具有+2价和+3价,而Cu具有+1价和+2价。最优选的金属离子为亚铁离子和亚铜离子。一般来讲,用于催化聚合引发剂/增稳表面活性剂氧化反应的金属离子也可用于催化增稳表面活性剂的氧化。

将提供金属离子的盐以水溶液形式与增稳表面活性剂水溶液一起或与之相独立地加入聚合反应器内的含水介质,在表面活性剂计量加入含水介质中的同时计量加入含水介质中,独立计量加入含水介质中,或一次性全加入含水介质中。如果如下文所述的亲油性成核位点的形成先于聚合反应,则优选延迟钝化辅助剂以金属离子形式加入含水介质中,直至这些位点至少开始形成之后,以避免形成过多的凝结物。因此,优选延迟将作为钝化辅助剂的金属离子加入含水介质中,直至聚合反应开始(引发)后。

使用聚合引发剂连同钝化辅助剂的氧化反应的速率能够使该钝化反应在将增稳表面活性剂加入聚合反应器内的含水介质之前、期间或之后实施。可在增稳表面活性剂水溶液的保温容器中,通过将钝化辅助剂和聚合引发剂加入该容器中,实施所述“居先”钝化氧化反应。可通过将增稳表面活性剂、钝化辅助剂和聚合引发剂的水溶液一起加入反应器中,使得这些溶液在加入反应器期间混合,实施所述“期间”钝化氧化反应。据信该混合期间的氧化反应即使未完成,也至少已开始,取决于包含所有三种成分的反应器进料管的长度。“后”钝化反应即在聚合反应器含水介质内的钝化,描述于上文段落中。

在两个钝化实施例中,含烃表面活性剂(包括烃表面活性剂)通过表面活性剂与氧化剂反应而钝化。在两个钝化反应中,含水介质中氧化反应优选在钝化辅助剂的存在下实施,所述钝化辅助剂优选为金属离子,其催化氧化反应。所述金属离子优选具有多个正价,并且优选的金属离子将取决于如上所述所采用的氧化剂。在这点上,优选的氧化剂为过氧化氢或水溶性聚合引发剂,优选选自标题为“聚合反应引发”的部分中公开的那些。

用于本发明方法中的钝化辅助剂优选非常少。例如,可为金属离子的钝化辅助剂的浓度以聚合反应结束时含水介质中含烃表面活性剂的重量计优选不大于2重量%。当将表面活性剂和金属离子一起加入水溶液中时,相同的溶液中钝化辅助剂浓度将是适用的。聚合反应完成时含水介质中可为金属离子的钝化辅助剂的量以聚合反应结束时存在于反应器中的水量计优选不大于25ppm。当使用其它钝化辅助剂时,这些金属离子的量也是适用的,即适用于它们向含烃表面活性剂提供调聚作用的降低有益效果的部分。钝化反应的时间点将取决于所用的氧化剂,并且优选在将增稳表面活性剂加入反应器中(即反应器内的含水介质)之前,或加入反应器期间,或加入反应器之后。

本发明的优选实施例还可描述为使含氟单体聚合以形成聚合反应器中含氟聚合物颗粒在含水介质中的分散体的方法,所述方法包括(i)在反应器中提供含水介质,(ii)将水溶性含烃化合物加入含水介质中,所述化合物包含亲水部分和疏水部分,(iii)将水溶性自由基引发剂加入含水介质中,(iv)用含氟单体将反应器加压至实施聚合反应所需的压力,(v)通过将有效致使引发量的水溶性自由基聚合引发剂加入含水介质中来引发聚合反应,步骤(iii)中加入含水介质中的自由基引发剂的量不足以致使引发,(vi)持续进行含氟单体的聚合,以及(vii)将表面活性剂加入含水介质中以稳定所得的含氟聚合物颗粒分散体,实施步骤(ii)和(iii),致使颗粒尺寸小于在省略步骤(ii)和(iii)时获得的尺寸。

在该优选的实施例中:

步骤(ii)中的含烃化合物可为任何含烃化合物,包括含烃表面活性剂和烃表面活性剂,以及涉及上述这些化合物和表面活性剂的优选要求。

步骤(ii)中的自由基引发剂可为降解步骤(ii)中所述化合物的任何引发剂,从而疏水部分变成用于步骤(v)和(vi)中聚合反应的亲油性成核位点。通常,引发剂将为聚合引发剂,即使其降解作用不是聚合作用。可使用形成亲油性成核位点的上述任何引发剂。

优选在步骤(iii)之前,将上述水溶性无机盐加入含水介质中。任何上述此类盐可用于获得上述有益效果。

步骤(ii)中化合物/表面活性剂的量、步骤(iii)中自由基引发剂的量和前面段落中所述的盐的量可为上述任何量以及组合。

步骤(vii)中加入的增稳表面活性剂可为上述那些中的任一种。优选地,此类表面活性剂是含烃表面活性剂,还更优选烃表面活性剂,并且将实施步骤(vii)延迟,直至步骤(v)中引发之后,并且通过将表面活性剂计量加入含水介质中来添加。延迟和计量方面可为上述那些中的任一个。

如上所述,增稳表面活性剂优选是钝化的。

步骤(ii)中的化合物/表面活性剂可为非离子型的、阴离子型的或阳离子型的,但是优选为非离子表面活性剂。步骤(vii)中的优选增稳表面活性剂为阴离子型的。优选的组合是步骤(ii)中的非离子表面活性剂和步骤(vii)中的阴离子表面活性剂,两种表面活性剂均优选为烃表面活性剂。

由聚合反应形成的分散体中的含氟聚合物颗粒可为上述那些中的任一种,包括优选的含氟塑料和全氟塑料。

可实施聚合反应以获得上述固含量和凝结物含量范围内的任何结果。

实例

实例中使用下列烃表面活性剂。当用于形成亲油性成核位点时,这些表面活性剂在实例中被称为成核剂。

31R1为双端非离子表面活性剂,在上文中被标识为R表面活性剂。它具有3250的平均分子量。表面活性剂(化合物)的两端均疏水的,并且中心是亲水的。

S-70是上文标识的包含环氧乙烷基团的阴离子。

L7600为购自GE Silicones的非离子侧挂型聚环氧乙烷改性的聚二甲基硅氧烷。

100是上文标识为TMN表面活性剂系列成员的TMN 6/TMN 10的70/30重量%共混物。TMN系列表面活性剂是支化的非离子表面活性剂。

CTMAB为阳离子表面活性剂十六烷基三甲基溴化铵(CH3(CH2)15N(CH3)3Br)。

SDS为不具有环氧乙烷基团的直链阴离子烃表面活性剂十二烷基硫酸钠。

SOS为辛基磺酸钠。

X-100为非离子表面活性剂,它是如上标识的辛基苯酚聚乙氧基醇。

实例中所用的蜡为石蜡。

使用由Malvern Instruments制造的Zetasizer Nano-ZS,采用激光射测定含氟聚合物颗粒原生分散体的粒度。供分析的样品制备于10×10×45mm聚苯乙烯比色皿中,封盖并且放置于分析装置中。样品的制备如下。如下使用于冲洗比色皿和用于稀释分散体样品的水基本上不含颗粒:将去离子脱气水抽到具有固定尖端的10cc玻璃皮下注射器中。将Whatman 0.02微米过滤器(目录号6809-2002)安装在注射器的固定尖端上,并且施加压力迫使水通过过滤器并且进入比色皿中。将约1.5mL的水放置于比色皿中,将所述比色皿封盖,摇晃并且去盖。将水从比色皿中倒出,从而确保比色皿不含颗粒。将约2.5g滤过的水放置于比色皿中。将一滴待分析的含氟聚合物分散体加入比色皿中。将比色皿封盖并且摇晃,以使含氟聚合物颗粒完全混合于水中。将样品放置于Nano-ZS中以测定Dv(50)。Dv(50)是基于体积粒度分布的中值粒度,即存在50%体积的粒群比其小的粒度。

采用ASTM D 1228方法以及熔融温度和塑度计活塞重量条件来确定熔体流动速率(MFR),所述熔融温度和塑度计活塞重量条件为具体聚合物的ASTM方法中示出的聚合物标准。

根据ASTM D 4591方法,由示差扫描热量计(DSC)测定熔融温度。根据ASTM D-4591-87,PTFE DSC熔融温度得自第一次将聚合物加热高于熔融温度,还称为第一焓变。报告的熔融温度是第一次熔融时的吸热峰值温度。

本文ppm的定义(计算)是成分重量除以测定以ppm为单位的浓度时存在于反应器中的水的重量。向聚合反应器加入的预载组合物中水溶性含烃化合物/成核表面活性剂(化合物/成核表面活性剂)、盐(如果有的话)和降解剂/引发剂的ppm以初始加入反应器中的水以及所加入的任何附加水的重量计,所述附加水包含各种化合物/成核表面活性剂、盐(如果有的话)和降解剂/引发剂成分。因此,亲油性成核位点形成时存在于反应器中的水重量是确定化合物/成核表面活性剂、盐(如果有的话)和降解剂/引发剂ppm的水的重量。该量不包括作为聚合引发剂的溶剂加入含水介质中以提供聚合反应引发或作为溶剂将增稳表面活性剂加入含水介质中而加入的水。该加入的水的量将包括在聚合反应开始时存在于含水介质中的任何表面活性剂的ppm计算中。为简化起见,当加入反应器中的水包含溶解的成分如化合物/成核表面活性剂、盐、降解剂/引发剂时,就ppm计算目的而言,所得溶液被认为完全为水。

本文作为“不大于”等公开的数值量具有与相同数值量指定为具体量或更小量相同的含义。因此,不大于50ppm具有与50ppm或更低相同的含义。类似地,本文“至少”等公开的数量具有与相同数量指定为具体量或更大量相同的含义。因此,至少20重量%具有与20重量%或更大相同的含义。

本文所用术语成核剂是指通过在含水介质中氧化表面活性剂,由其获得亲油性成核位点的表面活性剂。

除非另外指明为表压(psig),本文公开的反应器压力是绝对压力。公开为相应psig表压的MPa和KPa压力为绝对压力。

实例1

该实例包含存在以及不存在亲油性成核位点分散体的形成、存在以及不存在盐、以及使用各种水溶性含烃化合物(成核剂)和盐的情况下的聚合反应实验。

聚合反应引发前无成核位点形成步骤的聚合反应一般过程:向具备两桨叶搅拌器的12升水平放置的带夹套不锈钢高压釜中加入5700g去离子脱气水和250g液体蜡。将高压釜密封并且放置于真空下。用氮气将高压釜压力升至30psig(310kPa),然后达到真空,如此3次。将高压釜搅拌器设至65RPM。将高压釜加热至90℃,并且将TFE加入高压釜中,以使高压釜压力达到400psig(2.86MPa)。时间零点时,以80mL/min的速率注入150mL引发剂的去离子脱气水溶液,所述溶液包含0.05g过硫酸铵(APS)和3.5g过氧化二琥珀酸(DSP)。开始时间(表A中的“KO时间”)测定为给料引发剂溶液注入期间观察到的自最大压力下降10psi(69kPa)所需的时间(自时间零点起)。引发时,用TFE使高压釜压力回至400psig(2.86MPa),并且在聚合反应持续时间内保持在该压力下。自引发以来的加入100g TFE后,以4mL/min(0.28g/l-hr)的速率将稳定剂表面活性剂溶液泵送至高压釜。开始将表面活性剂加入含水介质时的该延迟对应于该加入开始前含水介质中1.68重量%的PTFE浓度(计算:100g TFE÷[100+5700+150]×100)。稳定剂溶液的制备示于下文中。自引发以来将750g TFE加入高压釜中后,记录批处理时间(表A),停止搅拌器,将高压釜排空至大气压,并且排出分散体。冷却后,将蜡从分散体中分离出来。PTFE分散体具有2.8的pH、11.75的固体%和198纳米的Dv(50)(表A中实验A-1)。PTFE具有由332℃的DSC熔融温度(第1次加热)和76J/g(第1次加热)相对于47.5J/g(第2次加热)的DSC熔解热示出的至少1,000,000的高分子量(Mn),反映PTFE的极高熔融粘度降低第一次加热冷却期间出现的重结晶的量。在ASTM D 1238测试中,PTFE还表现出无流动,即MFR为0。

用于上述过程中的表面活性剂增稳溶液中的表面活性剂通过下列方法钝化:在1升带夹套圆底烧瓶中加入681.74g去离子脱气水、10.5g十二烷基硫酸钠(ACS Reagent,>99.0%)和0.315g七水合硫酸铁(II)。搅拌内容物直至所有固体均溶解。用12至14滴浓硫酸将溶液pH调节至2.0-2.5。将37.34g 30重量%过氧化氢水溶液缓慢加入搅拌的混合物中。在室温(22-23℃)下持续搅拌1小时,然后将所得的氧化表面活性剂的水溶液用于上述聚合反应过程中。

上述聚合反应过程在聚合反应开始之前无成核步骤,并且聚合反应结果报告为表A中的A-1。

如下实施成核步骤:重复上述聚合反应过程,不同的是5200g去离子脱气水和250g液体蜡为加入高压釜中的初始给料。然后将500g去离子脱气水加入高压釜中,所述水包含0.085g表面活性剂(成核剂,表A)和0.4g亚硫酸钠水溶性无机盐。将高压釜加热至聚合反应温度之后但是在加入TFE以使高压釜达到操作压力之前,加入50mL包含0.5g APS每升去离子脱气水的水溶液。在所得含水介质中,表面活性剂浓度为14.8ppm(计算:(0.085÷5750)×100),盐浓度为70ppm,并且引发剂浓度为4.3ppm,提供4ppm的引发剂浓度。在条件/存在于含水介质中的添加剂(预载组合物)下,APS致使烃表面活性剂发生氧化反应,致使形成分散于含水介质中的亲油性成核位点。这些位点的存在由报告于表A中的使用非离子、阴离子和阳离子表面活性剂的实验A-3至A-9的PTFE颗粒较小粒度(Dv(50))示出。实验A-9的聚合反应引发时间长归因于存在于该表面活性剂中的芳族部分,所用的其它表面活性剂是非芳族的,即不含芳族部分。预期通过减少所用该表面活性剂的量,可减少该引发时间。表A中报告为实验A-3至A-9的该重复实验的延迟为开始加入增稳表面活性剂前1.67重量%的含氟聚合物浓度(计算:100gTFE÷[100+5200+500+50+150]×100)。报告于表A中的所有实验的实际延时在引发后开始加入增稳表面活性剂之前4.4至6分钟的范围内。

实验A-2为上述聚合反应过程的结果,其中不存在成核表面活性剂,不同的是以表A中所示量加入亚硫酸钠盐。存在盐且不存在成核表面活性剂导致非常大的PTFE粒度,从而示出盐致使聚合反应初始阶段期间形成较少的聚合物颗粒。

表A

*括弧中的Dv(50)值采用下示公式由所测Dv(50)值(无括弧)外推。

实施上述聚合反应作为聚合反应筛选系列,即实施达到以聚合反应介质总重量计约11-13重量%的分散体PTFE固体(颗粒)含量,这是引发后仅将750g TFE加入高压釜中进行聚合反应的结果。

得自上述聚合反应的筛选结果可外推至聚合反应扩大至消耗3200gTFE以获得约34重量%分散体固含量情况下的聚合反应结果。该外推结果在表A中报告为括弧中的Dv(50)。通过采用下列公式可进行该外推:

D2=[P2×(D1)3/P1]1/3

其中P1为制得的具有Dv(50)粒度D1(以纳米为单位)的聚合物实际量(以克为单位);P2等同于制得的预计聚合物,以克为单位,并且D2为P2聚合物的预计粒度(以纳米为单位)。实验A3的样品计算:

D2=(3200×1133/849)1/3=(5438481.04)1/3=176

实验A-1为对比实验,其中既不使用成核表面活性剂也不使用盐,即不采用上述成核工序。实验A-2也为对比实验,其中使用盐,但不使用成核表面活性剂。实验A-1与实验A-3至A-10的Dv(50)结果比较示出实验A-3至A-10中存在的亲油性成核位点对提供较小含氟聚合物粒度的功效。实验A-2示出,仅使用盐获得较差的大得多的Dv(50)粒度结果,其远大于实验A-1。

在一系列实验中重复上述聚合反应过程,其中成核步骤包括在采用不同盐的聚合反应过程中(实验B-1至B-3),不同的是,在实验B-4的成核位点形成步骤中不存在盐。成核表面活性剂为14.8ppm31R1。盐的量为70ppm,并且APS引发剂的量为4ppm。开始增稳表面活性剂加入时的延迟为含水介质中1.67重量%的PTFE浓度。结果报告于表B中。

表B

如表B中所示,不同的盐均提供较小的PTFE粒度。实验A-4示出使用成核表面活性剂但不使用盐时的Dv(50)结果。

所有这些聚合反应中制得的PTFE表现出该实例中先前所述的特性。

实例2

该实例包含在亲油性成核位点分散体形成中使用各种盐的实验。

向具备两桨叶搅拌器的12升水平放置的带夹套不锈钢高压釜中加入5300g去离子脱气水和250g液体蜡。向高压釜中加入额外的500g去离子脱气水,其包含0.075g31R1和不同量的盐,所述量示于表C中。将高压釜密封并且放置于真空下。用氮气将高压釜压力增至30psig(310kPa),然后排空至大气压。用氮气将高压釜加压,然后排空,再如此2次。将反应器搅拌器设至65RPM。将50mL包含1.0g过硫酸铵(APS)每升去离子脱气水的引发剂溶液加入反应器中,提供8.5ppm的APS浓度。表面活性剂浓度为12.8ppm。这是预载组合物,在其中形成亲油性成核位点分散体。

将反应器加热至80℃,并且将TFE加入反应器中,以使反应器压力达到330psig(2.45MPa)。然后将75mL引发剂溶液以80mL/min的速率加入反应器中,接着在聚合反应持续期间将泵送速率降至1.0mL/min。引发时(10psi(69kPa)压降),用TFE使高压釜压力回至330psig(2.45MPa),并且在聚合反应持续期间保持在该压力下。引发时,以10mL/min的速率向反应器中加入去离子脱气水溶液,直至已加入250mL溶液,所述水溶液包含2.0g HFPO二聚体酸和1.0g琥珀酸每100g流体。已向反应器中加入1800gTFE后,停止搅拌器,并且将反应器排空至大气压,并且排放出分散体。冷却后,将蜡从分散体中分离出来,并且将分散体过滤。清洁反应器,并且将清洁期间从反应器中取出的所有聚合物与滤出的固体混合,并且在真空炉中干燥以获得凝结物的量度(未分散的聚合物)。以此方式制得的PTFE分散体具有2.7的标称pH,并且对粒度和固体%进行分析。通过将一定量分散体稀释至约10重量%固体,加入碳酸铵水溶液并且剧烈搅拌以使聚合物与水相分离,从而获得聚合物样品。将聚合物在110℃真空炉中干燥约12小时,之后进一步分析。聚合反应结果报告于表C中。该实例中制得的PTFE表现出如实例1中对PTFE所述的特征。PTFE还具有大于106的分子量(Mn)和大于106Pa.s的熔融蠕变粘度。

表C

实验C-20为对比实验。140ppm下的盐含量过高,致使不理想的聚合反应固体内容物大粒度Dv(50)和许多凝结物。

实例3

该实例提供改性的PTFE的制备。

向具备两桨叶搅拌器的12升水平放置的带夹套不锈钢高压釜中加入5200g去离子脱气水和250g液体蜡。向高压釜中加入额外的500g去离子脱气水,其包含0.02g31R1和0.4g亚硫酸钠。将高压釜密封并且放置于真空下。用氮气将高压釜压力增至30psig(310kPa),然后排空至大气压。用氮气将高压釜加压,然后排空,再如此2次。将搅拌器速度设至65RPM,并且将反应器加热至90℃。将40mL包含每升水0.5g过硫酸铵(APS)的引发剂溶液加入反应器中。这是预载组合物。Pluronic表面活性剂、盐和引发剂在含水介质中的浓度分别为3.5ppm、69.6ppm和3.5ppm。

通过向反应器中加入12.0g六氟丙烯(HFP)和650g TFE以使反应器压力达到400psig(2.86MPa),将反应器加压。在时间零点,以80mL/min的速率将150mL引发剂溶液加入反应器中,所述引发剂溶液包含11.67g过氧化二琥珀酸溶液(70重量%DSP)、0.17g过硫酸铵和488.3g去离子脱气水。自开始注入引发剂起2.0分钟后,观察到引发剂溶液注入期间,反应器压力自最大压力下降10psig(69kPa)。用TFE使高压釜压力回至400psig(2.86MPa),并且在聚合反应持续时间内保持在该压力下。自引发起已加入100g TFE后,将如下所述制得的增稳表面活性剂溶液以4mL/min(0.28g/l-hr)的速率泵送至反应器中,直至反应结束。开始将表面活性剂加入含水介质时的该延迟对应于含水介质中1.67重量%浓度的改性的PTFE。自引发起155.6分钟后,已将3100g TFE和688mL增稳表面活性剂溶液加入反应器中。停止搅拌器,将反应器排空至大气压,并且排放出分散体。冷却后,将液体蜡从分散体中分离出来,并且将分散体过滤以移除未分散的固体(凝结物)。打开反应器,并且从反应器中取出所有凝结物。将反应器清出物与滤出的固体组合,并且在真空炉中干燥。为对凝结物(所有未分散的固体)进行测定,通过将聚合物离心和吸取,进一步取出附着该聚合物的液体蜡。因此,总凝结物确定为120.4g。总回收液体蜡为208.7g。分散的含氟聚合物颗粒占包含该分散体的含水介质的32.8重量%。分散的颗粒具有按体积计255nm的平均粒度Dv(50)。通过将分散体稀释至约10重量%固体并且加入含水碳酸铵溶液,接着剧烈搅拌直至聚合物颗粒完全与水分离,使这些颗粒凝聚。将聚合物在110℃的真空炉中干燥12小时。经由DSC对第一次加热测得,该聚合物的熔点为335℃。经由FTIR的组成分析示出0.5重量%的HFP。该改性的PTFE具有大于106的分子量(Mn)、为0的MFR和大于106Pa·s的熔融蠕变粘度。

如下制备增稳表面活性剂溶液:

向1升带夹套圆底烧瓶中加入492.5g去离子脱气水、7.5g十二烷基硫酸钠(ACS Reagent,>99.0%)和0.225g七水合硫酸铁(+2)。搅拌内容物直至所有固体均溶解。用两滴浓硫酸将溶液pH调节至3.22。将18.75g 30重量%过氧化氢加入混合物中。将混合物加热至40℃,同时搅拌,并且在该温度下保持2小时。排放所述溶液,并且在冰浴中冷却以使流体快速达到环境温度。最终混合物具有2.76的pH。

实例4

该实例提供PFA的制备。

向具备两桨叶搅拌器的12升水平放置的带夹套不锈钢高压釜中加入7500g去离子脱气水。向高压釜中加入额外的500g去离子脱气水,其包含0.025g31R1和0.2g亚硫酸钠。将高压釜密封并且放置于真空下。用氮气将高压釜压力升至30psig(310kPa),然后排空,如此三次。开始搅拌,并且将搅拌器速率设至70RPM。将100mL PPVE和0.1g乙烷加入反应器中。表面活性剂、盐和引发剂在含水介质中的浓度分别为3.1ppm、25ppm和11.6ppm。将包含6.2g过硫酸铵每升去离子脱气水的15mL引发剂溶液加入反应器中,即预载组合物中的APS的量为11.2ppm。将反应器加热至85℃,然后将TFE(约290g)加入反应器中以使反应器压力达到300psig(2.17MPa)。在时间零点,将100mL引发剂溶液以80mL/min的速率加入反应器中,然后以0.6mL/min的速率连续泵送引发剂,直至反应结束。自开始注入引发剂起1.5分钟后,当观察到引发剂溶液注入期间,反应器压力自最大压力下降10psig(69kPa)时发生引发。引发时,将反应器温度控制器设定值从85℃降至75℃。在聚合反应持续期间加入TFE和0.03mL PPVE每克TFE给料,将高压釜压力控制在300psig(2.17MPa)。自引发起已加入1000g TFE后,以1mL/min的速率将表面活性剂的去离子脱气水溶液作为增稳表面活性剂泵送到反应器中,直至反应结束,所述溶液包含0.5g十二烷基硫酸钠(SDS)每100g去离子脱气水。开始将增稳表面活性剂加入含水介质时的该延迟对应于下文计算出的含水介质中11.6重量%浓度的PFA。延时50min。增稳表面活性剂的计量加入速率为0.025g/L-hr。自引发开始135分钟后,已向反应器中加入2300g TFE和86mL表面活性剂溶液。停止搅拌器,将反应器排空至大气压,并且排放出分散体。制得10.68kg含水分散体,具有含水介质中22.1重量%的固含量和114nm的原生分散体粒度。将由分散体过滤通过粗棉布获得的和由清洁反应器获得的凝结物在真空炉中干燥并且测得为63g(0.6重量%)。通过冷冻分散体样品,然后融化、过滤、洗涤和干燥,分离出PFA聚合物。经由FTIR测得,聚合物包含6.0重量%的PPVE,并且具有10.8g/10min的MFR。

含水介质中重量%(含氟聚合物)浓度的计算:

A=制得聚合物的总重量

B=反应器中水的总重量

A=加入的TFE重量/(1-含氟聚合物中PPVE的重量分数)

A=1000/(1-0.06)=1063.8

B=加入反应器中的水的总重量

B=7500+500+15+100+(0.6×50)=8145

重量%浓度=[A/(A+B)]×100

=[1063.8/(1063.8+8145)]×100=11.6

重复该实验,下列为不同之处:在加热反应器之后并且在加入TFE以使反应器达到300psig(2.17MPa)之前加入15mL引发剂溶液,而不是在将反应器加热至85℃之前加入所述引发剂溶液。引发时间为2.6分钟,批处理时间为138分钟,并且将89mL表面活性剂溶液加入反应器中。制得10.52kg含水分散体,具有22.0重量%的固含量和128nm原生分散体粒度。将由分散体过滤通过粗棉布获得的和由清洁反应器获得的凝结物在真空炉中干燥并且测得为95g。经由FTIR测得,分离出的聚合物包含5.4重量%的PPVE,并且具有12.0g/10min的MFR。开始将增稳表面活性剂加入含水介质时的延迟为引发后49.5分钟,并且对应于11.5重量%的PFA浓度。

实例5

所述实例提供FEP的制备。

向具备两桨叶搅拌器的12升水平放置的带夹套不锈钢高压釜中加入6000g去离子脱气水。向高压釜中加入额外的500g去离子脱气水,其包含0.015g31R1和0.1g亚硫酸钠。将高压釜密封并且放置于真空下。用氮气将高压釜压力升至30psig(310kPa),然后排空,如此三次。开始搅拌,并且将搅拌器速率设至75RPM。将反应器加热至95℃。将2.6mL包含每升去离子脱气水22g过硫酸铵的引发剂溶液加入反应器中。表面活性剂、盐和引发剂在含水介质中的浓度分别为2.3ppm、15.4ppm和8.8ppm。

将HFP和TFE以1.857/1HFP/TFE的重量比加入反应器中,以使反应器压力达到435psig(3.10MPa)。在时间零点,将30mL上述引发剂溶液以80mL/min的速率加入反应器中,然后以1.5mL/min的速率连续泵送引发剂,直至反应结束。自开始注入引发剂起3.5分钟后,当反应器压力降至425psig(3.03MPa)时,引发发生。为持续反应,由加入的TFE将高压釜压力控制在425psig(3.03MPa)。自开始起已加入300g TFE后,将表面活性剂溶液以0.75mL/min的速率泵送至反应器中直至反应结束,所述溶液包含1.45g钝化的十二烷基硫酸钠每100g溶液。开始将增稳表面活性剂加入含水介质时的延迟为37.5min,并且对应于含水介质中4.9重量%的FEP浓度。将表面活性剂计量加入含水介质中的速率为0.054g/L-hr。增稳表面活性剂(SDS)的钝化处理与实例3中所述相同。自引发开始248分钟后,已向反应器中加入2000g TFE和158mL表面活性剂溶液。停止搅拌器,将反应器排空至大气压,并且排放出分散体。制得8.70kg含水分散体,具有23.2重量%的固含量和165nm原生分散体粒度。将由分散体过滤通过粗棉布获得的和由清洁反应器获得的凝结物在真空炉中干燥并且测得为270g。通过冷冻分散体样品,然后融化、过滤、洗涤和干燥,分离出聚合物。由FTIR测得所述聚合物包含10.6重量%的HFP,并且具有273℃的熔点。

实例6

该实例比较采用聚合反应开始后用于将增稳表面活性剂加入含水聚合反应介质中的不同延迟,制备具有实例1的PTFE特征的PTFE的聚合反应结果。

聚合反应条件总结如下:将5700g去离子脱气水加入具有0.085g31R1、0.02g Triton X-100和0.4g Na2SO3的反应器中,并且加热至90℃。然后将80mL(0.04g APS)加入含水介质中,这提供6.9ppm的APS浓度。含水介质中表面活性剂的浓度分别为14.7ppm和3.4ppm,并且盐的浓度为69ppm,而引发剂的浓度为6.9ppm。加入660g TFE,使反应器加压至400psig(2.86MPa)。为引发聚合反应,将150mL包含0.33g APS和22.33g(70%活性)DSP每升去离子脱气水的引发剂溶液加入反应器中。引发(KO)后,通过加入TFE将压力保持在2.86MPa。在22g TFE给料(实验D-3和D-4)或300g TFE给料(实验D-1和D-2)下,开始将SDS或SOS增稳表面活性剂加入含水聚合反应介质中。加入表面活性剂前开始消耗22g TFE的延迟对应于含水介质中0.37重量%的PTFE浓度。加入表面活性剂前开始消耗300g TFE的延迟对应于含水介质中5.06重量%的PTFE浓度。将稳定剂表面活性剂溶液以2mL/min的速率泵送到含水介质中,直至加入1000g TFE。该泵送速率为0.14g/L-hr的计量加入速率。然后将泵剂速率增至3ml/min(0.22g/L-hr)。泵送溶液中SDS或SOS的浓度为1.445g每100g流体。

表D

示于该表中的结果为,22g(0.37重量%)延迟对于SDS和SOS而言过短,由464min的长聚合反应时间示出。加入表面活性剂前开始消耗22gTFE的延迟类似于制备VF2/HFP共聚物的美国专利7,521,513实例1中采用的0.36重量%延迟(计算:[90÷(25000+100+90)×100])。达到464min批处理时间后,停止聚合反应,停止曾达到2200g PTFE目标的TFE单体进料。实验D-1提供最佳结果,能够在比实验D-2至D-4短得多的批处理时间内达到2200g PTFE的目标。

重复上述聚合反应,具有以下改变:引发剂泵送速率更快(4.0mL/min),并且稳定剂表面活性剂进料延迟直至引发后100g TFE补充进料加入反应器中。该延迟对应于含水介质中1.66重量%的PTFE浓度。实施重复聚合反应时的这些变化,以认识到如下所述的钝化增稳表面活性剂的有益效果(调聚性降低)。持续泵送至反应结束。结果示于表E中。对该实例中的PTFE进行MFR测量,结果为不熔融流动。

根据下列方法,在加入含水聚合反应介质中之前,将SDS和SOS增稳表面活性剂钝化:

在1L玻璃瓶中,将10.5g十二烷基硫酸钠加入681.74g脱气水中,并且使用搅拌棒进一步搅拌,直至所有固体均溶解并且溶液澄清。室温下将0.315g七水合硫酸铁(+2)加入该溶液中。然后用12-14滴浓H2SO4将pH调节至2.0-2.5。将该瓶中的内容物转移到3颈1L玻璃反应器中,所述反应器具有配备温度计的加热/冷却夹套和顶置式搅拌器。然后将37.34g H2O2(30%溶液)缓慢地加入该搅拌的溶液中。然后在H2O2加入完成后,将溶液在室温下再搅拌60分钟。然后将包含所得钝化SDS反应的溶液排放到1L玻璃瓶中,这是用于将增稳表面活性剂泵送至聚合反应的溶液。对SOS采用相同的钝化方法,不同的是,将它以商品名为NAS-8表面活性剂的水溶液形式加入1L玻璃瓶中,以提供同样10.5g的SOS。

表E

SDS和SOS增稳表面活性剂的钝化致使批处理时间显著缩短,以制得更大量的PTFE。

实例7

所述实例在不同温度下对钝化的增稳表面活性剂的聚合反应结果进行比较。钝化过程如下:向1升带夹套圆底烧瓶中加入681.74g去离子脱气水、10.5g十二烷基硫酸钠(ACS Reagent,>99.0%)和0.315g七水合硫酸铁(+2)。搅拌内容物直至所有固体均溶解。用12-18滴浓硫酸将溶液pH调节至2.0-2.5。通过将热调节的水循环通过烧瓶夹套,将混合物保持在所期望的钝化温度下(PT)(表F中的实验F-1、F-2和F-3)时,将37.34g 30重量%过氧化氢加入混合物中。将混合物搅拌1小时,然后排放,并且按需要使用冰浴快速冷却至室温。

聚合反应过程如下:向具备两桨叶搅拌器的12升水平放置的带夹套不锈钢高压釜中加入5200g去离子脱气水和250g液体蜡。向高压釜中加入额外的500g去离子脱气水,其包含0.085g(14.9ppm)31R1、0.02g(3.5ppm)X-100和0.4g(70ppm)亚硫酸钠。将高压釜密封并且放置于真空下。用氮气将高压釜压力升至30psig(310kPa),然后达到真空,如此3次。将搅拌器速度设至65RPM,并且将反应器加热至90℃。接着将0.04g APS引发剂加入热的含水介质(80mL 0.5g/L引发剂的去离子脱气水溶液)中,以提供预载物中6.9ppm的APS浓度。含水介质中表面活性剂浓度分别为14.7ppm和3.5ppm,并且盐浓度为70ppm。将TFE加入反应器中以使反应器压力达到400psig(2.86MPa)。在时间零点,以80mL/min的速率将150mL引发剂溶液加入反应器中,所述引发剂溶液包含11.67g(70%活性)过氧化二琥珀酸、0.17g过硫酸铵(APS)和488.3g去离子脱气水。自开始注入引发剂起约7分钟,观察到引发剂溶液注入期间,反应器压力自最大压力下降10psig(69kPa)。用补充的TFE使高压釜压力回至400psig(2.86MPa),并且通过连续加入补充的TFE,将聚合反应持续期间保持在该压力下。自引发起已加入100g TFE后,将表面活性剂溶液以4mL/min的速率泵送至反应器中,直至反应结束。开始将增稳表面活性剂加入含水介质时的该延迟对应于含水介质中1.66重量%的PTFE浓度,并且将表面活性剂计量加入含水介质中的速率为0.29g/L-hr。批处理时间(自引发至补充TFE加料结束的时间)示于下表中。已向反应器中加入3100g补充TFE后,停止搅拌器,并且将反应器排空至大气压,并且排放出分散体。冷却后,将液体蜡从分散体中分离出来,并且将分散体过滤以移除未分散的固体。打开反应器,并且从反应器中取出所有附着的聚合物。将反应器清出物与滤出的固体组合,并且在真空炉中干燥。为对凝结物(所有未分散的固体)进行测定,通过将聚合物离心和吸取,进一步取出附着该聚合物的液体蜡。这些实例中如此获得的凝结物为35-38克。制得的含水分散体为9.7kg,具有34%固体和按体积计的平均粒度Dv(50),如下表F中所示。通过将分散体稀释至约10重量%固体并且加入含水碳酸铵溶液,接着剧烈搅拌直至聚合物完全与水分离,使聚合物凝聚。将聚合物在110℃的真空炉中干燥12小时。PTFE表现出实例2中所述PTFE的分子量和熔融蠕变粘度特性。

表F

自40℃下增稳表面活性剂钝化至更低温度下钝化,批处理时间急剧缩短。

实例8

所述实例比较使用钝化与未钝化增稳表面活性剂的聚合反应性能。

向具备两桨叶搅拌器的12升水平放置的带夹套不锈钢高压釜中加入5200g去离子脱气水和250g液体蜡。向高压釜中加入额外的500g去离子脱气水,其包含0.075g31R1和0.2g亚硫酸钠。将高压釜密封并且放置于真空下。用氮气将高压釜压力升至30psig(310kPa),然后达到真空,如此三次。将反应器搅拌器设至65RPM。将反应器加热至90℃,并且将100mL包含0.5g APS每升去离子脱气水的引发剂加入反应器中,提供预载组合物中8.6ppm的APS浓度。含水介质中表面活性剂的浓度为12.9ppm,并且盐的浓度为34.5ppm。

将690g TFE加入反应器中以使反应器压力达到400psig(2.86MPa)。在时间零点,以80mL/min的速率向反应器中注入150mL引发剂溶液,所述溶液包含0.05g APS每升去离子脱气水,然后在聚合反应持续期间将泵送速率降至1.0mL/min。引发测定为给料引发剂溶液注入期间观察到的自最大压力下降10psi(69kPa)所需的时间(自时间零点起)。引发在2分钟内发生,并且用补充TFE使高压釜压力回至400psig(2.86MPa),并且在聚合反应持续期间,通过持续加入补充TFE,保持在该压力下。300g补充TFE已经加入反应器中后,以2.0mL/min的速率将包含8.0g十二烷基硫酸钠每升水的泵送溶液加入反应器中,直至已加入共300g溶液。介于引发与SDS加入开始之间的延时为9.3min,延时结束时含水介质中的PTFE浓度为4.79重量%,并且表面活性剂计量加入速率为0.08g/L-hr。自时间零点起197分钟后,已向反应器中加入2200g补充TFE,停止搅拌器,并且将反应器排空至大气压,并且排放出分散体。由此制得的PTFE分散体具有28%固体和213nm的原生分散体粒度。通过将一定量分散体稀释至约10重量%固体,加入碳酸铵水溶液并且剧烈搅拌,以使聚合物与水相分离,获得聚合物样品。用去离子水洗涤聚合物,并且在110℃真空炉中干燥约12小时,之后进一步分析。PTFE表现出如实例2中所述的PTFE特征。

重复上述实验,不同的是,在将300g补充TFE加入反应器中后,将包含14.4g钝化十二烷基硫酸钠每升水的泵送溶液以1.67mL/min的速率加入反应器中,直至反应结束,此时已向反应器中加入2200g补充TFE。向含水介质中开始加入钝化SDS的延迟为9.7min,延迟结束时PTFE的浓度为4.79重量%,并且将表面活性剂计量加入含水介质中的速率为0.12g/L-hr。加入的钝化十二烷基硫酸钠溶液总量为115mL。79分钟的批处理时间显著短于上段中的未钝化实验。测定分散体具有26.5%的固体,并且具有175nm的原生分散体粒度。PTFE表现出如实例2中所述的PTFE特征。

由下列方法实施SDS的钝化:向1升带夹套圆底烧瓶中加入681.74g去离子脱气水、10.5g十二烷基硫酸钠(ACS Reagent,>99.0%)和0.315g七水合硫酸铁(+2)。搅拌内容物直至所有固体均溶解。用12-18滴浓硫酸将溶液pH调节至2.0-2.5。通过将热调节的水循环通过烧瓶夹套,使混合物保持在22℃下,将37.34g 30重量%过氧化氢加入混合物中。将混合物搅拌1小时,之后排放出来以用作聚合反应中钝化的增稳表面活性剂的溶液。

实例9

该实例公开了使用乙氧基化阴离子表面活性剂作为增稳表面活性剂制备PTFE的聚合反应。

向具备两桨叶搅拌器的12升水平放置的带夹套不锈钢高压釜中加入5200g去离子脱气水和250g液体蜡。向高压釜中加入额外的500g去离子脱气水,其包含0.085g31R1、0.02gX-100和0.4g Na2SO3。将高压釜密封并且放置于真空下。用氮气将高压釜压力升至30psig(310kPa),然后达到真空,如此三次。将反应器搅拌器设至65RPM,并且将反应器加热至90℃。将80mL包含0.5g过硫酸铵(APS)每升去离子脱气水的引发剂溶液加入反应器中,提供含水预载物中6.9ppm的APS浓度。含水介质中表面活性剂的浓度分别为14.7ppm和3.5ppm,并且盐浓度为69.2ppm。将TFE加入反应器中以使反应器压力达到400psig(2.86MPa)。在时间零点,以80mL/min的速率将150mL引发剂的去离子脱气水溶液加入反应器中,所述溶液包含每升水0.33g APS和23.33g 70重量%活性过氧化二琥珀酸(DSP)。引发时间测定为时间零点注入引发剂溶液期间观察到的自最大压力下降10psi(69kPa)所需的时间(自时间零点起)。引发在6.8分钟后发生。用补充的TFE使高压釜压力回至400psig(2.86MPa),并且通过调节补充的TFE流,将聚合反应持续期间保持在该压力下。已加入100g补充TFE后,以4mL/min的速率泵送包含S70的钝化增稳溶液,直至反应结束。开始将增稳表面活性剂加入含水介质时的延时为7.9min,延迟重量%对应于含水介质中1.66重量%的PTFE浓度,并且将表面活性剂计量加入含水介质中的速率为0.288g/L-hr。自时间零点起已向反应器中加入2200g TFE后,停止搅拌器,并且将反应器排空至大气压,并且排放出分散体。所得含水分散体具有24.7%的固体,所述固体具有按体积计178nm的平均粒度Dv(50)。通过将分散体稀释至约10重量%固体并且加入含水碳酸铵溶液,接着剧烈搅拌直至聚合物完全与水分离,使聚合物凝聚。将PTFE在110℃真空炉中干燥12小时,测得其表现出实例2的PTFE特征。

钝化表面活性剂的方法如下:

向1升玻璃瓶中加入30gS70溶液(10.5g活性表面活性剂)、662.24g去离子脱气水和0.315g七水合硫酸铁(+2)。搅拌混合物直至所有固体均溶解。用12至16滴浓硫酸将混合物的pH调节至2.0-2.5。搅拌并且保持在22-23℃下的同时,在1至2分钟期间内将37.34g 30重量%过氧化氢缓慢加入混合物中。加入过氧化氢后,持续搅拌1小时,之后将所得钝化表面活性剂溶液用于上述聚合反应中。

实例10

该实例比较存在和不存在金属离子Fe+2的情况下与烃表面活性剂一起实施的聚合反应过程,所述Fe+2由硫酸亚铁(II)FeSO4·7H2O提供。

除非另外指明,用于该实例中的一般聚合反应过程如下:

向具备两桨叶搅拌器的12升水平放置的带夹套不锈钢反应器中加入5200g去离子脱气水和250g液体蜡。向反应器中加入额外的500g去离子脱气水,其包含0.085g31R1和0.4g亚硫酸钠。将反应器密封并且放置于真空下。用氮气将反应器压力升至30psig(310kPa),然后达到真空,如此3次。将搅拌器速度设至65RPM,并且将反应器加热至90℃。将80mL包含0.5g过硫酸铵(APS)每升水的溶液加入反应器中,在目前为止加入反应器中的水中提供6.9ppm的APS浓度。在该阶段,31R1的浓度为14.7ppm,并且亚硫酸钠的浓度为6.9ppm。这是其中在聚合反应引发前形成亲油性成核位点的反应阶段。加入上述含水介质中的成分ppm以直至此时存在于反应器中的总水量计。在该ppm计算中,认为成分的溶液完全由水组成。

然后将TFE加入反应器中以使反应器压力达到400psig(2.86MPa)。以80mL/min的速率将150mL引发剂溶液加入反应器中,所述引发剂溶液包含11.67g(70%活性)过氧化二琥珀酸、0.17g过硫酸铵和488.3g去离子水。在引发剂溶液注入期间观察到自最大压力下降10psig(69kPa)后,则认为聚合反应的引发已经发生。用补充的TFE使反应器压力回至400psig(2.86MPa),并且通过连续加入补充的TFE,将聚合反应持续期间保持在该压力下。自引发起已加入100g TFE后,将含有或不含有金属离子的表面活性剂溶液以4ml/min(0.288g/l-hr)的速率泵送至反应器中,直至反应结束,即直至停止向反应器中加入补充的TFE。已向反应器中加入预定量的补充TFE后,停止搅拌器,这确定了聚合反应的结束。放空反应器(移除未反应的TFE)后,排放出聚合物分散体。冷却后,将液体蜡从分散体中分离出来,并且将分散体过滤以移除未分散的固体。打开反应器,并且从反应器中取出所有附着的聚合物。将反应器清出物与滤出的固体组合,并且在真空炉中干燥。

通过将聚合物离心和吸取以移除蜡,进一步从干滤固体和附着的聚合物中移除液体蜡,以获得凝结物(所有未分散的固体)。通过将分散体水溶液稀释至约10重量%固体并且加入含水碳酸铵溶液,接着剧烈搅拌直至聚合物完全与水分离,以使聚合物分散体凝聚。将所得聚合物在110℃的真空炉中干燥12小时。由示差扫描热量计(DSC)测定该聚合物的熔点和熔解热。所述聚合物是分子量(Mn)为至少1,000,000的PTFE。如下由激光散射测定分散聚合物的粒度:使用由Malvern Instruments制造的Zetasizer Nano-ZS,采用激光散射测定含氟聚合物颗粒原生分散体的粒度。供分析的样品制备于10×10×45mm聚苯乙烯比色皿中,封盖并且放置于分析装置中。样品的制备如下。如下使用于冲洗比色皿和用于稀释分散体样品的水基本上不含颗粒:将去离子脱气水抽到具有固定尖端的10cc玻璃皮下注射器中。将Whatman 0.02微米过滤器(目录6809-2002)安装在注射器的固定尖端上,并且施加压力以迫使水通过过滤器并且进入比色皿中。将约1.5mL水放置于比色皿中,将所述比色皿封盖,摇晃并且去盖。将水从比色皿中倒出,从而确保比色皿不含颗粒。将约2.5g滤过的水放置于比色皿中。将一滴待分析的含氟聚合物分散体加入比色皿中。将比色皿封盖并且摇晃,以使含氟聚合物颗粒完全混合于水中。将样品放置于Nano-ZS中以测定Dv(50)。Dv(50)是基于体积粒度分布的中值粒度,即在该粒度以下存在粒群体积的50%。

表1

表1(续)

在实验1和2中加入反应器中的补充TFE的总量在每个实验中均为1250g。这些实验中的表面活性剂为十二烷基硫酸钠(SDS)。表面活性剂以水溶液形式加入反应器内的含水介质中,所述溶液还包含表1中所述盐形式的金属离子。包含SDS和盐(实验2)的原液溶液包含1.439g SDS和0.0432g盐/100g水。实验1的原液溶液仅包含量与实验2相同的SDS。

就表1中的列标题而言,表面活性剂“按水计的ppm”为加入水总重量中的表面活性剂总重量,所述水加入聚合反应器中,直至聚合反应完成。“基于水的阳离子ppm”是整个过程期间(成核位点形成加聚合反应,即直至聚合反应结束)加入反应器内的总重量水中的Fe+2重量ppm。“以表面活性剂计的阳离子重量%”是基于与溶液中表面活性剂总重量相比,聚合反应期间加入含水介质中的金属离子总重量。批处理时间测定为自引发至伴随搅拌停止的补充TFE加入结束(聚合反应结束)的时间。“分散体固体%”是基于分散聚合物颗粒总重量+聚合反应结束时存在的水总重量之和,分散于含水介质中的聚合物颗粒的重量%。凝结物(凝结物)为以形成的含氟聚合物总重量计,未分散聚合物的重量%。STY具有上述含义。列标题的这些解释适用于其后实例其它表中的相同列标题。

实验1示出,SDS自身获得相对于分散体固体%而言的小粒度和低凝结物%,但是代价是批加工时间长,并且预计STY较低。当聚合反应期间Fe+2阳离子与SDS一起存在时,批加工时间仅为实验1的约1/3,并且STY提高约300%。Fe+2阳离子还通过能够使用非常少的SDS形成约相同量固体%和凝结物%,提高了SDS表面活性剂的效果。该实例中形成的PTFE的DSC熔融温度在实验1和2中分别为334.69℃和334.01℃。就实验1而言,PTFE的熔解热为:75.65J/g(第一次加热)和38.43J/g(第二次加热)。就实验2而言,熔解热为74.36J/g(第一次加热)和41.73J/g(第二次加热)。

实例11

所述实例经由实例10的方法,使用如表2中报告的作为增稳表面活性剂的SDS和不同量的与SDS一起加入的金属阳离子,比较聚合反应结果。金属阳离子为Fe+2,由硫酸亚铁(II)FeSO4·7H2O提供。

表2

表2(续)

“表面活性剂溶液浓度”是进入反应器的溶液进料中SDS和FeSO4·7H2O的浓度。“盐g/L”是盐的浓度,即包括金属阳离子重量在内的其总重量。该含义适用于其后表中的相同列标题。补充TFE的总量为1000g。就最小PTFE粒度、最小量凝结物%和高STY的组合而言,实验4的聚合反应获得最佳结果。这些实验中制得的PTFE的熔融温度(第一次加热)均超过332℃,并且第一次加热至第二次加热熔融的熔解热降低均超过27J/g。

实例12

该实例实施实例10的聚合反应,但是使用更大量的补充TFE以获得更高的固体%。实验6和7使用2200g补充TFE,而实验8使用3100g补充TFE。与实例10中一样,增稳表面活性剂为SDS,并且金属阳离子为以FeSO4·7H2O形式提供的Fe+2,或由硫酸铜(II)CuSO4·5H2O提供的Cu+2。结果报告于表3中。

表3

表3(续)

与对照实验1相比,所有这些聚合反应均获得高固体%,伴有相对于该高固体%而言的小粒度,以及较低的凝结物%和高STY。这些实验中形成的PTFE的熔融温度超过335℃,并且第一次加热至第二次加热熔融的熔解热降低超过25J/g。实验7的PTFE具有336.76℃的熔融温度(第一次加热)、2.212的SSG(标准比重),根据由R.C.Doban等人在“Formula from molecular weight of Polytetrafluoroethylene”(ASC Meeting,Atlantic City,N.J.,1956年9月)(还公布在WO2009/013214的第15页)中所述的公式确定,所述SSG对应于2,700,000的分子量(Mn)。

实例13

依照实例10的聚合反应方法,该实例采用与SDS增稳表面活性剂溶液一起加入不同的金属离子,比较聚合反应结果。结果记录于表4中。

表4

表4(续)

在这些实验中,所加入的补充TFE为1000g。与对照实验1相比,所有这些聚合反应获得较低的凝结物%和较高的STY。此外,所有这些聚合反应获得熔融温度大于332℃并且第一次加热至第二次加热熔融的熔解热降低大于28J/g的PTFE。

当重复这些实验方法时,不同的是使用Na离子作为阳离子(以盐Na2SO3形式提供),其量提供以聚合反应结束时水的总重量计1.3ppm的Na+离子浓度,结果为形成大于9%的凝结物。

实例14

依照实例10的聚合反应方法,该实例使用与实例13相似的不同金属阳离子,不同的是将补充TFE增至1250g,比较聚合反应结果。结果记录于表5中。

表5

表5(续)

在这些实验条件下,就粒度、凝结物%和STY而言,金属离子Fe+2和Cu+2提供最佳的结果组合。PTFE的熔融温度均超过333℃,并且就实验2、16、17和18而言,第一次加热至第二次加热熔融的熔解热降低分别为32.6J/g、32.0J/g、37.3J/g和37.3J/g。

实例15

依照实例10的聚合反应方法,该实例使用不同的增稳表面活性剂和金属阳离子比较聚合反应结果,所有的TFE补充量均为2200g。结果记录于表6中。

表6

表6(续)

与对照实验1相比,所有聚合反应获得所得高固体%下的小颗粒,以及低凝结物%,以及好至更佳的STY。所得PTFE的熔融温度均超过335℃,并且第一次加热至第二次加热熔融的熔解热降低均超过29J/g。

实例16

依照实例10的聚合反应方法,该实例采用向反应器内含水介质中加入金属阳离子的不同时间点,比较聚合反应结果。SDS为增稳表面活性剂,并且FeSO4-7H2O为提供金属阳离子的盐。TFE补充量为1250g。

表7

实验2依照上述一般聚合反应方法,其中盐(金属阳离子)以溶液形式加入含水聚合反应介质中,所述溶液同时具体溶解的增稳表面活性剂。所得溶液如表1中所述。

实验22依照一般的聚合反应方法,不同的是,在开始将表面活性剂溶液加入该介质中的同时,将所有量的盐加入含水聚合反应介质中。因此,加入含水聚合反应介质中的表面活性剂溶液仅具有溶解于其中的SDS。加入含水介质中的SDS总量提供382ppm的SDS浓度,所述浓度以聚合反应完成时存在于含水介质中的水的总量计。加入含水聚合反应介质中的Fe+2阳离子的量提供2.8ppm的浓度,与实验2的2.6ppm形成对比,所述浓度以聚合反应完成时存在于含水介质中的水的总量计。

实验23依照一般的聚合反应方法,不同的是,与实验22相同,将所有量的盐加入含水聚合反应介质中,同时将5200g水的初始给料加入反应器中。因此,SDS的加成依照实验22的方法。

表7中报告的结果为,过程中过早加入盐(实验23)致使对于所形成的固体%而言粒度过大,并且凝结物%高。与实验23相比,实验2和22的结果均改进了。

前述实例中获得的PTFE由于它们的极高分子量均表现出MFR为0(ASTM D 1238,372℃,5kg砝码),指示PTFE的不可熔融流动性。

实例17

该实例公开了使用十二烷基硫酸钠作为增稳表面活性剂,制备VF2/HFP/TFE含氟弹性体的聚合反应。在将增稳表面活性剂加入聚合反应器中之前,进行其钝化。

向40升竖直放置的带夹套不锈钢高压釜反应器中加入23000g去离子脱气水。向反应器中加入额外的2016g去离子脱气水,其包含0.04g31R1和2.02g亚硫酸钠。用初始单体混合物(4.0重量%偏二氟乙烯(VF2)、86.0重量%六氟丙烯(HFP)和10.0重量%四氟乙烯(TFE))吹扫反应器至410kPa,然后排空。重复该吹扫过程,直至反应器中的氧气小于100ppm。将16mL具有1重量%过硫酸铵和5重量%七水合磷酸二钠的引发剂溶液加入反应器中。将反应器加热至80℃。用2120克初始单体(具有上述组成)将反应器加压。在加压结束时,反应器压力为2068kPa。在时间零点,将50mL具有1重量%过硫酸铵和5重量%七水合磷酸二钠的引发剂溶液加入反应器中以启动聚合反应。当反应器压力下降时,将新的进料单体混合物(35.0重量%VF2、37.0重量%HFP和28.0重量%TFE)加入反应器中以保持2068kPa压力。将附加的引发剂溶液以10mL增量每30分钟加入,以保持聚合反应速率。已加入200g新的进料单体混合物后,将如下所述制得的增稳表面活性剂溶液以233mL每3000g单体的流量泵送到反应器中,直至加入7916g新的进料单体。开始将增稳表面活性剂加入含水介质时的该延迟对应于含水介质中0.79重量%的聚合物浓度,并且将表面活性剂计量加入含水介质中的速率为0.01g/l-hr。在已经增量加入共8333g新的进料单体后(相应于共510mL引发剂溶液和23.5小时),停止单体和引发剂进料。将反应器冷却并且将反应器内的压力降至大气压。所得含氟弹性体胶乳具有23.6重量%固体的固含量,3.17的pH,和260nm的平均粒径。用硫酸铝溶液使胶乳凝结,用去离子水洗涤并且干燥。含氟弹性体具有0.57dl/g的特性粘度、121℃下118的门尼粘度ML(1+10),并且包含33.5重量%VF2、38.4重量%HFP和28.1重量%TFE。

如下制备增稳表面活性剂溶液:向1升带夹套圆底烧瓶中加入492.5g去离子脱气水、7.5g十二烷基硫酸钠(ACS Reagent,>99.0%)和0.225g七水合硫酸铁(+2)。搅拌内容物直至所有固体均溶解。用两滴浓硫酸将溶液pH调节至3。将18.75g 30重量%过氧化氢加入混合物中。将混合物加热至40℃,同时搅拌,并且在该温度下保持2小时。排放所述溶液,并且在冰浴中冷却以使流体快速达到环境温度。最终混合物具有3的pH。

在该实例中,加入聚合反应器中的钝化辅助剂Fe+2的量为0.603重量%,所述量以含烃表面活性剂十二烷基硫酸钠的总重量计。以批量终点时反应器中的水计,Fe+2的量为2.0ppm。

实例18

该实例公开了使用十二烷基硫酸钠作为增稳表面活性剂,制备TFE/PMVE含氟弹性体的聚合反应。在将增稳表面活性剂加入聚合反应器中之前,进行其钝化。

向40升竖直放置的带夹套不锈钢高压釜反应器中加入23000g去离子脱气水。向反应器中加入额外的2016g去离子脱气水,其包含0.04g31R1和2.02g亚硫酸钠。用初始单体混合物(25.0重量%四氟乙烯(TFE)和75.0重量%全氟甲基乙烯基醚(PMVE))吹扫反应器至410kPa,然后排空。重复该吹扫过程,直至反应器中的氧气小于100ppm。将16mL具有1重量%过硫酸铵和5重量%七水合磷酸二钠的引发剂溶液加入反应器中。将反应器加热至80℃。用2344克初始单体(具有上述组成)加压反应器。在加压结束时,反应器压力为2068kPa。在时间零点,将50mL具有1重量%过硫酸铵和5重量%七水合磷酸二钠的引发剂溶液加入反应器中以启动聚合反应。当反应器压力下降时,将新的进料单体混合物(50.0重量%TFE和50.0重量%PMVE)加入反应器中以保持2068kPa压力。将附加的引发剂溶液以10mL增量每30分钟加入,以保持聚合反应速率。已加入200g新的进料单体混合物后,将如实例15中所述制得的增稳表面活性剂溶液以233mL每3000g单体的流量泵送到反应器中,直至加入7916g新的进料单体。开始将增稳表面活性剂加入含水介质时的该延迟对应于含水介质中0.79重量%的PTFE浓度,并且将表面活性剂计量加入含水介质中的速率为0.0065g/l-hr。在已经增量加入共8333g新的进料单体后(相应于共760mL引发剂溶液和36小时),停止单体和引发剂进料。将反应器冷却并且将反应器内的压力降至大气压。所得含氟弹性体胶乳具有22.9重量%固体的固含量,3.2的pH,和336nm的平均粒径。用硫酸铝溶液使胶乳凝结,用去离子水洗涤并且干燥。含氟弹性体具有175℃下94的门尼粘度ML(1+10),并且包含50.9重量%的TFE和49.1重量%的PMVE。

在该实例中,加入聚合反应器中的钝化辅助剂Fe+2的量为0.603重量%,所述量以含烃表面活性剂十二烷基硫酸钠的总重量计。以批量终点处反应器中的水计,Fe+2的量为1.98ppm。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1