真空沉积功能化的多孔材料的制作方法

文档序号:3800423阅读:194来源:国知局
专利名称:真空沉积功能化的多孔材料的制作方法
技术领域
本发明通常涉及材料表面的功能化,目的是改善它们的性质用于特殊应用。具体地,本发明涉及为功能化纸张、隔膜以及其他织造和非织造的多孔材料而进行的联合等离子体处理/汽相沉积工艺。
背景技术
术语“功能化”和相关术语在本领域及本申请中使用,其是指处理材料以改变其表面性质从而满足特殊应用的特定要求的工艺。例如,可以处理材料的表面能,以致使其特别地疏水或亲水,如对于特定的使用可能希望的那样。这样一来,表面功能化在许多材料的制造中已成为惯例,因为它向最终产品添加了价值。为了达到如此不同的最终结果,可以用从湿化学到各种形式的汽相沉积、真空金属化和溅射范围的多种方法执行功能化。
纺织品、非织造产品和纸坯是基于纤维的多孔材料,其具有得自纤维本性的固有性质。合成与天然纤维(例如聚丙烯、尼龙、聚乙烯、聚酯、纤维素纤维、羊毛、蚕丝以及其他的聚合物和混合物)能够被成形为具有大范围的机械和物理性质的不同产品。另外,这些材料的多孔性通常提供必要的功能,例如气体和/或液体透过、微粒过滤、液体吸收等等。因此,设计用来通过适当地功能化纤维来进一步修改它们的化学性质的任何随后的处理,都必须被执行到可能的程度而不影响材料的多孔性。迄今为止,当这样的功能化由聚合物沉积产生时,这在事实上是不可能的。
传统上,多种湿化学工艺已用于处理聚合物和功能化或者是惰性的或者具有有限的表面功能性的纤维。这些工艺涉及在液体或流动泡沫中沉浸纤维材料,所述液体或流动泡沫被设计用来涂敷单根纤维并给予特定的功能性,同时保持材料的多孔性和透气能力。但是,不管在商品中进行的许多声明,很明显,这样的湿化学工艺最好也只不过在很大程度上减少了基体的多孔性,或者,在最坏的情况下,严重堵塞纤维之间的空隙。因此,通过湿化学聚合物沉积的多孔材料的功能化产生了根据表面功能性的预期结果,但是伴随着底层多孔基体的机械特性的严重恶化。
这样一来,通过用聚合物膜涂敷纤维来功能化多孔材料的现有技术工艺因为多孔性的丧失而产生了令人不满意的结果。另外,这些用于织造和非织造的织物、纸张和其他多孔材料(像开放和封闭单元的泡沫塑料)的基于溶剂和基于水的工艺,已日益面临导致更高的最终产品成本的环境挑战和约束。在一些情况下,生产者已实际上从存在潜在健康危害的敷层市场退出,例如分别用于为了疏水/疏油和生物杀灭性质而功能化产品的氟和氯单体材料。
因此,对于新的敷层技术存在迫切的需要,所述新的敷层技术适合于多孔材料,实现安全,不利用溶剂,并且不影响多孔基体的机械与功能性质。尽管真空沉积应用的聚合物已在本领域中成功使用,以给予非多孔的、非可透过的基体以特殊的功能性质,但是历史上未曾进行尝试以功能化多孔材料,因为真空沉积工艺被认为可能加剧孔隙堵塞问题。
例如,通过单体的闪蒸及其随后的通过在真空室中的辐射固化的聚合的聚合物敷层的真空沉积,已由多种单体广泛使用,例如自由基可聚合丙烯酸酯、阳离子可聚合环氧树脂以及乙烯型单体,以控制所得到的产品的表面能并引进希望的特性。没有限制地,这些包括疏水性、疏油性、亲水性、亲油性、耐火性、生物杀灭性、染色、抗染色、抗静电以及传感器性质。在所有情况下,在下述条件下将基体暴露于蒸发单体的浓雾,所述条件造成其在基体表面上立即冷凝并固化。因此,顺理成章可以认为,这些条件会促成单体液滴在多孔基体的孔隙中集聚,并且导致其变成不可透过。本发明基于令人惊讶的发现当适当控制时,真空沉积能够成功地用于功能化多孔材料,同时保持它们的透过性性质。

发明内容
考虑到前述情况,本发明针对下述工艺,所述工艺适合于功能化大范围的多孔基体,包括合成的与天然的织物、纤维以及非织造的材料。因为这些基体的纤维本性和它们通常的商业用途,本发明尤其针对维持材料的透气性,提供敷层的耐久性和对洗涤与清洁的延长的抵抗性,并且选择性地处理织物材料的一面或两面。本发明还针对下述工艺,所述工艺和现有设备的使用兼容,并且和包括本领域中当前使用的各种添加剂与催化剂的其他涂层的应用兼容。
因此,根据本发明的一个方面,在等离子场中预处理多孔基体,并且在真空汽相沉积室中在基体之上立即闪蒸、沉积并固化功能化单体。我们发现,可以控制工艺,以便所得到的聚合物涂层以不延伸越过材料中的孔隙的超薄层(大约.02-3.0μm,取决于孔隙的尺寸)的方式粘附到单根纤维的表面。结果,基体的多孔性基本上未受影响,同时纤维和最终产品获得了预期的功能性。
本领域中同样使用金属和/或陶瓷的汽相沉积以产生许多种功能化的产品。例如,镀了金属的基体提供增加的反射性,而镀了铟钛氧化物(ITO)的材料提供导电性。金属、陶瓷和聚合物层在非多孔的基体上分开地或联合地沉积,以产生不同的效果,如对于特殊应用所希望的那样。
因此,根据本发明的另一个方面,在单一工艺中汽相沉积多层的聚合的、金属的和/或陶瓷的材料,以给予多孔基体以另外的功能性质。例如,尽管已知在织物上直接沉积金属层以添加反射性,但是所得到的敷层产品展示了低耐久性和对磨损的弱抵抗性(亦即,金属微粒并不在精微粗糙的纤维表面之上形成均匀的层,并且金属薄片趋于从织物分离)。根据本发明,首先沉积聚合物层,以在纤维之上产生光滑的薄层,然后再在所得到的改进的基体之上沉积金属层。这种工艺得到了更加光滑的纤维表面用于接收金属沉积,这防止了外部金属层的破裂和分离。如果必要的话,取决于预期的用途,还能够在金属膜之上添加另外的聚合物保护层而不显著影响总的织物透过性。
如下面详述的那样,通过将聚合物和陶瓷结合,获得了类似的优点,其中,当直接在纤维之上沉积时,所述陶瓷同样趋于破碎并从基体分离。从随后的说明书中的描述以及从在附加的权利要求中具体指出的新颖特征中,本发明的各种其他目的和优点将变得明显。因此,本发明由下文中的附图中显示的特征、优选实施例的详细说明中充分说明的特征和权利要求中具体指出的特征组成。


图1是根据本发明的修改的真空室的示意性表示。
图2是用于产生疏油过滤介质的未敷层的非织造聚丙烯织物的扫描电子显微镜(SEM)照片。
图3是在通过根据本发明的单体真空沉积敷层之后的图2的相同非织造聚丙烯织物的SEM照片。
图4是根据本发明的用于在多孔基体之上顺序沉积多层的配备有等离子预处理的真空室、闪蒸/冷凝站、单体辐射固化站以及金属或陶瓷汽相沉积站的示意性表示。
图5是具有在金属/陶瓷沉积单元之后的另外的在线真空沉积站的图4的相同室的示意性表示。
图6显示了多孔非织造聚丙烯过滤介质上的本发明的功能化性质,下部显示了未敷层材料的亲油(左边)和疏水(右边)性质,中部显示了在用特氟隆状聚合物(氟化丙烯酸酯)敷层之后获得的介质的疏油性质,顶部显示了在用润湿聚合物(羧酸功能化丙烯酸酯)敷层之后获得的亲水性质。
图7是本发明的工艺的基本步骤的流程图。
图8是本发明的第二实施例中包括的步骤的流程图。
图9是本发明的第三实施例中包括的步骤的流程图。
具体实施例方式
本发明在于下述发现利用真空沉积工艺以用聚合物膜功能化多孔基体,使得可以控制沉积层的厚度,并且避免当通过湿化学执行功能化时遇到的孔隙堵塞的问题。本发明还在于下述发现用薄聚合物层敷层多孔基体的单根纤维,产生了更好地适用于接收随后的金属或陶瓷层的沉积的表面。令人惊讶地,当在已经用于敷层单根纤维的底层聚合物层之上沉积时,发现与使用现有技术的沉积技术的以前的可能情况相比,金属和陶瓷对破碎和分离具有大得多的抵抗性。没有限制地,本发明应用的多孔基体由以下组成聚丙烯、聚乙烯、含氟聚合物、聚酯、尼龙、人造纤维、纸张、羊毛、棉花、玻璃纤维、碳纤维、基于纤维素的纤维以及金属。
为了本披露的目的,参考流体在正常条件下能够容易地透过的任何基体,在宏观的意义上使用术语“多孔”。这些包括例如纸张、纺织品、织造或非织造的织物、固体泡沫、隔膜以及类似的材料,其典型地展示了和这些产品相关的透过性性质。“多孔”并不意图包括虽然展示了结构的多孔性但是并不功能性地用作可透过的基体的材料。术语“冷凝”是指从气体到液体(并且随后是固体)的相变工艺,其依据和下述表面接触得到,所述表面在给定的运行压力下具有低于气体露点的温度。为了本发明的目的,这样的表面是已被预冷或和真空室中的冷却滚筒接触的经受汽相沉积的基体。最后,术语“单体”同样意图包括能够在真空室中闪蒸的低聚物以及单体或低聚物的混和。
在优选实施例中,通过以下步骤实施本发明首先,在等离子场中预处理多孔基体;然后,在防止形成的冷凝物堵塞基体的孔隙的条件下,在真空沉积工艺中立即使多孔基体经受蒸发单体的薄层的沉积。随后单体膜通过将其暴露于电子束场或其他辐射固化工艺而被聚合。单体被闪蒸并以传统方式在多孔基体上冷凝,但是,为了保持基体的结构的多孔性和相关的功能性质,控制基体在真空室的沉积区域之内的停留时间,以确保相对于基体中的孔隙的尺寸沉积非常薄的膜。这样一来,基体的多孔结构之内的单体渗透就产生了单根纤维(或孔隙壁)的敷层,而不封闭纤维之间的开口。这通过控制蒸汽密度和移动基体的速度以将敷层的厚度限制到大约0.02到3μm来实现。
一些时候真空等离子体也用于汽相沉积工艺的预处理以及完成处理产品。预处理用于清洁并活化基体。这些功能分别归因于杂质的等离子体烧蚀以及自由基和离子种类的生成。等离子体最后处理已显示具有化学和物理效应,其在改善汽相沉积工艺的结果方面是有用的。例如,可以添加用于在汽相沉积的表面上聚合烃气和其他功能性单体蒸汽的等离子体(等离子体移植与聚合),以产生特定的结果,例如亲水的和疏水的表面。
我们发现,当和纤维基体之上的单体真空沉积结合时,等离子体预处理基体产生了防止在基体之上形成单体液滴(本领域中被称作“形成珠状”(beading)的效果)的另外的意想不到的效果。这个发现对于防止堵塞用功能化的单体敷层的织物、纸张和其他多孔材料中的孔隙尤其有益。因此,在执行本发明中非常优选等离子体预处理和汽相沉积的联合。
如图1所示,为了实施本发明,修改传统的真空室10以使连续工艺中的多孔基体的顺次的等离子场预处理、汽相沉积以及辐射固化成为可能。典型地,在进给卷轴14和产品卷轴16之间连续地缠绕的同时,多孔基体12(像纸张或织物)在真空室10之内被完全地处理。基体12首先穿过冷却隔间18,以将其冷却到足够低的温度,以确保随后的单体蒸汽的冷凝。然后基体穿过等离子体预处理单元20,并且在这之后立即(在不超过几秒钟之内,优选地在毫秒之内)通过闪蒸器22,在那里基体暴露于单体蒸汽,以便在冷基体之上沉积液体薄膜。然后单体膜通过暴露于电子束单元24由辐射固化聚合,并且向下游穿过另一个(可选择的)冷却隔间18。如在本领域中众所周知的那样,代替预冷却被处理的基体12,可以用与经过蒸发器22的基体接触的旋转冷却滚筒(典型地保持在-20℃到30℃)来实现单体蒸汽的冷凝。
我们发现,能够明智地调整供应给蒸发器单元22的单体和缠绕基体的速度,以确保三维立体覆盖基体12的多孔结构,同时限制基体纤维之上沉积的膜的厚度。例如,以大约40ml/分钟的速率将氟化丙烯酸酯单体供应给闪蒸器22,并且以大约100米/分钟的速度将基体12(1.2米宽)移动通过室,产生了以下结果在具有大约20-40μm宽的孔隙的典型的过滤介质的聚丙烯纤维之上,形成了大约0.5μm厚的基本上均匀的膜。结果,并未显著影响介质的多孔性,但是材料被彻底地功能化而展示出疏油性质。
图2和3分别显示了根据本发明的敷层之前和之后的这样的非织造过滤介质的SEM照片。显微照片没有显示纤维之间的聚合物堵塞的迹象,并且,事实上,空气透过性测试显示两种样品之间没有显著的不同。这是在纤维表面之上的来自汽相状态的液态单体的敷形(亦即被成形以符合单根纤维的结构)沉积的结果,这和展示出非常有限的敷形沉积水平的传统的基于液态的方法形成对照。在汽相沉积之后覆盖每根纤维的聚合物表面的光滑和柔软的本性,被认为是更大的附着力以及当金属和/或陶瓷层进一步用于覆盖纤维时抵抗它们的破碎的原因。
一般而言,我们发现,设计用来改变多孔基体的化学功能性的薄聚合物敷层(0.1μm以下),在气体透过性方面并没有显著影响。设计用来提供针对磨损和撕扯的物理保护的较厚的敷层,在透气性方面仅仅具有较小的影响。如下面的表1所示,对于用本发明的工艺处理的三种不同的织物,空气透过性看来似乎仅仅是(并且在处理之后保持)材料重量(亦即编织的粗糙度)的函数,而不是聚合物敷层的函数。表中的每种材料(A-棉花,B-聚酯,C-羊毛)都由在金属化之前用差不多2-3μm的真空沉积的丙烯酸酯聚合物涂覆的织造织物组成。这种相对厚的聚合物敷层增强了金属化织物的磨损抵抗性和耐洗性,但是并没有显著影响材料的透过性。
表1

基于这些结果,很明显,本发明提供了环境上友好的基于真空的工艺,其利用了不含溶剂和不含水的单体,并且产生了不影响基体的功能多孔性的高质量聚合物敷层。敷层工艺能够在传统的真空敷层车间中进行,并且能够和在线等离子体处理和金属化联合,以产生独特的和高附加值产品。本发明的所有实施例的共同特征是通过单体的闪蒸和辐射固化所产生的多孔基体中的纤维或孔隙的敷层,以产生均匀的、薄的聚合物层,其功能化多孔材料的表面,而不会实质影响透过性或透气性。
各种测试已显示,该工艺能够成功用于功能化织造和非织造的织物、纸张、隔膜和泡沫基体的表面。诸如油和水的抵抗性和可湿性、释放、抗菌和其他化学功能性之类的性质用超薄聚合物敷层(小于0.2μm)是容易实现的。0.2-3μm等级的较厚的聚合物层已用于提供诸如热封之类的热机械性质、抗磨损性以及针对潮湿、酸、碱以及有机溶剂的化学抵抗性。能够在以高达1000ft/min的速度行进的基体之上沉积如此薄的多功能丙烯酸酯、单丙烯酸酯、乙烯基、环氧和各种其他低聚物的敷层。这种高生产率连同相对低的单体材料成本导致了非常经济的和成本效率的功能化工艺。
当进一步与金属和/或陶瓷层的汽相沉积联合时,本发明的工艺提供了大范围的多功能产品的改进。图4示意性显示了包括站32的真空室30,所述站32用于沉积金属和陶瓷(诸如溅射单元或活性电子束沉积单元之类)。注意在这个附图中显示的工艺中,对于冷凝步骤,通过和冷却滚筒34接触来冷却多孔基体12。如果希望的话,通过添加进一步的沉积单元,可以在线继续沉积另外的层。例如,透明的聚合物层可以进一步用于涂覆已在织物上沉积的金属层(其在本发明的初始薄聚合物膜之上),以便保护金属并防止磨损,同时保持织物的反射性。在这样的情况下,如图5所示,在金属化阶段之后会利用另外的闪蒸单元36,继之以第二辐射固化单元38。
可以预料,这样的层的联合能够在多种改进产品的生产中方便地使用。例如,金属化的织物用于装饰,并且用于实现滚动、垂直和水平百叶窗的生产中的节能。类似地,以金属化的纸张和非织造的聚合物形式呈现的可透气隔离广泛地在建筑物中使用,以在使真菌和霉菌的形成最小化的同时反射热。金属化的织物用于装饰外衣,而纸张用于标签。它们同样用作衣服衬里,并且在诸如睡袋和帐篷之类的宿营装备中使用,以改善隔离而不影响重量和透气性。在用于医用的毯子和带子中,在设计用来反射大量军用中的红外辐射的防火服(用于减少红外信息特征的夹克、衬衣、外衣、帐篷以及油布)中,在用于微波与雷达通信工业中的工人的外衣中,以及在用于电磁干扰(EMI)测试人员的衣服中,同样的优点是所希望的。
在汽车工业中同样广泛使用金属化的织物,以提供引擎和排热隔离以及过滤介质(例如功能化非织造聚丙烯用于制造带静电电荷的过滤系统和具有EMI屏蔽性质的空气过滤器)。泡沫材料和织物被金属化,以制造用于衬垫材料的电磁屏蔽、电缆屏蔽、用于马达的外罩和衬里、航空电子盒、电缆连接、天线、可移动的屏蔽室、窗户帷幕、墙壁覆盖物以及静电消除外衣。通过根据本发明的第一薄膜聚合物层的最初沉积,能够显著改善所有这些应用中使用的多孔材料的性能。
根据本发明,用设计用于特定应用的不同聚合物配方来涂覆多种纸张以及织造和非织造的织物。敷层的材料经受表面精微调查。在所有情况下数据都显示,在等离子预处理过的纤维上冷凝闪蒸的单体蒸汽,产生了均匀的薄液层,其覆盖每个单根纤维的整个表面,而不将纤维连接到纤维并堵塞孔隙。下面的例子显示了本发明的这些应用(所有的百分比都是按重量表示)。
例1——疏水/疏油敷层用疏水/疏油氟化丙烯酸酯聚合物涂覆功能化熔喷的(melt-blown)聚丙烯非织造织物,以产生排斥表面。在大约100毫托下闪蒸单体。织物在等离子场中被预处理,并且在一秒钟之内被暴露于单体蒸汽用于冷凝,同时以大约50米/分钟的速度行进。冷凝的单体层在100毫秒之内被电子束辐射而在线固化。从运行中产生了大约0.1μm厚的聚合物敷层,发现其提供了具有大约27达因/厘米的表面能的对水和油的足够排斥性。功能化的织物既排斥水基的流体,又排斥油基的流体,同时基本上保持了织物的最初透过性。敷层的材料作为带静电电荷的过滤介质显示了高性能。在非织造聚乙烯、纸张、含氟聚合物、聚酯纤维、尼龙纤维、人造纤维、羊毛织物以及棉织物上重复具有相同的氟化丙烯酸酯单体的相同敷层工艺。用各种各样的织物材料获得了类似的水/油排斥性结果,其中以从0.02到3.0μm范围的厚度沉积了功能化的单体。除了水和油排斥性之外,敷层的材料显示了较低的摩擦系数,这在敷层的织物中产生了丝般感觉。在更高的速度下(200米/分钟)的类似试验中,功能化的敷层被限制在织物材料的暴露表面。敷层织物的背面保持其最初的性质。(可以注意到,选择性地仅仅涂覆织物的一面的选择,是本发明的工艺的另一个独特的特性。)如图6(中间偏左侧)所示,这些敷层配方在这些织物中产生了希望的排斥特性,而不会损失处理过的织物的油排斥性,所述处理过的织物在10次洗涤周期之后仍基本保持不变。
表2排斥水和油的含氟聚合物敷层的耐久性

*数字1为最低的排斥性,而6是最高的。
例2——亲水敷层(在分开的测试中)用由羟基、羧基、硫酸基、氨基、酰氨基以及乙醚组功能化的亲水丙烯酸酯聚合物膜涂覆熔喷聚丙烯非织造织物。在大约10毫托下闪蒸单体。织物在等离子场中被预处理,并且在一秒钟之内被暴露于单体蒸汽用于冷凝,同时以大约30米/分钟的速度行进。冷凝的单体层在150毫秒之内被电子束辐射而在线固化。从运行中产生了大约0.1μm厚的聚合物敷层,发现其提供了具有大约70-72达因/厘米的表面能的在所有情况下对水的足够可湿性。被功能化的织物吸水,同时基本上保持了织物最初的透过性。敷层材料作为吸水介质显示了高性能。在非织造聚乙烯、含氟聚合物、聚酯纤维以及含氟聚合物织物上重复具有相同的亲水丙烯酸酯单体的相同敷层工艺。用具有从0.1到3.0μm范围的单体层的各种各样的织物材料获得了类似的结果。在更高的速度下(200米/分钟)的类似试验中,功能化的敷层被限制在织物材料的暴露表面。敷层织物的背面保持其最初的性质。图6显示了如上所述的敷层之前和之后的例子中使用的非织造聚丙烯过滤介质的表面的水测试。在敷层之前,材料是疏水的,如在照片的右下部处看到的那样。在根据本发明功能化之后,材料明显变得亲水,如在照片的右上部处被吸收到织物中的水滴所显示的那样。这样一来,这些敷层基体就能够方便地用于尿布、滤纸、电池隔板以及离子传送隔膜。下面的表3显示了对于用两种基于亲水丙烯酸酯的配方(Sigma 1033和Sigma 1032敷层)敷层的非织造聚丙烯的三种水渗透测试。已知为高度吸收的滤纸用作参考对照材料(因为已知未处理的尿布材料——聚丙烯——是疏水的)。
表3对非织造聚丙烯(NWPP)的水渗透测试

注意敷层的聚丙烯和高度吸收的滤纸一样有效。
例3——疏水/疏油着色敷层用混和在氟化丙烯酸酯单体中的3-5%的有机染料(例如分散红)重复和例1中相同的试验。敷层基体显示了同样水平的水和油的排斥性,在具有添加到敷层的颜色的条件下,在杜邦特氟隆排斥性测试中测量结果分别大约为6和5。通过监视有机染料的数量或敷层的厚度,能够控制颜色的强度。
例4——亲水着色敷层用混和在亲水丙烯酸酯单体中的3-5%的有机染料(例如孔雀石绿)重复和例2中相同的试验。敷层基体显示了具有可比较的高吸水性的着色表面。
例5——疏水/疏油生物杀灭敷层用氟化丙烯酸酯单体中的2-4%的有机抗菌添加剂(例如氯化芳香烃化合物)重复和例1中相同的试验。敷层基体显示了具有抗菌性质的水和油的排斥性,如下面指示的那样。

例6——亲水生物杀灭敷层用亲水丙烯酸酯单体中的3-5%的有机抗菌添加剂(例如氯化芳香烃化合物)重复和例2中相同的试验。敷层基体显示了抗菌性质和高吸水性。
例7——阻燃敷层用双丙烯酸酯单体中的5-20%的溴化化合物重复与例1和例2中相同的试验。敷层基体显示了具有和例1与例2相当的疏水/疏油和亲水性质的耐火性质。
例8——颜色变化感应敷层用双丙烯酸酯单体中的诸如苯酚试剂之类的5-20%的pH指示剂化合物重复与例1和例2中相同的试验。所得到的敷层基体随着环境pH值的相应变化可逆地改变颜色。使用当温度到达大约50℃时产生颜色从透明到灰色变化的诸如4-戊二烯-4-氰基联苯之类的5-30%的热敏分子重复相同的试验。敷层材料随着环境温度的变化而改变颜色。
例9——加味敷层用双丙烯酸酯单体中的5-20%的人造水果味化合物重复与例1和例2中相同的试验;例如,诸如4-(2,6,6-三甲基-1-环己-1-烯)-3-丁烯-2-酮之类的紫罗酮用于给与草莓味。除了和例1与例2中的那些可比较的疏水/疏油和亲水性质之外,敷层基体还相应地散发出水果味。
例10——湿抗拉强度敷层以较慢的速率(<100fpm)重复与例1与例2中相同的试验,以允许单体蒸汽一路渗透通过纸张材料的纤维并涂覆单根纤维的全部可用表面(同时保持材料的多孔性)。除了和例1与例2中的那些可比较的疏水/疏油和亲水性质之外,所得到的敷层纸张还展示了高湿抗拉强度。
例11——抗化学敷层用包含5-40%的三丙烯酸酯单体的单体重复与例1和例2中相同的试验,以便增加敷层的交联与密度,从而增加其抗化学性。敷层基体显示,三丙烯酸酯单体的添加增加了对有机溶剂以及酸和碱溶液的抗化学性,同时保持了和例1与例2的那些可比较的疏水/疏油和亲水性质。
例12——金属螯合敷层用双丙烯酸酯单体中的10-20%的丙烯酸乙酰丙酮单体重复与例2相同的试验。敷层基体通过粘结到金属离子(例如Cu、Pb、Cr)显示了金属螯合性质。因此,它们作为用于从水中去除金属离子的滤纸被成功地试验。
例13——质子导体敷层如以前的例子中那样,多孔聚丙烯和含氟聚合物膜用硫化化合物单体敷层,然后用电子束固化。敷层基体展示了质子传导性,从而显示出用作燃料电池隔膜的潜力。
例14——离子导体敷层如以前的例子中那样,多孔聚丙烯和含氟聚合物膜用和金属锂共同沉积以形成硫酸锂的硫化化合物涂覆,然后用电子束固化。敷层基体展示了锂离子传导性,从而显示出用作电池隔板和电解质的潜力。
除了前述例子之外,沉积聚合物层、继之以在线金属化的能力,如图5所示,在金属化的织物和纸张的生产中提供了一些极难得的机会。极薄的聚合物层能够提供磨损与腐蚀保护,这对大多数金属化的层是基本要求。例如,我们已显示,当用具有大约1.0μm的厚度的真空沉积的丙烯酸酯层敷层时,能够显著延长金属化织物的耐洗性。如此薄的聚合物层对织物透气性和“舒适”性质没有实际影响。类似地,用薄聚合物层能够保护用于热反射用途的金属化织物,所述薄聚合物层具有低红外吸收,以便一旦暴露于高温时使热吸收最小化(低发射率)。其他的功能化聚合物性质包括控制表面能,其可以从用于金属化材料的改善的粘附力和可湿性的高表面能到用于释放用途和类似于特氟隆的性能的低表面能变化。
如上面的例子显示的那样,敷层配方也已用诸如含氯分子之类的生物杀灭化合物有效地功能化。少量的生物杀灭剂和丙烯酸酯单体同时被蒸发,并且在辐射固化的主聚合物的基质(matrix)中被捕获。这样的敷层已成功地直接沉积在织物基体上,或者沉积在其他聚合物、金属或陶瓷膜之上。通过合成在粘合剂中配方的功能化有机染料并将其应用于白色的纸张和非织造的织物,类似地制备并应用了着色装饰敷层。
本发明显示,多孔材料可以由单体真空沉积功能化,以产生希望的表面性质,而不显著损失基体的最初特性。这样一来,织物和纸张上真空沉积的聚合物敷层,向传统的基于溶剂和水的敷层工艺提供了真正的可替换物。能够获得高度功能性的敷形地涂覆这些材料的纤维的敷层,同时很少或不影响多孔性和气体或液体透过性。具有亚微米厚度的敷层能够用于取代正面临环境和可回收性挑战的基于液体的氟化处理和蜡染工艺。真空室的完全封闭的条件在环境上是友好的,允许氟化、氯化和其他危险的单体配方被安全地处理。
图7、8和9是显示分别用于单层、双层和三层应用的本发明的优选实施例的基本步骤的流程图。本领域技术人员,在附加的权利要求显示和规定的本发明的原理和范围之内,可以进行已说明的细节、步骤和组件的各种改变。例如,尽管主要依据单面敷层说明本发明,但是很明显,可以分开或在线地涂覆薄片类型的基体的双面以产生不同的功能性。例如,可以功能化尿布材料,以在一侧改善亲水性,而在相反的一侧产生疏水性,从而产生在内部高度吸收而在外部排斥的尿布,如大多数使用所希望的那样。
因此,尽管已在此显示并说明了被认为是最实际的和优选的实施例的本发明,但是可以认识到,在本发明的范围之内能够进行改变,这些改变不限于在此披露的细节但是要依据权利要求的全部范围,以便包含任何和所有的等价工艺和产品。
权利要求
1.一种方法,用于功能化多孔基体以给予该基体以特殊的功能性,同时保持其透过性,所述方法包括以下步骤(a)在真空室中闪蒸具有所述功能性的单体以产生蒸汽;(b)在多孔基体上冷凝蒸汽以在多孔基体上产生所述单体的膜;以及(c)固化膜以在多孔基体上产生功能化的聚合物层;其中,在将所述聚合物层限制到最大厚度约3.0μm的蒸汽密度和停留时间的条件下执行所述冷凝步骤。
2.如权利要求1所述的方法,其进一步包括以下步骤在冷凝步骤之前的大约一秒钟之内,在等离子场中预处理所述基体。
3.如权利要求1所述的方法,其进一步包括以下步骤在所述聚合物层之上真空沉积无机层。
4.如权利要求3所述的方法,其中,从由金属和陶瓷组成的组中选择所述无机层。
5.如权利要求2所述的方法,其进一步包括以下步骤在所述聚合物层之上真空沉积无机层。
6.如权利要求5所述的方法,其中,从由金属和陶瓷组成的组中选择所述无机层。
7.如权利要求3所述的方法,其进一步包括在所述无机层上闪蒸并冷凝单体的第二膜的步骤,以及固化第二膜以在无机层上产生第二聚合物层的进一步的步骤。
8.如权利要求4所述的方法,其进一步包括在所述无机层上闪蒸并冷凝单体的第二膜的步骤,以及固化第二膜以在无机层上产生第二聚合物层的进一步的步骤。
9.如权利要求5所述的方法,其进一步包括在所述无机层上闪蒸并冷凝单体的第二膜的步骤,以及固化第二膜以在无机层上产生第二聚合物层的进一步的步骤。
10.如权利要求6所述的方法,其进一步包括在所述无机层上闪蒸并冷凝单体的第二膜的步骤,以及固化第二膜以在无机层上产生第二聚合物层的步骤。
11.如权利要求1所述的方法,其中,所述多孔基体包括从由聚丙烯、聚乙烯、含氟聚合物、聚酯、尼龙、人造纤维、纸张、羊毛、棉花、玻璃纤维、碳纤维、基于纤维素的纤维以及金属组成的组中选择的多孔材料;并且所述单体是提供水和油的排斥功能性的氟化单体。
12.如权利要求11所述的方法,其中,所述单体包括着色剂。
13.如权利要求11所述的方法,其中,所述单体包括生物杀灭添加剂。
14.如权利要求11所述的方法,其中,所述单体包括提供阻燃功能性的溴化单体。
15.如权利要求1所述的方法,其中,所述多孔基体包括从由聚丙烯、聚乙烯、聚酯、尼龙、人造纤维、纸张、棉花、羊毛、玻璃纤维、碳纤维、基于纤维素的纤维以及金属组成的组中选择的多孔材料;并且用从羟基、羧基、硫酸基、氨基、酰氨基以及乙醚的组中选择的功能组功能化所述单体,以提供亲水功能性。
16.如权利要求15所述的方法,其中,所述单体包括着色剂。
17.如权利要求15所述的方法,其中,所述单体包括生物杀灭添加剂。
18.如权利要求15所述的方法,其中,所述单体包括提供阻燃功能性的溴化材料。
19.如权利要求15所述的方法,其中,所述单体包括提供金属螯合功能性的丙烯酸乙酰丙酮单体。
20.如权利要求1所述的方法,其中,所述多孔基体包括从由聚丙烯、聚乙烯、含氟聚合物、聚酯、尼龙、人造纤维、纸张、棉花、羊毛、玻璃纤维、碳纤维、基于纤维素的纤维以及金属组成的组中选择的多孔材料;并且所述单体包括硫酸基,以提供质子传导功能性。
21.如权利要求1所述的方法,其中,所述多孔基体包括从由聚丙烯、聚乙烯、含氟聚合物、聚酯、尼龙、人造纤维、纸张、羊毛、棉花、玻璃纤维、碳纤维、基于纤维素的纤维以及金属组成的组中选择的多孔材料;所述单体包括硫酸基;并且所述方法进一步包括以下步骤在固化步骤之前在所述单体之上共同沉积金属锂,以提供具有离子传导功能性的聚合物电解质。
22.如权利要求3所述的方法,其中,所述多孔基体包括从由聚丙烯、聚乙烯、含氟聚合物、聚酯、尼龙、人造纤维、纸张、羊毛、棉花、玻璃纤维、碳纤维、基于纤维素的纤维以及金属组成的组中选择的多孔材料;并且所述金属层提供了低辐射率功能性。
23.如权利要求7所述的方法,其中,所述多孔基体包括从由聚丙烯、聚乙烯、含氟聚合物、聚酯、尼龙、人造纤维、纸张、羊毛、棉花、玻璃纤维、碳纤维、基于纤维素的纤维以及金属组成的组中选择的多孔材料;并且所述金属层提供了低辐射率功能性。
24.一种多孔基体,其由权利要求1所述的方法产生,其中,所述单体含有亲水和亲油的功能性。
25.一种多孔基体,其由权利要求1所述的方法产生,其中,所述单体含有亲水的静电消除功能性。
26.一种多孔基体,其由权利要求1所述的方法产生,其中,所述单体含有疏水和疏油的功能性。
27.一种多孔基体,其由权利要求1所述的方法产生,其中,所述单体含有颜色。
28.一种多孔基体,其由权利要求1所述的方法产生,其中,所述单体含有生物杀灭功能性。
29.一种多孔基体,其由权利要求1所述的方法产生,其中,所述单体含有耐火功能性。
30.一种多孔基体,其由权利要求1所述的方法产生,其中,所述单体含有金属螯合功能性。
31.一种多孔基体,其由权利要求1所述的方法产生,其中,所述单体含有质子传导功能性。
32.一种多孔基体,其由权利要求1所述的方法产生,其中,所述单体含有离子传导功能性。
33.一种多孔基体,其由权利要求1所述的方法产生,其中,所述单体含有pH感应功能性。
34.一种多孔基体,其由权利要求1所述的方法产生,其中,所述单体含有散发气味的功能性。
35.一种多孔基体,其具有由权利要求1所述的方法产生的增加的湿抗拉强度。
36.一种多孔基体,其具有由权利要求1所述的方法产生的增加的抗化学性。
37.一种多孔基体,其具有由权利要求1所述的方法产生的增加的抗磨损性。
38.一种多孔基体,其具有由权利要求1所述的方法产生的减少的摩擦系数。
39.一种多孔基体,其由权利要求1所述的方法产生,具有双面和相应的相反功能性。
40.一种多孔基体,其由权利要求3所述的方法产生,其中,所述无机层是金属性的,以提供导电性、低辐射率和静电消除功能性。
41.一种多孔基体,其由权利要求5所述的方法产生,其中,所述无机层是金属性的,以提供导电性、低辐射率和静电消除功能性。
全文摘要
在等离子场(20)中预处理多孔基体(12),并且在真空汽相沉积室(10)中在多孔基体之上立刻闪蒸(22)、沉积并固化(24)功能化的单体。通过明智地控制工艺过程以便所得到的聚合物敷层以不延伸越过材料中的孔隙的超薄层(大约0.02- 3.0μm)的方式粘附到单根纤维的表面,多孔基体(12)的多孔性基本未受影响,同时纤维和最终产品获得了希望的功能性。所得到的聚合物层还用于改善金属和陶瓷敷层的粘附力和耐久性。
文档编号B05D3/00GK1791701SQ200480011126
公开日2006年6月21日 申请日期2004年4月23日 优先权日2003年4月25日
发明者迈克尔·G·米哈埃, 安盖洛·扬利济斯 申请人:亚利桑那西格玛实验室公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1