双轴定向聚酰胺系树脂薄膜及其制法的制作方法

文档序号:3703740阅读:193来源:国知局
专利名称:双轴定向聚酰胺系树脂薄膜及其制法的制作方法
技术领域
本发明涉及和聚乙烯或聚丙烯等聚烯烃系树脂薄膜叠层后,用于软包装食品等的双轴定向聚酰胺系树脂薄膜,及其制法。该薄膜具有强韧、抗气孔性和沸水处理时耐卷曲的优良特性以尼龙为主要成分的双轴定向聚酰胺系树脂薄膜,由于具有强韧且气体屏障性、抗气孔性、透明性、印刷性等优良性能,所以作为以各种液态食品、含水食品、冷冻食品、软罐头食品、膏状食品、畜肉、水产食品为主的各种食品包装材料而被广泛应用,特别是在近年来,被广泛用于软罐头食品包装。
用于这样包装用途的聚酰胺系树脂薄膜,通常,经过印刷处理后,将聚乙烯或聚丙烯等的聚烯烃系树脂薄膜等和作为外层的聚酰胺系树脂薄膜进行叠层,沿着作业流动方向,平行地折叠成二层后,将三边热熔融切出,作成一边开口、三边封闭的袋。而且,在该袋中,填充上述食品,密闭后,在沸水中加热杀菌,供应市场。
但是,在使用以往的双轴定向聚酰胺系树脂薄膜的袋进行沸水处理时存在有在加热杀菌处理后,在袋的角部发生挠曲,袋的四边产生S字状的卷曲现象,使包装商品的外观显著劣化的问题。
因此,作为解决这类卷曲问题的手段,如特开平4-103335号和同上4-128027号公报等公开的那样,提出了通过限定聚酰胺系树脂薄膜的物性,减少卷曲现象的方法。但是,在这些方法中,还存在以下所述的缺点,难以满足需要者的要求。即特开平4-103335号公报中公开的方法,是通过以双轴定向聚酰胺系树脂薄膜的沸水收缩变形率与由微波测定的分子定向角的薄膜宽度方向的变化率的积作为评价基准,限定该值,而减少上述的卷曲现象,该方法虽然在某种程度上改善了卷曲现象,但是在强韧性及抗气孔性上还不充分,希望将这些特性进一步改善。另外,在特开平4-128027号公报中,提出了提高双轴定向聚酰胺系树脂薄膜的耐热性,具体是通过将该薄膜整个内面的沸水收缩率控制在3%左右以下,来抑制卷曲现象的方案。但是,在此方法中,为了将沸水处理的尺寸稳定性提高到要求的水平,需要极高地提高热固定时的温度,以便促进构成薄膜材料的结晶化,或拉伸后过度地进行张弛热处理以解开构成薄膜的聚合物分子链的紧张度,其结果,损坏了得到的薄膜强韧性及抗气孔性。
即,对于以往的适用于双轴定向聚酰胺系树脂薄膜的克服卷曲现象的方法,提出了随着卷曲现象的改善,作为其重要的要求特性的强韧性及抗气孔性受到影响的问题。
本发明就是着眼上述的问题而进行研究的,其目的就是要确立不损坏双轴定向聚酰胺系树脂薄膜所具有的优良的强韧性及抗气孔性等条件下,可以减轻由于沸水处理引起的卷曲现象的技术。
能够解决上述课题的本发明的双轴定向聚酰胺的构成,其要点在于双轴定向聚酰胺系树脂薄膜中,具有同时满足下述(1)和(2)式的关系。
3%≤BSx≤6% ……(1)(BSx表示全方向沸水收缩率中的最大值)BSa≤1.5% ……(2)(BSa表示对于薄膜流动方向,+45°方向的沸水收缩率和-45°方向的沸水收缩率差的绝对值)将上述双轴定向聚酰胺系树脂薄膜与聚乙烯及聚丙烯等的聚烯系树脂薄膜进行叠层使用时,除了上述(1)、(2)式的关系之外,通过满足下述(3)式的关系,可以得到耐热水处理等优良的叠层强度,所以是理想的。
1.505≤Nz≤1.520……(3)(Nz表示薄膜厚度方向的折射率)另外,本发明的制法,是可以得到具有上述特性的双轴定向聚酰胺系树脂薄膜的方法,其构成是在制造双轴定向聚酰胺系树脂薄膜时,将实质上未定向拉伸的聚酰胺系树脂薄膜或片,在纵、横方向各拉伸3倍以上,在该纵拉伸工序时,在比上述聚酰胺系树脂的玻璃化点温度+20℃高的温度下,且不超过冷结晶化温度+20℃的温度下进行至少2阶段的拉伸。
以下,在本发明中,详细地说明规定上述各构成要素的理由。
首先,本发明中,作为成为薄膜的构成材料的聚酰胺系树脂,特别优选的是以尼龙为主要成分的聚酰胺系树脂,在此,作为尼龙,可举出尼龙-6、尼龙-66、尼龙-46、尼龙-610、尼龙-612、尼龙-11、尼龙-12等各种尼龙。在其中,特别优选的是尼龙-6。另外,作为以这些尼龙为主要成分的聚酰胺系树脂,除了都是尼龙之外,作为其他成分,可包含少量的己二胺和己二酸或和邻苯二酸的尼龙盐及,间二甲苯二胺和己二酸的尼龙盐等进行共聚的共聚聚酰胺及其混合物。
另外,上述聚酰胺系树脂中,对于本发明特别优选的是相对粘度为2~3.5范围的。但是聚酰胺系树脂的相对粘度,对于得到的双轴拉伸薄膜的强韧性及延展性等有影响,当该相对粘度低于2时,冲击强度不够,另外,相对粘度超过3.5时,由于拉伸应力增大,有逐渐使双轴拉伸性变坏的趋势。因而,若选择使用具有2~3.5范围的相对粘度的聚酰胺系树脂,可避免上述不好的倾向,并且很容易地得到具有优良性能的双轴拉伸聚酰胺系树脂薄膜。另外,上述相对粘度是指将聚合物0.5g溶解在97.5%硫酸50ml的溶液中,在25℃进行测定的值。
进而,在以这些尼龙为主体的树脂中,也可少量含有在不妨碍聚酰胺系树脂特性的范围内的公知的添加剂,例如抗结块剂、抗静电剂、稳定剂、增塑剂等。
本发明的双轴定向聚酰胺系树脂薄膜,是通过将如后述的熔融挤出的该聚酰胺系树脂等,成形成片状或薄膜状的实质上未拉伸物,沿着纵、横方向进行双轴拉伸而得到的,但根据需要,该双轴拉伸后、热固定的薄膜状态的物性,必须满足上述(1)、(2)式的关系,另外,将该薄膜与聚乙烯或聚丙烯等聚烯烃系树脂薄膜进行叠层时,最好也满足上述(3)式的关系。
说明确定上述各式要素的理由。
3%≤BSx≤6% ……(1)在该式中,BSx表示全方向沸水收缩率中的最大值,其测定方法在以后叙述,但该值在确保双轴定向聚酰胺系树脂薄膜成形成袋状,进行热水处理时的耐热性(往往称为叠层强度或耐脱层性)的同时,在提高薄膜本身的强韧性、抗气孔性上是重要的,在BSx值小于3%时,作为强韧性、抗气孔性指标之一的冲击强度变得不充分,另一方面,若超过6%时,叠层变差、热水处理时的抗脱层不充分。为了提高强韧性、抗气孔性、叠层性及抗脱层性,最优选的BSx范围是3.5~5.0。
BSa≤1.5%……(2)在该式中,BSa表示薄膜流动方向,即对于纵方向,+45°方向的沸水收缩率和-45°方向的沸水收缩率差的绝对值(以下称为沸水收缩率的斜差),该值对于沸水处理时产生的卷曲现象有较大影响。即,本发明的双轴定向聚酰胺树脂薄膜,与上述的聚乙烯或聚丙烯等的聚烯烃系树脂薄膜进行叠层后,通过叠成二折,三边密封,作成袋状。因此,在该袋的上面和下面,是同一基质的薄膜出现在袋表面。因此,若将沸水收缩率的斜方向各作为A,B时,袋上面的A方向和下面的B方向,对于袋,则成为同一方向。即,双轴定向聚酰胺系树脂薄膜的沸水收缩率的斜差,是指袋的表内面斜对角线方向的收缩率差,该差越大,袋越容易挠曲,卷曲越显著。而且,按照本发明者们进行的研究,确认了只要将双轴定向聚酰胺系树脂薄膜的斜差抑制在1.5%以下,更优选的,抑制在1.2%以下,就可抑制沸水处理时袋的挠曲,而不生成S状的卷曲现象。
1.505≤Nz≤1.520……(3)在该式中,Nz表示薄膜厚度方向的折射率,该值对于叠层强度和厚斑等薄膜质量有大的影响。因此,该要素成为该双轴定向聚酰胺系树脂薄膜与聚烯烃系树脂薄膜进行叠层使用时的必须的要素。在Nz小于1.505时,与聚烯烃系树脂薄膜等的叠层强度不充分,在制袋后的沸水处理中,与叠层基质之间容易引起脱层现象。另一方面,Nz在将未拉伸的聚酰胺系树脂薄膜进行双轴拉伸的过程中,依次降低。换言之,Nz可以认为是拉伸指标之一,所说Nz大,是表示拉伸还不充分。在Nz超过1.520时,显著出现由于双轴拉伸不足引起的厚斑等,而不能得到满意的薄膜质量。考虑叠层强度和薄膜质量两方面,特别优选的Nz范围是1.507~1.516范围。
在本发明中,通过式(1)及(2)及式(3)特定上述的双轴拉伸聚酰胺系树脂薄膜特性,在确保高水平的强韧性、抗气泡性、叠层强度及薄膜质量的同时,可以得到在沸水收缩时也不发生卷曲现象的包装用袋。
具有这样特性的双轴拉伸聚酰胺系树脂薄膜,可通过除去后述的纵拉伸工序,采用通常的纵、横逐次双轴拉伸法、沿纵、横方向各拉伸3倍以上,而容易得到。例如进行纵拉伸后的横拉伸,是在纵拉伸单轴定向薄膜上,使用拉幅机等,在基质树脂的玻璃化点温度(Tg)~200℃左右的温度下,进行3倍左右以上的横拉伸,接着,在200℃~基质树脂的软化温度(Tm)左右下进行热固定,根据需要进行张弛热处理的方法。
在这样的拉伸工序中,特别重要的是纵拉伸工序,通过下述设定该纵拉伸条件,可容易地得到想达到的,具有上述物性的双轴定向聚酰胺系树脂薄膜。即是当拉伸时,首先,将未延伸的薄膜,在薄膜基质的玻璃化点温度(Tg)+20℃以上且不超过该薄膜基质的冷结晶化温度(Tcc)+20℃的温度范围内,至少以2个阶段纵拉伸到总倍率的3倍以上进行纵拉伸的方法,在该2个拉伸阶段中间,需要将其温度维持在玻璃化点温度(Tg)以上。通过设定这样的纵拉伸条件,容易进行以后的横拉伸,同时可容易得到不管该横拉伸、热固定条件如何,而满足上述式(1)~(3)要素的双轴拉伸聚酰胺系树脂薄膜。
再者,纵拉伸时的温度小于“薄膜基质的玻璃化点温度(Tg)+20℃”时,拉伸应力变高,在横拉伸工序时易断裂,另外,若超过“薄膜基质的冷结晶化温度(Tcc)+20℃”时,则出现进行热结晶化及厚斑增大的问题。若在第1阶段进行该纵拉伸,则得不到上述BSa降低效果,进而,即使在第2阶段进行该纵拉伸,其总倍率低于3倍时,纵方向的薄膜强度不充分,在任何时候都得不到本发明设定物性的薄膜。进而,在上述2个拉伸阶段的中间,若薄膜温度低于基质的玻璃化点温度(Tg),在纵第2阶段拉伸时的再加热处理时,进行热结晶化,会产生横拉伸时经常发生断裂的问题。
这样,只要如上述那样设定最初的纵拉伸条件,对于以后使用拉幅机等的横拉伸及热固定的条件,通过采用通常的方法,即可以得到作为本发明目的的、具有上述诸特性的双轴定向聚酰胺系树脂薄膜。
以下,用实施例更具体地说明本发明,但本发明当然不受下述实施例的限制,在满足前、后的主题的范围内,可适当地加以变更地进行实施,这些也都包括在本发明的技术范围。另外,在下述实施例中采用的物性值及特性的测定,评价法如下所述。将双轴定向聚酰胺系树脂薄膜切成每边为21cm的正方形在23℃、65%RH的气氛下,放置2小时以上。画出以该试样中央为中心的直径为20cm的圆,以纵方向(薄膜拉出方向)作为0°、以15°为间隔,顺时针地,在0~165°方向,引出通过圆中心的直线,测定各方向的直径,作为处理前的长度。
接着,将该试样在沸水中,进行30分钟的加热处理后,取出,擦掉沾在表面上的水分,风干后,在23℃、65%RH的气氛中,放置2小时以上,测定上述各直径方向引出的直线长度,作为处理后的长度,通过下述式,算出沸水收缩率。
BS=[(处理前的长度-处理后的长度/处理前的长度]×100(%)BSx=以15°为间隔,在0~165°方向测定中,收缩率最大值(%)BSa=45°及135°(即180°-45°)方向的收缩率差的绝对值(%)[折射率]将各试样薄膜在23℃、65%RH的气氛中,放置2小时以上后,用阿塔哥社制的“阿贝折射计4T型”进行测定。将各试样薄膜在23℃、65%RH的气氛中,放置2小时以上后,使用东洋精机制作所社制的“薄膜冲击试验机-TSS式”,用直径12.7mm的半球型碰撞锤测定断裂强度。将厚度15μm、宽400mm的双轴定向聚酰胺系树脂薄膜,从卷取辊的最边缘部分切成条,在该条形薄膜上涂复聚氨酯系AC剂(东洋蒙顿社制“EL443”)后,在其上,叠层上用模马西那里社制单式试验叠层装置,在315℃下挤出厚度为15μm的LDPE(低密度聚乙烯)薄膜,进而,在其上,叠层厚度为40μm的LLDPE(直链状低密度聚乙烯)薄膜,得到由聚酰胺系树脂/LDPE/LLDPE组成的3层叠层结构的叠层薄膜。
将该叠层薄膜,切成宽15mm、长200mm作为试片,使用东洋玻尔顿因社制的“坦锡伦UMT-II-500型”,在温度23℃、相对湿度65%的条件下,测定聚酰胺系树脂薄膜层和LDPE层间的剥离强度。拉伸速度为10cm/分钟、剥离角度取为180°,在剥离部分上沾上水后进行。将上述叠层薄膜,使用西部机械社制的试验密封机在卷长方向上,平行地叠成2层,在纵方向,将各两端每20mm,在150℃下连续地进行热封,在其垂直方向,以150mm的间隔,断续地热封10mm,得到幅宽200mm的半制品。将其,在卷长方向上,将两边缘部截断成密封部为10mm后,在与其垂直方向上的密封部分的边界上进行切断,制成3边密封袋(密封宽度10mm)。将此10个袋,在沸水中进行30分钟的热处理后,在23℃、65%RH的气氛下保持一昼夜,进而,将该10个袋叠起来,从上面对袋的整体加1Kg荷重,保持一昼夜后,取下荷重,按如下方式评价袋的挠曲(S型卷曲)的程度。
◎完全没有挠曲○稍微看到挠曲×明显地看到挠曲
××挠曲显著[制膜状况]在同一条件下,评价逐次拉伸2小时时的断裂次数。将双轴定向聚酰胺系树脂薄膜,在纵方向、横方向上,分别切成1m×5cm的短片状,使用安立电气社制的厚度计“K306C”,测定厚度,通过下述式,算出每1m的厚斑,重复5次,将其平均作为厚斑。
厚斑=[(最大厚度-最小厚度)/平均厚度]×100(%)实施例1将含有4%MXD(间二甲苯二胺)6的尼龙6树脂(相对粘度2.8、Tg41℃、Tcc71℃)进行真空干燥后,将其供给挤出机,在260℃下熔融,用T型模,挤压成片状,加直流高电压,使冷却辊上静电密集后,冷却固化,得到厚度为200μm的未定向薄片。
将该薄片,在拉伸温度75℃下,进行1.7倍的第一阶段纵拉伸后,保温在70℃,并在拉伸温度70℃下,进行第2阶段拉伸,使总拉伸倍率为3.3倍,接着,连续地导入到拉幅机上,在130℃下,横向拉伸到4倍,然后,在210℃下,进行热固定及4%的横向张驰热处理后,冷却,截断除去两边部分,得到厚度为15μm的双轴定向聚酰胺系树脂薄膜。
实施例2除了在上述实施例1中,将横向拉伸倍率取为3.5倍之外,其他与实施例1完全相同地进行,得到双轴定向聚酰胺系树脂薄膜。
参考例除了将纵拉伸温度取为65℃,在第1阶段,纵向拉伸到2.6倍,将以后进行的横向拉伸倍率取为4.5倍之外,其他与实施例1完全相同地得到双轴定向聚酰胺系数脂薄膜。
比较例1除了将纵拉伸温度取为65℃,在第1阶段,拉伸到3.3倍之外,其他与上述实施例1完全相同地得到双轴定向聚酰胺系数脂。
比较例2将纵向拉伸温度取为65℃,在第1阶段,纵向拉伸到2.8倍,将以后进行的横向拉伸温度取为120℃、拉伸倍率为4.5倍,在205℃下进行热固定后,在210℃下,一边吹蒸汽,一边进行5%的横向张弛热处理,得到双轴定向聚酰胺系树脂薄膜。
比较例3除了进行横向张弛热处理后,进一步用200℃的烘箱,一边使其横向地自由地收缩,一边进行再加热处理之外,其他与上述比较例1完全相同地得到双轴定向聚酰胺系数脂薄膜。
由上述实施例、参考例及比较例得到的各薄膜的性能测验结果,如表1所示。
表1<
如表1所示,在完全满足本发明规定要素的薄膜,其作为韧性、抗气孔性的指标的冲击强度及叠层强度均优良,且几乎没有发现S型卷曲。与此相反,BSa值在规定范围以外的比较例1中,显著地发生由于沸水处理引起的卷曲现象,另外,比较例2,是BSx及Nz的值脱离规定要素的例子,抗卷曲性、冲击强度、叠层强度均不充分。进而,比较例3是BSx过低的例子,抗冲击强度非常差,不实用。另外,在参考例中,由于BSx及BSa满足了规定的要素,所以抗冲击性及抗卷曲性良好,但由于Nz值脱离规定的要素而不能得到满意的叠层强度。
实施例3、比较例4、5除了使用含有4%的MXD6的尼龙6树脂(相对粘度3.1、Tg42℃、Tcc76℃)、采用表2所示的纵向拉伸温度之外,其他与实施例1相同地,得到双轴定向聚酰胺系树脂薄膜。研究断裂次数及厚斑的结果如表2所示。
表2<<
>发明的效果本发明如上述构成,通过用上述式(1)、(2),进而(3)的条件特定双轴拉伸聚酰胺系树脂薄膜的物性,可以提供强韧性、抗气孔性、叠层性、外观性优良同时,在沸水处理时,也不产生卷曲及叠层薄膜剥离(脱层现象)等,作为包装材料,特别是软罐头食品包装用袋,具有优良性能的双轴拉伸聚酰胺系树脂薄膜,另外,只要按照本发明方法,就可容易地制造具有这样特性的双轴拉伸聚酰胺系树脂薄膜。
权利要求
1.双轴定向聚酰胺树脂薄膜,其特征是同时满足下述关系式,3%≤BSx≤6%(BSx表示全方向的沸水收缩率中的最大值)BSa≤1.5%(BSa表示相对于纵向的+45°方向沸水收缩率和-45°方向沸水收缩率差的绝对值)
2.按权利要求1所述的双轴定向聚酰胺系树脂薄膜,其中的聚酰胺系树脂薄膜与聚烯烃系树脂薄膜叠层,而且除了满足上述关系外,还要满足下述关系式,1.505≤Nz≤1.520(Nz表示薄膜厚度方向的折射率)
3.双轴定向聚酰胺系树脂薄膜的制法,其特征是在制造双轴定向聚酰胺系树脂薄膜时,将实质上未定向的聚酰胺系树脂薄膜或片沿纵、横方向分别拉伸3倍以上,并且在纵向拉伸工序中,是在比上述聚酰胺系树脂的玻璃化点温度+20℃高的温度下,并不超过冷结晶化温度+20℃的温度下,至少进行二个阶段的拉伸。
全文摘要
本发明提供双轴定向拉伸的聚酰胺系树脂薄膜及制法,该薄膜同时满足式(1)、(2)的关系或进而满足式(3)的关系。3%≤BS
文档编号C08J5/18GK1133235SQ95120428
公开日1996年10月16日 申请日期1995年12月22日 优先权日1994年12月22日
发明者白枝照基, 藤田伸二, 奥平正 申请人:东洋纺绩株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1