车辆的动力传递控制装置的制作方法

文档序号:3848857阅读:173来源:国知局
专利名称:车辆的动力传递控制装置的制作方法
技术领域
本发明涉及车辆的动力传递控制装置,尤其涉及适用于具有内燃机和电动机来作为动力源的车辆并具有手动变速器和摩擦离合器的车辆的动力传递控制装置。
背景技术
—直以来,具有发动机和电动机(电动马达、电动发电机)来作为动力源的所谓的混合动力车辆广为人知(例如参照专利文献I )。近年来,作为混合动力车辆且具有手动变速器和摩擦离合器的车辆(以下称为“HV-MT车”)得以研发。这里所说的“手动变速器”指的是根据驾驶员操作的变速杆的档位来选择变速档的不具有扭矩转换器的变速器(所谓的手动变速器、MT)。另外,这里所说的“摩擦离合器”指的是,插入安装在内燃机的输出轴与手动变速器的输入轴之间且根据驾驶员操作的离合器踏板的操作量而使摩擦片的接合状态发生变化的离合器。以下将内燃机的输出轴的扭矩称为“内燃机扭矩”,将电动机的输出轴的扭矩称为“电动机扭矩”。现有技术文献专利文献专利文献1:日本特开2000-224710号公报。在HV-MT车中可采用如下这样的结构:电动机的输出轴连接于内燃机的输出轴、变速器的输入轴以及变速器的输出轴中的任一者。以下对电动机的输出轴连接于变速器的输出轴的结构进行研究。在该结构中,在为了进行变速动作等而踩踏离合器踏板的状态(更具体而言,摩擦离合器处于完全分离状态时)下,可基于电动机扭矩而将扭矩(具体而言是车辆加速方向上的驱动扭矩以及车辆减速方向上的再生扭矩)传递给驱动轮。相对于此,在具有手动变速器和摩擦离合器且作为动力源仅安装了内燃机的一直以来广为人知的车辆(以下称为“通常MT车”)的情况下,当摩擦离合器处于完全分离状态时,无法基于内燃机扭矩将扭矩传递给驱动轮。再者,还存在想使HV-MT车的驾驶感受与通常MT车的驾驶感受一致(接近)这样的要求。如果从满足该要求的观点出发,则一般考虑在HV-MT车中,当摩擦离合器处于完全分离状态时,优选将电动机扭矩调整为O (不向驱动轮传递电动机扭矩)。具体而言,例如,一般考虑在产生基于电动机扭矩的车辆减速方向上的扭矩(再生扭矩)的状态下,在随着变速动作的开始而踩踏离合器踏板的情况(摩擦离合器变为完全分离状态的情况)下,将再生扭矩直接调整为O。另外,一般考虑在这样地把再生扭矩调整为O的状态下,在随着变速动作的终止而离合器踏板复位的情况(摩擦离合器变为非完全分离状态的状态的情况)下,基于电动机扭矩的车辆驱动方向上的扭矩(驱动扭矩)开始被直接传递至驱动轮。再者,当电动机产生再生扭矩(> O)时,电动机作为发电机发挥功能,从而可将基于再生扭矩而发电所得的能量储存在电池中。因此,在如上所述地踩踏离合器踏板的情况(摩擦离合器变为完全分离状态的情况)下把再生扭矩直接调整为O的方法,从提高能源效率(提高燃油效率)的观点出发是不优选的。另一方面,当电动机产生驱动扭矩(> O)时,电动机作为马达发挥功能,为了产生驱动扭矩而消耗电池中储存的能量。因此,在如上所述地离合器踏板复位的情况(摩擦离合器变为非完全分离状态的状态的情况)下,开始将驱动扭矩直接传递至驱动轮的方法,从提高能源效率(提高燃油效率)的观点出发是不优选的。以上的问题是基于最优先要求想使HV-MT车的驾驶感受与通常MT车的驾驶感受一致的结果而产生的。

发明内容
本发明的目的在于提供一种动力传递控制装置,其是以HV-MT车为对象的动力传递控制装置,在考虑了想使HV-MT车的驾驶感受与通常MT车的驾驶感受一致这样的要求的同时,可提高能源效率(燃油效率)。本发明的车辆的动力传递控制装置适用于具有内燃机和电动机来作为动力源的混合动力车辆。该动力传递装置具有手动变速器、摩擦离合器、控制机构。手动变速器是根据驾驶员操作的换档操作构件的档位来选择变速档且不具有扭矩转换器的变速器,具有从所述内燃机的输出轴输入动力的输入轴和向所述车辆的驱动轮输出动力的输出轴。所述手动变速器的所述输出轴上连接着所述电动机的输出轴。摩擦离合器插入安装于所述内燃机的输出轴和所述手动变速器的输入轴之间,是根据驾驶员操作的离合器操作构件的操作量来改变接合状态的离合器。所述离合器操作构件的操作由第二检测机构检测。控制机构控制所述内燃机的输出轴的扭矩(内燃机扭矩)、以及所述电动机的输出轴的扭矩(电动机扭矩)。当判定所述内燃机的输出轴和所述手动变速器的输出轴之间实现了动力传递系统时,所述电动机扭矩被调整为基本电动机扭矩,该基本电动机扭矩的大小根据所述加速操作构件的操作量而决定的。基本电动机扭矩,当所述加速操作构件的操作量为规定量以上时,成为所述车辆的加速方向上的驱动扭矩,当所述加速操作构件的操作量不足所述规定量时,成为所述车辆的减速方向上的再生扭矩。加速操作构件的操作量由第一检测机构检测。所谓的“判定所述内燃机的输出轴和所述手动变速器的输出轴之间实现了动力传递系统的情况”,具体而言指的是这样的状态:被判定为摩擦离合器处于非完全分离状态的状态(完全接合状态或者半接合状态),且手动变速器处于空档以外的状态。所谓的“手动变速器的空档以外的状态”指的是在手动变速器的输入轴和输出轴之间实现了动力传递系统的状态。本发明的动力传递控制装置的特征在于,在所述电动机扭矩被调整成作为所述再生扭矩的所述基本电动机扭矩,且判定在所述内燃机的输出轴和所述手动变速器的输出轴之间从实现了动力传递系统的状态变为未实现动力传递系统的状态的情况下,基于此,实施再生扭矩减小控制。在再生扭矩减小控制中,作为所述再生扭矩的所述电动机扭矩的大小从所述基本电动机扭矩的大小减小至比O大的规定的微小值,其后维持为所述微小值。在此,在所述电动机扭矩被调整为作为所述再生扭矩的所述基本电动机扭矩,且判定所述摩擦离合器从非完全分离状态的状态变为所述完全分离状态的情况下,基于此,开始进行所述再生扭矩减小控制,这是优选的。所谓的“判定所述内燃机的输出轴和所述手动变速器的输出轴之间未实现动力传递系统的情况”,具体而言指的是如下的状态:判定摩擦离合器处于完全分离状态,或者手动变速器处于空档状态。所谓的“手动变速器的空档状态”指的是,手动变速器的输入轴和输出轴之间未实现动力传递系统的状态。根据本发明,在离合器踏板受到踩踏的情况(摩擦离合器变为完全分离状态的情况)(或者手动变速器变为空档状态的情况)下,再生扭矩的大小并不减小到0,而是减小至“比O大的微小值”,其后维持为所述微小值。因此,与如上所述在离合器踏板受到踩踏的情况(摩擦离合器变为完全分离状态的情况)(或者手动变速器变为空档状态的情况)下将再生扭矩直接调整为O的情况相比,提高了能源效率(燃油效率)。而且,与在离合器踏板受到踩踏后(摩擦离合器变为完全分离状态后)(或者手动变速器变为空档状态后)仍把再生扭矩维持为基本电动机扭矩的情况相比,HV-MT车的驾驶感受更加接近于通常MT车的驾驶感受。即,能在考虑到想使HV-MT车的驾驶感受和通常MT车的驾驶感受一致这样的要求的同时提高能源效率(燃油效率)。上述本发明的装置可构成为,在通过所述再生扭矩减小控制的实施而将作为所述再生扭矩的所述电动机扭矩的大小维持为所述微小值的状态下,判定所述摩擦离合器的所述完全分离状态从所述再生扭矩减小控制的开始起持续了规定时间时,基于此,作为所述再生扭矩的所述电动机扭矩的大小从所述微小值逐渐向O减小。另外,所述换档操作构件的档位越是位于低速侧,所述车辆的速度越大,或者使驾驶员操作的所述车辆减速用的减速操作构件的操作量越大,则将所述微小值设定为更大的值是优选的。另外,本发明的动力传递控制装置的其他特征在于,作为再生扭矩减小控制,实施如下这样的控制:将作为所述再生扭矩的所述电动机扭矩的大小仅在第一规定期间内维持为所述基本电动机扭矩的大小,其后减小至O。由此,根据与上述的再生扭矩减小控制相同的理由,也能在考虑到了想使HV-MT车的驾驶感受和通常MT车的驾驶感受一致这样的要求的同时,提高能源效率(燃油效率)。另外,本发明的动力传递控制装置的其他特征在于,在通过所述再生扭矩减小控制的实施而将所述电动机扭矩的大小维持为O的状态下,判定在所述内燃机的输出轴和所述手动变速器的输出轴之间从未实现动力传递系统的状态变为实现了动力传递系统的状态时,基于此,实施电动机扭矩复位控制。在电动机扭矩复位控制中,所述电动机扭矩的大小仅在第二规定期间内维持为0,其后所述电动机扭矩复位为所述基本电动机扭矩。在此,在通过所述再生扭矩减小控制的实施而将所述电动机扭矩的大小维持为O的状态下,判定所述摩擦离合器从完全分离状态变为非所述完全分离状态的状态时,基于此,开始所述电动机扭矩复位控制,这是优选的。根据本发明,在离合器踏板复位的情况(摩擦离合器处于非完全分离状态的状态的情况)(或者手动变速器处于空档以外的状态的情况)下,电动机扭矩仅在第二规定期间内维持为0,其后电动机扭矩复位为所述基本电动机扭矩。因此,与如上所述的在离合器踏板复位的情况(摩擦离合器变为非完全分离状态的状态的情况)(或者手动变速器变为空档以外的状态的情况)下开始把驱动扭矩直接传递给驱动轮的情况相比,提高了能源效率(燃油效率)。


图1是安装了本发明实施方式的动力传递控制装置的HV-MT车的结构示意图。
图2是表示根据图1所示的装置来实施再生扭矩减小控制时的一例的时序图。图3是表示根据图1所示的装置来实施再生扭矩减小控制以及MG扭矩复位控制时的一例的时序图。附图标记的说明Μ/T...变速器、E/G…发动机、C/T…离合器、Μ/G…电动发电机、CP…离合器踏板、AP…油门踏板、SI…离合器操作量传感器、S2…档位传感器、S3…油门操作量传感器、SI..制动操作量传感器、S5…车轮速度传感器、ECU…电子控制单元
具体实施例方式以下参照附图对本发明的车辆的动力传递控制装置的实施方式进行说明。(结构)图1表示安装了本发明实施方式的动力传递控制装置(以下称为“本装置”。)的车辆的示意结构。该车辆是具有发动机E/G和电动发电机Μ/G来作为动力源的混合动力车辆,且具有不含扭矩转换器的手动变速器Μ/T和摩擦离合器C/T。即,该车辆是上述的HV-MT车。发动机E/G是公知的内燃机,例如是使用汽油作为燃料的汽油发动机、使用轻油作为燃料的柴油发动机。手动变速器Μ/T是根据驾驶员操作的变速杆SL的档位来选择变速档且不具有扭矩转换器的变速器(所谓的手动变速器)。Μ/T具有从E/G的输出轴输入动力的输入轴和向车辆的驱动轮输出动力的输出轴。Μ/T例如具有前进用的四个变速档(I速 4速)以及后退用的一个变速档(R)。Μ/ T可形成空档状态。“Μ/T的空档状态”指的是在Μ/T的输入轴与输出轴之间未实现动力传递系统的状态。“Μ/T的空档以外的状态”指的是在Μ/T的输入轴与输出轴之间实现了动力传递系统的状态(具体而言是选择了前进用或后退用的变速档的状态)。Μ/T的变速档,可利用将变速杆SL和Μ/T内部的套筒(未图示)机械性连接的连接机构等,根据变速杆SL的档位来机械性地选择或改变,也可利用根据检测变速杆SL的档位的传感器(后述的传感器S2)的检测结果而动作的驱动器的驱动力来电性地(即通过所谓的线控方式)选择或改变。摩擦离合器C/T插入安装于E/G的输出轴和Μ/T的输入轴之间。C/T是根据驾驶员操作的离合器踏板CP的操作量(踩踏量)来改变摩擦片的接合状态(更具体而言是与M/T的输入轴一体旋转的摩擦板相对于与E/G的输出轴一体旋转的飞轮的轴向位置)的公知的
宦人興两口名> O作为接合状态存在完全接合状态、半接合状态以及完全分离状态。完全接合状态指的是在未发生打滑的情况下传递动力的状态。半接合状态指的是在发生打滑的情况下传递动力的状态。完全分离状态指的是不传递动力的状态。如果离合器踏板CP的操作量(踩踏量)逐渐增大,则c/τ从完全接合状态经由半接合状态而变为完全分离状态。C/Τ的接合状态(摩擦片的轴向位置),可利用将离合器踏板CP和C/Τ (摩擦片)机械性连接的连接机构等,根据CP的操作量来机械性地调整,也可利用根据检测CP的操作量的传感器(后述的传感器Si)的检测结果而动作的驱动器的驱动力来电性地(即通过所谓的线控方式)调整。电动发电机Μ/G具有一种公知的结构(例如,交流同步马达),例如以转子(未图示)与Μ/G的输出轴一体旋转的方式而构成。Μ/G的输出轴通过公知的齿轮系等,以可传递动力的方式与Μ/T的输出轴连接。以下把E/G的输出轴的扭矩称为“EG扭矩”,把Μ/G的输出轴的扭矩成为“MG扭矩”。本装置具有检测离合器踏板CP的操作量(踩踏量、离合器行程等)的离合器操作量传感器S1、检测变速杆SL的位置的档位传感器S2、检测油门踏板AP的操作量(油门开度)的油门操作量传感器S3、检测制动踏板BP的操作量(踏力、操作的有无等)的制动操作量传感器S4、检测车轮的速度的车轮速度传感器S5。而且,本装置具有电子控制单元E⑶。E⑶通过根据来自上述的传感器SI S5以及其他的传感器等的信息等来控制E/G的喷油量(节流阀的开度)从而控制EG扭矩,并通过控制逆变器(未图示)从而控制MG扭矩。具体而言,EG扭矩和MG扭矩的分配根据来自上述的传感器SI S5以及其他的传感器等的信息等而得以调整。EG扭矩以及MG扭矩的大小主要根据油门开度来分别调整。尤其,在本例中,当根据传感器SI的输出判定C/Τ处于非完全分离状态的状态(即,完全接合状态以及半接合状态)时,MG扭矩被调整为基本MG扭矩。基本MG扭矩,当油门开度为规定值(> O)以上时,成为车辆的加速方向上的扭矩(驱动扭矩),当油门开度不足前述规定值时成为车辆的减速方向上的扭矩(再生扭矩)。基本MG扭矩的大小根据油门开度而决定。具体而言,随着油门开度从前述规定值增大,作为驱动扭矩的基本MG扭矩的大小从O增大。随着油门开度从前述规定值向O减小,作为再生扭矩的基本MG扭矩的大小从O増大。前述规定值可以一定,也可以根据车速等而不同。前述规定值可事先通过实验等来决定最佳值。当Μ/G产生再生 扭矩(> O)时,Μ/G作为发电机发挥功能,从而可将基于再生扭矩而发电所得的能量储存在电池(未图示)中。另一方面,当Μ/G产生驱动扭矩(> O)时,M/G作为马达发挥功能,为了产生驱动扭矩从而消耗电池(未图示)中所储存的能量。(再生扭矩减小控制以及MG扭矩复位控制)如上所述,在本装置中,Μ/G的输出轴以可传递动力的方式连接于Μ/T的输出轴。因此,在为了变速动作等而踩踏离合器踏板CP的状态(C/Τ处于完全分离状态时)下,可基于MG扭矩而将扭矩(具体而言是驱动扭矩或再生扭矩)传递至驱动轮。相对于此,在具有手动变速器和摩擦离合器且作为动力源仅安装了内燃机的、一直以来广为人知的车辆(上述的通常MT车)的情况下,当摩擦离合器处于完全分离状态时,无法基于内燃机的扭矩而将扭矩传递至驱动轮。存在着想使HV-MT车的驾驶感受与通常MT车的驾驶感受一致(接近)这样的要求。如果从满足该要求的观点出发,则在本装置中,当C/Τ处于完全分离状态时,优选将MG扭矩调整为O (不把MG扭矩传递至驱动轮)。以下参照图2对该情况进行说明。在图2所示的例子中,在时间点tl以前,C/T维持完全接合状态。另外,在时间点tl以前,通过使油门开度回到0,从而使MG扭矩(=基本MG扭矩)从驱动扭矩变为再生扭矩。由此,C/Τ维持完全接合状态,且在产生基于MG扭矩的再生扭矩(=基本MG扭矩)的状态下,在时间点tl,为了变速动作等而开始离合器踏板CP的踩踏操作。由此,在时间点tl之后,随着CP的踩踏操作的推进,c/τ从完全接合状态变为半接合状态,在时间点t2 (参照点Ql)之后,C/Τ维持在完全分离状态。在图2所示的例子中,为了实现如上所述的“在C/Τ处于完全分离状态时,将MG扭矩调整为0”,在C/Τ变为完全分离状态的时间点t2之后,如图2中的虚线所示,再生扭矩的大小被从基本MG扭矩的大小直接调整/维持为O。但是,如此地在C/Τ变为完全分离状态的时间点把再生扭矩直接调整为0,这意味着之后无法将基于再生扭矩而发电所得的能量储存在电池中。因此,从提高能源效率(提高燃油效率)的观点来看是不优选的。而在本装置中,时间点t2之后,如图2中的实线所示,再生扭矩的大小从基本MG扭矩的大小向微小值A O O)减少(参照时间点t3),其后,维持在微小值A。当C/Τ的完全分离状态从时间点t3开始,经过规定期间Pl而持续到时间点t4时,在时间点t4之后,再生扭矩的大小从微小值A逐渐向O减小。进而,从时间点t4开始,经过规定期间P2而到时间点t5之后,再生扭矩维持在O。另外,在当时间点t2以前再生扭矩的大小不足微小值A的情况下,在时间点t2之后,再生扭矩的大小可维持在前述“不足微小值A”的值。其结果是,与如上所述的“在时间点t2之后,再生扭矩的大小被直接调整为O的情况(参照图2的虚线)”相比,能在电池中多储存与图2中用小点表示的区域相当的量的能量。即,提高了能源效率(燃油效率)。而且,与在C/Τ变为完全分离状态后仍把再生扭矩的大小持续维持在基本MG扭矩的大小的情况相比,HV-MT车的驾驶感受更接近于通常MT车的驾驶感受。即,根据本装置,能在考虑到想使HV-MT车的驾驶感受与通常MT车的驾驶感受一致这样的要求的同时,提高能源效率(燃油效率)。变速杆SL的档位越处于低速侧,车速越大,或者制动踏板BP的操作量(踏力)越大,则越能把微小值A设为更大的值。由此,可进一步优化驾驶感受。另外,也可以是变速杆SL的档位越处于低速侧,车速越大,或者制动踏板BP的操作量(踏力)越大,则越把规定期间P1、或者规定期间P2设定得更长。接着,参照图3对其他的例子进行说明。在图3所示的例子中,C/Τ在时间点t2变为完全分离状态后,直到C/T维持在完全分离状态的阶段,与图2所示的例子相同。在图3所示的例子中,其后,随着油门开度从O增大,并且进行了离合器踏板CP的复位操作。随着CP的复位操作的进行,在时间点t7 (参照点Q2)之后,C/Τ从完全分离状态向半接合状态变化,在时间点t9之后,C/Τ维持在完全接合状态。另外,在时间点t7,油门开度已经超过了前述规定值(即,基本MG扭矩已经作为驱动扭矩被运算)。在图3所示的例子中,为了实现如上所述的“当C/Τ处于完全分离状态时,调整MG扭矩为0”,在C/Τ变为完全分离状态的时间点t2之后,如图3中的虚线所示,将再生扭矩的大小直接调整/维持为基本MG扭矩的大小,且在如此地将再生扭矩的大小调整为O的状态下,在C/Τ变为非完全分离状态的状态的时间点t7之后,如图3中的虚线所示,把MG扭矩直接复位为基本MG扭矩(=驱动扭矩> O)。但是,如此地在C/Τ变为完全分离状态的时间点把再生扭矩直接调整为0,这意味着从其后开始,基于再生扭矩而发电所得的能量无法储存于电池中。而且,在C/τ变为非完全分离状态的状态的时间点把MG扭矩直接复位为基本MG扭矩,这意味着从其后开始会消耗为了产生MG扭矩(驱动扭矩)而在电池中储存的能量。这些从提高能源效率(提高燃油效率)观点出发是不优选的。因此,在本装置中,在时间点t2之后,如图3中的实线所示,从时间点t2开始经过第一规定期间Tl到时间点t6为止,再生扭矩的大小维持在基本MG扭矩的大小,其后,再生扭矩的大小被调整/维持为O。而且,在本装置中,时间点t7之后,如图3中的实线所示,从时间点t7开始经过第二规定期间T2到时间点t8为止,MG扭矩的大小维持为0,其后,MG扭矩复位为基本MG扭矩(=驱动扭矩> O)。其结果是,与如上所述的“在时间点t2之后,再生扭矩的大小被直接调整为O的情况(参照图3的虚线)”相比,能在电池中多储存与图3中用小点所示的左侧区域相当的量的能量。而且,与“在时间点t7之后,MG扭矩直接复位为基本MG扭矩的情况(参照图3的虚线)”相比,能减少与图3中用小点表示的右侧区域相当的量的消耗的能量。即,提高了能源效率(燃油效率)。而且,与在C/Τ变为完全分离状态后、再生扭矩的大小仍持续维持为基本MG扭矩的大小的情况相比,HV-MT车的驾驶感受更接近于通常MT车的驾驶感受。即,根据本装置,能在考虑到想使HV-MT车的驾驶感受与通常MT车的驾驶感受一致这样的要求的同时,提高能源效率(燃油效率)。作为时间点t6,也可采用“从时间点t2开始,离合器的行程向着完全分离侧推进了第一行程SI的时间点”来代替上述的“从时间点t2开始经过了第一规定期间Tl后的时间点”。同样地,作为时间点t8,也可采用“从时间点t7开始,离合器的行程向着完全接合侧推进了第二行程S2的时间点”来代替上述的“从时间点t7开始经过了第二规定期间T2后的时间点”。变速杆SL的档位越位于低速侧,车速越大,或者制动踏板BP的操作量(踏力)越大,则越能把第一规定期间Tl (或者第一行程SI)设定为更长的期间(更大的值)。由此,可进一步优化驾驶感受。本发明并不限 于上述实施方式,可在本发明的范围内采用各种变形例。例如,在上述实施方式中,“在内燃机的输出轴和手动变速器的输出轴之间实现了动力传递系统的状态”与“在内燃机的输出轴和手动变速器的输出轴之间未实现动力传递系统的状态”的判另IJ,是通过判定“离合器c/τ是否处于完全接合状态”来进行的,但该判别也可以通过判定“手动变速器Μ/T是否处于空档状态”来进行。在该情况下,“Μ/T是否处于空档状态”的判定可根据档位传感器S2的检测结果来进行。而且,在上述实施方式中,“离合器C/Τ是否处于完全接合状态”的判定是根据检测离合器踏板CP的操作量(行程)的离合器操作量传感器SI来进行的,但该判定也可以通过在离合器踏板CP的操作量(行程)不足规定量时为关闭状态、而在规定量以上时为打开状态的开关来进行。
权利要求
1.一种车辆的动力传递控制装置,适用于具有内燃机和电动机来作为动力源的车辆,且具有: 手动变速器,其具有从所述内燃机的输出轴输入动力的输入轴和向所述车辆的驱动轮输出动力的输出轴,所述输出轴上连接着所述电动机的输出轴,该手动变速器根据驾驶员操作的换档操作构件的档位来选择变速档,且不具有扭矩转换器; 摩擦离合器,其插入安装于所述内燃机的输出轴和所述手动变速器的输入轴之间,并根据驾驶员操作的离合器操作构件的操作量来改变接合状态; 第一检测机构,其检测使驾驶员操作的所述车辆加速用的加速操作构件的操作量; 第二检测机构,其检测所述离合器操作构件的操作; 控制机构,其控制作为所述内燃机的输出轴的扭矩的内燃机扭矩以及作为所述电动机的输出轴的扭矩的电动机扭矩; 其特征在于, 所述控制机构构成为, 在判定所述内燃机的输出轴和所述手动变速器的输出轴之间实现了动力传递系统的情况下,将所述电动机扭矩调整为基本电动机扭矩,所述基本电动机扭矩,其大小根据所述加速操作构件的操作量来决定,且当所述加速操作构件的操作量在规定量以上时成为所述车辆的加速方向上的驱动扭矩,当所述加速操作构件的操作量不足所述规定量时成为所述车辆的减速方向上的再生扭矩, 所述控制机构构成为, 实施如下这样的再 生扭矩减小控制,即,在所述电动机扭矩被调整为作为所述再生扭矩的所述基本电动机扭矩,且判定在所述内燃机的输出轴和所述手动变速器的输出轴之间从实现了动力传递系统的状态变为未实现动力传递系统的状态时,基于此,将作为所述再生扭矩的所述电动机扭矩的大小从所述基本电动机扭矩的大小减小至比O大的规定的微小值,之后维持为所述微小值。
2.如权利要求1所述的车辆的动力传递控制装置,其特征在于, 所述控制机构构成为, 当所述电动机扭矩调整为作为所述再生扭矩的所述基本电动机扭矩,且判定所述摩擦离合器从非完全分离状态的状态变为所述完全分离状态时,基于此,开始所述再生扭矩减小控制。
3.如权利要求2所述的车辆的动力传递控制装置,其特征在于, 所述控制机构构成为, 在通过所述再生扭矩减小控制的实施而使作为所述再生扭矩的所述电动机扭矩的大小维持为所述微小值的状态下,判定所述摩擦离合器的所述完全分离状态从所述再生扭矩减小控制的开始起持续了规定时间时,基于此,作为所述再生扭矩的所述电动机扭矩的大小从所述微小值逐渐向O减小。
4.如权利要求1 3中任一项所述的车辆的动力传递控制装置,其特征在于, 所述控制机构构成为, 所述换档操作构件的档位越是处于低速侧,所述车辆的速度越大,或者使驾驶员操作的所述车辆减速用的减速操作构件的操作量越大,则将所述微小值设定为更大的值。
5.一种车辆的动力传递控制装置,适用于具有内燃机和电动机来作为动力源的车辆,且具有: 手动变速器,其具有从所述内燃机的输出轴输入动力的输入轴和向所述车辆的驱动轮输出动力的输出轴,所述输出轴上连接着所述电动机的输出轴,该手动变速器根据驾驶员操作的换档操作构件的档位来选择变速档,且不具有扭矩转换器; 摩擦离合器,其插入安装于所述内燃机的输出轴和所述手动变速器的输入轴之间,并根据驾驶员操作的离合器操作构件的操作量来改变接合状态; 第一检测机构,其检测使驾驶员操作的所述车辆加速用的加速操作构件的操作量; 第二检测机构,其检测所述离合器操作构件的操作; 控制机构,其控制作为所述内燃机的输出轴的扭矩的内燃机扭矩以及作为所述电动机的输出轴的扭矩的电动机扭矩; 其特征在于, 所述控制机构构成为, 在判定所述内燃机的输出轴和所述手动变速器的输出轴之间实现了动力传递系统的情况下,将所述电动机扭矩调整为基本电动机扭矩,所述基本电动机扭矩,其大小根据所述加速操作构件的操作量来决定,且当所述加速操作构件的操作量在规定量以上时成为所述车辆的加速方向上的驱动扭矩,当所述加速操作构件的操作量不足所述规定量时成为所述车辆的减速方向上的再生扭 矩, 所述控制机构构成为, 实施如下这样的再生扭矩减小控制,即,在所述电动机扭矩被调整为作为所述再生扭矩的所述基本电动机扭矩,且判定在所述内燃机的输出轴和所述手动变速器的输出轴之间从实现了动力传递系统的状态变为未实现动力传递系统的状态时,基于此,作为所述再生扭矩的所述电动机扭矩的大小仅在第一规定期间内维持为所述基本电动机扭矩的大小,之后减小至O。
6.一种车辆的动力传递控制装置,适用于具有内燃机和电动机来作为动力源的车辆,且具有: 手动变速器,其具有从所述内燃机的输出轴输入动力的输入轴和向所述车辆的驱动轮输出动力的输出轴,所述输出轴上连接着所述电动机的输出轴,该手动变速器根据驾驶员操作的换档操作构件的档位来选择变速档,且不具有扭矩转换器; 摩擦离合器,其插入安装于所述内燃机的输出轴和所述手动变速器的输入轴之间,并根据驾驶员操作的离合器操作构件的操作量来改变接合状态; 第一检测机构,其检测使驾驶员操作的所述车辆加速用的加速操作构件的操作量; 第二检测机构,其检测所述离合器操作构件的操作; 控制机构,其控制作为所述内燃机的输出轴的扭矩的内燃机扭矩以及作为所述电动机的输出轴的扭矩的电动机扭矩; 其特征在于, 所述控制机构构成为, 在判定所述内燃机的输出轴和所述手动变速器的输出轴之间实现了动力传递系统的情况下,将所述电动机扭矩调整为基本电动机扭矩,所述基本电动机扭矩,其大小根据所述加速操作构件的操作量来决定,且当所述加速操作构件的操作量在规定量以上时成为所述车辆的加速方向上的驱动扭矩,当所述加速操作构件的操作量不足所述规定量时成为所述车辆的减速方向上的再生扭矩, 所述控制机构构成为, 实施如下这样的再生扭矩减小控制,即,在所述电动机扭矩被调整为作为所述再生扭矩的所述基本电动机扭矩,且判定在所述内燃机的输出轴和所述手动变速器的输出轴之间从实现了动力传递系统的状态变为未实现动力传递系统的状态时,基于此,将作为所述再生扭矩的所述电动机扭矩的大小从所述基本电动机扭矩的大小减小至O, 且实施如下这样的电动机扭矩复位控制,即,在通过所述再生扭矩减小控制的实施而使所述电动机扭矩的大小维持为O的状态下,当判定在所述内燃机的输出轴和所述手动变速器的输出轴之间从未形成动力传递系统的状态变为实现了动力传递系统的状态时,基于此,所述电动机扭矩的大小仅在第二规定期间内维持为O,之后所述电动机扭矩复位为所述基本电动机扭矩。
7.如权利要求5或6所述的车辆的动力传递控制装置,其特征在于, 所述控制机构构成为, 当所述电动机扭矩调整为作为所述再生扭矩的所述基本电动机扭矩,且判定所述摩擦离合器从非完全分离状态的状态变为所述完全分离状态时,基于此,开始所述再生扭矩减小控制。
8.如权利要求6所述的车辆的动力传递控制装置,其特征在于, 所述控制机构构成为, 在通过所述再生扭矩减小控制的实施而使所述电动机扭矩的大小维持为O的状态下,判定所述摩擦离合器从完全分离状态变为非所述完全分离状态的状态时,基于此,开始所述电动机扭矩复位控制。
全文摘要
一种车辆的动力传递控制装置,适用于具有内燃机和电动机(MG)来作为动力源的混合动力车辆,且具有手动变速器和摩擦离合器。在MG扭矩被调整为车辆减速侧的再生扭矩的状态下,通过驾驶员对离合器踏板操作而使离合器变为完全分离状态时(t2),再生扭矩的大小减少至“比0大的微小值(A)”,其后维持为微小值(A)。与随着离合器变为完全分离状态而把再生扭矩直接调整为0的情况相比,能在电池中储存再生所产生的更多的能量(参照由点所示的区域),提高能源效率(燃油效率)。
文档编号B60K6/48GK103221287SQ201180056240
公开日2013年7月24日 申请日期2011年8月9日 优先权日2010年12月16日
发明者井上大贵, 宫崎刚枝 申请人:爱信Ai株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1