利用自旋转移的快速磁性存储器件以及其中使用的磁性元件的制作方法

文档序号:4870359阅读:197来源:国知局
专利名称:利用自旋转移的快速磁性存储器件以及其中使用的磁性元件的制作方法
技术领域
本发明涉及一种磁性存储系统,尤其涉及一种用于提供在其单元可使用自 旋转移效应翻转的磁性存储器中所使用的存储单元及配套电路的方法及系统。
背景技术
图1示出了现有磁性随机存储器(MRAM) IO的一部分。现有MRAMIO 包括现有磁性存储单元20、现有字线30-1至30-n、现有字选择线40及42、现 有数据线50及52、现有字选择晶体管54及56、现有数据选择线60、现有数 据选择晶体管62及现有读出放大器(sense amplifier) 70。各现有磁性存储单 元20包括单个现有选择晶体管22及单个现有磁性元件24。现有磁性元件24 可为现有自旋阀或现有穿隧磁阻(TMR)结。字选择线42所携带信号为字选 择线40所携带信号的反演。类似地,数据线50所携带信号为数据线52所携 带信号的反演。使用该自旋转移效应来对现有MRAMIO进行编程。
该自旋转移效应是由铁磁-正常金属多层的自旋相关电子传输特性形成。 当自旋极化电流以CPP形式贯穿磁性多层(如现有磁性元件24)时,入射在 铁磁层上之电子的自旋角动量与该铁磁层与正常金属层之间界面附近的铁磁 层的磁矩相互作用。通过这一相互作用,该电子将其角动量的一部分传输至该 铁磁层。结果,若该电流密度足够大(约106-108A/cm2),则自旋极化电流可 翻转该铁磁层的磁化方向。
作为使用外部翻转场来翻转磁性元件(诸如现有自旋阀或TMR结24)自 由层的磁化方向的替代或者附加,可以以该CPP形式使用该自旋转移现象。
为了将现有磁性元件24编程为例如逻辑"1"的第一态,驱动电流以第一方 向通过现有磁性元件24。为了将现有磁性元件24编程为例如逻辑"0"的第二态, 驱动电流以相反方向通过现有磁性元件24。例如,为了对现有磁性元件24编 程,通过激活现有字线30-1来激活现有选择晶体管22。此外,通过分别向字 选择线40及42提供适当电压来激活字选择晶体管54及56。通过向数据选择 线60提供适当电压可使现有数据选择晶体管62禁能。根据该使数据线50及 52偏置的电压,电流以该第一方向或该第二方向流经现有磁性元件24。因此, 分别将现有磁性元件24的状态翻转为逻辑"1"或逻辑"0"。
为了读取现有磁性元件24,使用线30-1与60分别激活现有选择晶体管 22与现有数据选择晶体管62。此外,使用字选择线42来激活其中一个字选择
晶体管56,而使用字选择线40来使该剩下的字选择晶体管54禁能。由此可驱 动读出电流经过现有磁性元件24至读出放大器70。根据该输出电压的量值, 可通过比较该读出电流与参考电流来判定现有磁性元件24中以及进而判断现 有磁性存储单元20中所存储的是逻辑"0"或是逻辑"1"。
尽管大体上磁性元件可将自旋转移作为编程机制,本技术领域的技术人员 可容易的认识到其存在缺陷。具体地,来自晶体管22、 54、 56及62、来自数 据线50及52以及其余的外围电路的噪声会减少信噪比。因此,难以精确地读 取现有MRAMIO,特别是在器件密度较大的情况下。
因此,需要这样一种磁性存储器,其具有改良的性能并且利用局部现象(例 如自旋转移)来写入,以及以增强信噪比及高速进行读取的配套电路。本发明 正是为此需要而提供的。

发明内容
本发明提供了一种磁性存储器的设置方法及系统。该方法及系统包括设置 多个磁性存储单元、多根字线、多根位线。各所述多个磁性存储单元包括多个 磁性元件及至少一个选择晶体管。各所述多个磁性元件能够通过受驱动经过所 述磁性元件的写电流利用自旋转移感应翻转来进行编程。各所述多个磁性元件 具有第一端及第二端。所述至少一个选择晶体管耦合至各所述多个磁性元件的 所述第一端。所述多根字线与所述多个选择晶体管耦合且选择地致能所述多个 选择晶体管中的一部分。
根据本文所揭露的该方法及系统,本发明提供了一种用于对磁性存储器进 行编程及读取的机制,所述磁性存储器包括能够通过受驱动经过所述磁性元件 的写电流,例如利用自旋转移现象,来进行编程的磁性元件。


图1为现有磁性随机存储器的图示;
图2为本发明的磁性存储单元实施例的一部分的图示;
图3为本发明的磁性存储器实施例的一部分的图示; 图4为本发明的另一磁性存储器实施例的一部分的图示; 图5为本发明的另一磁性存储器实施例的-一部分的图示; 图6为本发明的另一磁性存储器实施例的一部分的图示; 图7为本发明的另一磁性存储器实施例的--部分的图示; 图8为本发明的另一磁性存储器实施例的一部分的图示; 图9为本发明的磁性存储单元实施例的一部分的图示; 图10为本发明的磁性存储单元实施例的一部分的剖视图11为本发明的磁性存储单元实施例的一部分的剖视图; 图12为本发明的另一磁性存储单元实施例的一部分的剖视图; 图13为本发明的另一磁性存储单元实施例的一部分的剖视图; 图14为本发明的磁性存储单元实施例的一部分的详细剖视图; 图15为本发明的另一磁性存储单元实施例的一部分的剖视图; 图16为本发明的另一磁性存储单元实施例的一部分的剖视图; 图17为示出本发明的磁性存储器设置方法的实施例的流程图; 图18为示出本发明的磁性存储器使用方法实施例的流程图。
具体实施例
本发明涉及磁性存储器。以下作为专利申请及其要件而提供的描述使得本 领域的技术人员能够制造及利用本发明。较佳实施例的各种修改以及本文中所 描述的普遍原理及特征对于本领域的技术人员来说是清楚明了的。由此,本发 明并不意欲限制为所示的实施例,而应具有与本文所描述的原理及特征相一致 的最大范围。
本发明提供了一种提供磁性存储器的方法及系统。本方法及系统包括设置 多个磁性存储单元、多个字线及多个位线。该多个磁性存储单元各包括多个磁 性元件及至少一个选择晶体管。该多个磁性元件各能够通过受驱动经过该磁性 元件的写电流利用自旋转移激发翻转来进行编程。该多个磁性元件各具有第一 端及第二端。该至少一个选择晶体管耦合至各磁性元件的该第一端。该多个字 线耦合至该多个选择晶体管且可选择地使该多个选择晶体管中的一部分致能。
本发明以具有某些组件的特定磁性存储器为背景来描述。本技术领域的技 术人员可容易地认识到本发明与具有其他及/或附加组件的磁性存储器的使用 相一致。此外,本发明以与该存储器的某些部分相对应的组件为背景描述。例 如,辅助线描述为与若干数量的磁性存储单元相对应。然而,本技术领域的技 术人员可容易地认识到该组件可与另一的元件数量相对应,例如,辅助线与另 一数量的磁性存储单元相对应。本发明的方法及系统亦以对单个磁性存储单元 进行读取或写入为背景描述。然而,本技术领域的技术人员可容易地认识到本 方法及系统可扩展为对基本平行的多个磁性存储单元进行读取及/或写入。本发 明以某些存储器为背景描述。然而,本技术领域的技术人员可容易地认识到本 发明可与和本发明不相 一致的存储器相兼容。
本发明亦以对自旋转移现象的现有理解为背景描述。因此,本技术领域的 技术人员可容易地认识到本方法及系统之性态的理论解释是根据这一自旋转 移的现有理解作出的。本技术领域的技术人员亦可容易地认识到本方法及系统 是以与基底有某种特定关系的结构为背景描述。例如,如阁所示,该结构的底 部一般比该结构的顶部更靠近在下面的基底。然而,本技术领域的普通技术人 员可容易地认识到本方法及系统与其他与该基底关系不同的结构相容。此外, 本方法及系统以某些合成的或单一的层为背景描述。然而,本技术领域的普通 技术人员可容易地认识到这些层可为另外结构。再者,本发明以具有特定层的 磁性元件为背景描述。然而,本技术领域的普通技术人员可容易地认识到亦可 使用具有与本发明不相一致的附加及/或不同层的磁性元件。此外,某些组件描 述为铁磁性的。然而,如本文中所使用的,术语"铁磁性"可包括亚铁磁或类似 结构。由此,如本文中所使用的,术语"铁磁性"包括但不限于铁磁体及亚铁磁 体。
图2为本发明的磁性存储单元实施例100之一部分的图示。磁性存储单元
100包括磁性元件102及104及其共用的选择晶体管106。使选择晶体管106 致能以选择磁性存储单元100。通过驱动写电流经过磁性元件102及104而对 磁性元件102及104编程。由此,磁性元件102及104使用自旋转移来编程。 磁性元件102及104通过磁阻提供信号。较佳实施例中,磁性元件102及104 磁阻的量值基本相等。此外,磁性元件102及104的数据存储层(较佳为至少 一层自由层)的磁化最好为反平行对齐。 一个实施例中,磁性元件102及104 可为TMR结、双TMR结,或者诸如下文所述的可使用自旋转移来编程且使用 磁阻来提供的读信号的其他磁性元件。选择晶体管106最好为CMOS晶体管。
如前所述,磁性元件102及104的数据存储层的磁化为反平行对齐。假设 磁性元件102及104具有至少一层数据存储层(例如自由层)以及至少一层参 考(例如被钉扎)层。根据该写操作,磁性元件102的记录层的磁化被指向为 平行于该参考(被钉扎)层的磁化。此外,磁性元件104的数据存储层(例如 自由层)的磁化以该翻转电流的方向被指向为反平行于该参考(被钉扎)层的 磁化。这一磁化形式代表逻辑'T'。若以相反方向驱动该翻转电流,则磁性元件 102及104的存储层的磁化颠倒。因此,TMR元件102的数据存储层的磁化被 指向为反平行于该参考(被钉扎)层的磁化,而磁性元件104的记录层的磁化 被指向为平行于该参考层的磁化。这一形式代表逻辑"O"。
读取过程中,各磁性元件102及104的端部之间有电位差。该输出为差分 信号。流经该与磁性元件102及104端部耦合的线的电流中该差的量值可指示 磁性存储单元100中存储的数据。较佳实施例中,对于上述的逻辑'T',磁性元 件102及104的电阻分别为R(I-MR/2)与R(1+MR/2)。由此,尽管该电阻改变,
但该磁阻较佳地保持不变。电流Ii。2及Ii。4以某个偏置电压(Vbias)分别流经磁
性元件102及104。由此,对于逻辑'T', I1Q2为Vb啦/[R(l-MR/2)]而1104为 Vbias/[R(l+MR/2)]。由此'对于逻辑"l", I旭大于Ii。4。类似地,当存储逻辑"0" 时,Im小于lm。较佳实施例中,当磁性元件102与104的磁阻相等,电流[102
及IK)4的差为Vblas/RxMR。由此,该磁性存储单元可所提供的信号大于现有的
磁性存储器。此外,由于磁性元件102与104共用一个选择晶体管106,可减 小或消除由该晶体管106特性曲线的波动造成的噪声。因此,性能得以改进。
图3为本发明的磁性存储器实施例IIO的一部分的图示。磁性存储器110 采用磁性存储单元100。磁性存储器IIO包括字线112-1至112-n、位线114、 位选择线116、位选择晶体管118、数据线120、数据线122 (其所携带信号为 数据线120所携带信号的反演)、字选择线124、字选择晶体管126及128、 数据选择线130、数据选择晶体管132及134、读出放大器136以及位线段138-1 至138-n。位线段138-1至138-n将存储单元IOO耦合至位线114。字选择线124 用于致能字选择晶体管126及128。数据选择线BO用于致能数据选择晶体管 132及134。各磁性元件102及104的一端连接至选择晶体管106。磁性元件 102及104的另一端分别耦合至数据线120及122。偏压箝位电路(未示)与 数据线120及122耦合以用于编程操作,并且耦合至位线114以用于读取操作。 晶体管118、 126、 128、 132及134可为CMOS晶体管。磁性存储器110中, 磁性存储单元IOO的工作方式与图2所示的磁性存储单元100类似。较佳实施 例中,磁性元件102及104两者的电阻不同而磁阻相同。
工作中,通过驱动写电流经过磁性元件102及104以使用该自旋转移效应 来翻转该数据存储层的磁化而对磁性存储器110编程。为了对诸如与字线112-1 耦合的单元的一个单元编程,通过使用字线112-1激活选择晶体管106而激活 该单元。此外,使用位选择线116及字选择线124分别激活位选择晶体管118 与字选择晶体管126及128。亦使用数据选择线130禁能数据选择晶体管132 及134。通过向数据线120与122设定高电压(例如VDD)且向位线114设定 低电压(例如0)以使电流以适当方向流经磁性元件102及104而将数据编程 至磁性元件102及104,反之亦然。
如前所述,磁性元件102及104的数据存储层的磁化为反平行对齐。当以 该第一方向驱动该电流之时的编程操作过程中,磁性元件102及104的数据存 储层的磁化最好分别与其参考层的磁化平行及反平行对齐。这一形式代表逻辑 "1"。若该翻转电流颠倒且磁性元件102及104的数据存储层两者的磁化颠倒, 则达成代表逻辑"O"的形式。
通过使用字线112-1激活选择晶体管106而读取磁性存储单元100。此外, 使用数据选择线130与位选择线116分别激活数据选择晶体管132及134与位 选择晶体管118。关断字选择晶体管126及128。此外,在数据线120及122 与位线114之间施加偏置电压。如前所述,若该流经数据线120的电流大于该 流经数据线122的电流,则磁性存储单元100中存储逻辑'T'。类似地,若该该 流经数据线120的电流小于该流经数据线122的电流,则磁性存储单元100中
存储逻辑"0"。如前所述,磁阻相同的磁性元件102与104的该电流差为 Vbias/RxMR,其中Vb则为该偏置电压,磁性元件102与104的电阻为R(l-MR/2) 和R(l+MR/2), MR为磁性元件102与104的磁阻。
由此,磁性存储器110提供较大的信号,其对于读取存储器来说是有利的。 由于磁性元件102与104的两者共用单个选择晶体管106,可减少或消除附加 的选择晶体管(未示)特性曲线的波动而造成的噪声。再者,因数据线120或 122的寄生电容造成的时间延迟最好为小于纳秒数量级。因此,磁性存储器110 的速度得以改进。然而应注意,列中剩余的未被选择的单元可能成为数据线120 与122间的分路。这样,电流差减小,从而该信号减小,显著地受该些数据线 的线阻的影响。例如, 一些实施例中,预期有几千个磁性存储单元IOO在一个 单元块内耦合而不会不适当地影响性能。
图4为本发明的另一磁性存储器实施例140—部分的图示。磁性存储器140 采用磁性存储单元100。磁性存储器140包括字线142-1至142-n、位线144、 位选择线146、位选择晶体管148、数据线150、数据线152 (其所携带信号为 数据线150所携带信号的反演)、字选择线154、字选择晶体管156及158、 数据选择线160、数据选择晶体管162及164、读出放大器166以及位线段168-1,2 至168-n-l,n。位线段168-1,2至168-n-l,n将存储单元100耦合至位线144。-字 选择线154用于致能字选择晶体管156及158。数据选择线160用于致能数据 选择晶体管162及164。各磁性元件102及104的一端连接至选择晶体管106。 磁性元件102及104的另一端分别耦合至数据线150及152。偏压箝位电路(未 示)与数据线150及152耦合以用于编程操作,并且耦合至位线144以用于读 取操作。晶体管148、 156、 158、 162及164可为CMOS晶体管。
磁性存储器MO与图3所示的磁性存储器110类似。图4的磁性存储器140 的工作方式亦与图3所示的磁性存储器IIO类似。磁性存储器140中,磁性存 储单元100的工作方式与图2所示的磁性存储单元100类似。较佳实施例中, 磁性元件102及104两者的电阻不同而磁阻相同。因此,磁性存储器140也有 磁性存储器110中的许多优点。此外,磁性存储器140中,磁性存储单元100 被分成对。分成这样的磁性存储单元.IOO对,即对中的选择晶体管106共用漏 极以及共用将磁性存储单元IOO连接至位线144的位线段168-i,j。由此,举例 来说,位线段168-1,2耦合至该前两个磁性存储单元的选择晶体管106的漏极。 因此,位线段168-i,j的数量为n/2。从而,将该些磁性存储单元耦合至位线144 的位线段168-i,j的数量减少一半。因此,可明显增大磁性存储器140的密度。
图5为本发明的另一磁性存储器实施例170—部分的图示。磁性存储器170 采用磁性存储单元i00。磁性存储器170包括字线172-1至172-n、位线174、 辅助位选择线176、辅助位选择晶体管178、数据线180、数据线182 (其所携
带信号为数据线180所携带信号的反演)、辅助数据线181、辅助数据线183 (其所携带信号为辅助数据线181所携带信号的反演)、字选择线184、字选 择晶体管186及188、数据选择线190、数据选择晶体管192及194、读出放大 器196以及位线段198-1至198-n,。位线段198-1至198-n将存储单元100耦 合至位线174。字选择线184用于致能字选择晶体管186及188。数据选择线 190用于致能数据选择晶体管192及194。各磁性元件102及104的一端连接 至选择晶体管106。磁性元件102及104的另一端分别耦合至数据线180及182。 偏压箝位电路(未示)与数据线180及182耦合以用于编程操作,并且耦合至 位线174以用于读取操作。晶体管178、 186、 188、 192及194可为CMOS晶 体管。磁性存储器170中,磁性存储单元100的工作方式与图2所示的磁性存 储单元100类似。较佳实施例中,磁性元件102及104两者的电阻不同而磁阻 相同。
磁性存储器170与图3所示的磁性存储器110类似。图5的磁性存储器170 的工作方式亦与图3所示的磁性存储器IIO类似。因此,磁性存储器170也有 磁性存储器110的许多优点。此外,使用了辅助位线176与辅助数据线181及 183。辅助数据线181及183通过选择晶体管186及188分别连接至数据线180 及182。类似地,辅助位选择线176通过选择晶体管176耦合至位线174。磁 性元件102及104的端耦合至辅助数据线181及183而不是数据线。磁性元件 102及104仍在另一端处连接至选择晶体管106。采用辅助数据线181及183 以形成辅助阵列,所述辅助阵列具有数量较少的磁性存储单元100,从而不会 极大地增加磁性存储器IOO所占据的总面积。通过使用该辅助阵列、辅助数据 线181及183、辅助位线176以及造成的该辅助阵列中磁性存储单元100数量 的减少,可避免因存储单元增加而造成的输出信号的减小。
图6为本发明的另一磁性存储器实施例200—部分的图示。磁性存储器200 采用磁性存储单元100。磁性存储器200包括字线202-1至202-n、位线204-1 至204-n、数据线210、数据线212 (其所携带信号为数据线210所携带信号的 反演)、字选择线214、字选择晶体管216及218、数据选择线220、数据选择 线224 (其所携带信号为数据选择线220所携带信号的反演)、数据选择晶体 管222及226、读出放大器228-1至228n以及附加数据线229 (其所携带信号 为数据选择线220所携带信号的反演)。字选择线214用于致能字选择晶体管 216或218。数据选择线220及224分别用于致能数据选择晶体管222及226。 各磁性元件102及104的一端连接至选择晶体管106。磁性元件102及104的 另一端分别耦合至数据线210及212。偏压箝位电路(未示)与数据线210及 212耦合以用于编程操作。晶体管216、 218、 222及226可为CMOS晶体管。
磁性存储器200与图3所示的磁性存储器ll()类似。对于编程,图6的磁
性存储器200的工作方式亦与图3所示的磁性存储器110类似。因此,磁性存 储器200也有磁性存储器IIO的许多优点。此外,磁性存储器200中,数据线 210接地。单个位线204-1至204-n与独立的差分感测放大器228-1至228-n — 个个地耦合。对于读取,使用字线202-1致能选择晶体管106。此外,使用数 据选择线220及224分别致能数据选择晶体管222及226。再者,禁能字选择 晶体管216及218。通过数据线229向磁性存储单元IOO施加偏置电压。
磁性存储器200中,磁性存储单元200的工作方式与图2所示的磁性存储 单元100类似。较佳实施例中,磁性元件102及104两者的电阻不同而磁阻相 同。再参见图6,对于存储于磁性存储单元100中的逻辑"l",磁性元件102的 电阻为R(I -MR/2)而磁性元件104的电阻为R(1+MR/2)。因此,位线204-1感应 的电压为Vbias/2x(l-MR/2)。该实施例中,对于逻辑"O",位线204-1感应的电压 为Vbias/2x(l+MR/2)。 一个实施例中,参考电压设为VREF = Vbias/2。该实施例中, 通过比较该信号电压与该参考电压可区别该逻辑"0"及逻辑"1"。由此,除磁性 存储器IIO所提供的优点之外,该输出信号并不取决于该流经磁性元件102及 104的电流。由此,该输出信号不取决于可能因单元阵列中的单元数量而发生 改变的电流。因此,可减轻取决于该偏置电压的磁阻比下降。此外,选择晶体 管106的特性曲线的波动不会对磁性存储器200造成不利影响。
图7为本发明的另一磁性存储器实施例240—部分的图示。磁性存储器240 采用磁性存储单元100。磁性存储器240包括字线242-1至242-n、位线244-1 至244-n、电流转换电路245、位选择线246-1至246-n(简明起见,仅示出246-1 及246-2)、位选择晶体管248-1至248-n(简明起见,仅示出248-1及248-2)、 数据线250、数据线252 (其所携带信号为数据线250所携带信号的反演)、 字选择线254、字选择晶体管256及258、数据选择线260、数据选择线264 (其 所携带信号为数据选择线260所携带信号的反演)、数据选择晶体管262及266、 附加数据线268 (其所携带信号为数据选择线250所携带信号的反演)、读出 放大器以及电流转换电路245。电流转换电路245包括电阻273、晶体管272 及274,以及电容276。字选择线254用于致能字选择晶体管256或258。数据 选择线260及264分别用于致能数据选择晶体管262及266。各磁性元件102 及104的一端连接至选择晶体管106。磁性元件102及104的另一端分别耦合 至数据线250与数据线252及268。偏压箝位电路(未示)与数据线250及252 耦合以用于编程操作,并且耦合至数据线268以用于读取操作。晶体管248-1 至248-n、 256、 258、 262、 266、 272及274可为CMOS晶体管。较佳实施例 中,磁性元件102及104两者的电阻不同而磁阻相同。
磁性存储器240与图3所示的磁性存储器110以及图6所示的磁性存储器 200类似。对于编程,图7的磁性存储器240的工作方式亦与图3所示的磁性
存储器110类似。对于读取,磁性存储器240的工作方式亦与图6所示的磁性 存储器200类似。再参见图7,磁性存储器240由此也有磁性存储器110及200 的许多优点。此外,位线244-1至244-n耦合至至少一个电流转换电路245。在 电流转换电路245中将该读取操作中该电压的波动转换为电流差,并且通过相 应磁性存储元件100的位线244-1至244-n提供至放大器270。此外,可通过縮 短位线244-1至244-n来减小因位线244-1至244-n造成的延迟。从而,漂移电 容及线阻得以减少。因此,磁性存储器240的速度得以增加。
图8为本发明的另一磁性存储器实施例280—部分的图示。磁性存储器280 采用磁性存储单元100。磁性存储器280包括字线282-1至282-n、位线284、 位选择线286、位选择晶体管288、数据线290-1至290-n、数据线292 (其所 携带信号为数据线2卯-l至290-n所携带信号的反演)、附加数据线292、数据 选择线296及使用数据选择线296来致能的晶体管294、 298、 300及302等,。 各磁性元件102及104的一端连接至选择晶体管106。磁性元件102及104的 另一端分别耦合至数据线290-1至290-n与292。偏压箝位电路(未示)与数据 线290-1至290-n与292耦合以用于编程操作,并且耦合至数据线284以用于 读取操作。诸如晶体管288、 294、 298、 300及302的晶体管可为CMOS晶体 管。较佳实施例中,磁性元件102及104两者的电阻不同而磁阻相同。
磁性存储器280与图3所示的磁性存储器110类似。再参见图7,磁性存 储器280由此也有磁性存储器110及200的许多优点。此外,磁性存储器280 中,磁性元件102的一端连接至独立的数据线290-1至290-n。磁性元件104 的另一端连接至共用的数据线292。所有的数据线290-1至290-n连接至相应的 选择晶体管,如选择晶体管298、 300及302,这些晶体管仅在相应的编程过程 中被激活。类似地,共用数据线292连接至仅在信息写入操作过程中被激活的 选择晶体管294。各存储单元100使用一个额外的晶体管(诸如晶体管298、 300及302)而以器件密度为代价将这些存储单元各自分开。信息读取过程中, 数据线290-1至290-n及292并没有被未选择的单元短路。由此,可预期具稳 定性及高功耗效率的操作。
图9-16示出了可用于磁性存储器110、 140、 170、 200、 240及280中的 磁性存储单元100的多种实施例。然而,可使用其他磁性存储单元,更具体地, 可使用其他磁性元件。
图9-11为本发明的磁性存储单元实施例100'之一部分的图示。图9示出 了磁性存储单元100'的俯视图。图10为本发明的磁性存储单元实施例100 —部 分的沿A-A'线的剖视图。图11为本发明的磁性存储单元实施例一部分的沿B-B' 线的剖视图。示出了磁性元件102'与104'以及选择晶体管106'。具体地,示出 了选择晶体管106'的源极322、漏极318及栅极320以及磁性元件102'的铁磁
体层310和316与磁性元件104'的铁磁体层314及316。此外,示出了磁性元 件102'与104'各自的单元板313及317。再者,从图9-11可以看出磁性元件102' 与104'的存储层的磁化为反平行对齐。清楚起见,以磁性存储器IIO为背景描 述磁性存储单元100'。从而,亦示出了数据线120'及122'。
如图9-11所示,这些磁性元件最好形成在硅基底上的半导体电路的顶层 上。此外,单元板313及317分别位于各磁性元件102'与104'的底部。单元板 313及317通过接触部324连接至漏区318。相邻的存储单元阵列的存储单元 共用源区322,并且该源区连接至位线。由于该两个磁性元件102'与104'共用 一个选择晶体管106',因此能够通过将一个磁性元件102'/104'装在另一磁性元 件104V102'的顶部而减少磁性存储单元100'所占据的区域。与其中有两个自身 带有晶体管的磁性元件的磁性存储单元(未示)相比,大致可减少为一半。
图12为本发明的另一磁性存储单元实施例IOO"的一部分的剖视图。磁性 存储单元IOO"包括磁性元件102"与104"。磁性元件102"与104"示为TMR结。 由此,磁性存储单元102"包括种子层350、反铁磁(AFM)层352、参考(被 钉扎)层354、穿隧势垒层362、数据存储(自由)层364及覆盖层366。参考 层354为包括由非磁性间隔层358隔开的铁磁层356及360的合成被钉扎层。 在所示的实施例中,铁磁层356及360的磁化为反平行对齐。类似地,磁性存 储单元104"包括种子层368、数据存储(自由)层370、穿隧势垒层372、参考 (被钉扎)层374、 AFM层382及覆盖层384。参考层374为包括由非磁性间 隔层378隔开的铁磁层376及380的合成被钉扎层。在所示的实施例中,铁磁 层376及380的磁化为反平行对齐。此外,尽管图12所示为并排放置,但可 垂直放置磁性元件102"与104",最好是磁性元件102"位于磁性元件104"之上。
如图12所示,磁性元件102"为底部被钉扎(参考层354在下方/更靠近该 基底)而磁性元件104"为顶部被钉扎。这样,在利用自旋转移电流感应翻转进 行写入操作的过程中,数据存储层364及370的磁化分别与参考层354及374 的磁化平行或反平行。
图13及14为本发明的另一磁性存储单元实施例IOO"'的一部分的剖视图。 由此,示出了磁性元件102"与104"以及晶体管106"与接触部436。磁性元件104" 包括种子层400、 AFM层402、参考(被钉扎)层404、穿隧势垒层412、数据 存储(自由)层414及覆盖层416。参考层404为包括由非磁性间隔层408隔 开的铁磁层406及410的合成被钉扎层。在所示的实施例中,铁磁层406及410 的磁化为反平行对齐。类似地,磁性元件102"'包括种子层418、 AFM层420、 参考(被钉扎)层422、穿隧势垒层430、数据存储(自由)层432及覆盖层 434。参考层422为包括由非磁性间隔层426隔开的铁磁层424及428的合成 被钉扎层。在所示的实施例中,铁磁层424及428的磁化为反平行对齐。淸楚
起见,以磁性存储器110为背景描述磁性存储单元100"',这样数据线120及 122得以示出。
在所示的磁性存储单元100"'中,磁性元件102'"与104"'共用由层416与418 形成的单独单元板。这样,可更方便地制造单元100'"。此外,磁性元件102' 与104'的特性曲线的波动得以减小。
图15为本发明的另一磁性元件440的一部分的剖视图。磁性元件440可 用作磁性元件102或磁性元件104。磁性元件440包括种子层442、AFM层444、 参考层446、穿隧势垒层454、数据存储(自由)层456、为穿隧势垒层或者非 磁性传导间隔层的附加间隔层458、另一参考(被钉扎)层460、 AFM层462 及覆盖层464。参考层446为包括由传导、非磁性间隔层450隔开的铁磁层448 及453的合成层。
可较容易地制造磁性元件440。此外,磁性元件440的自旋转移感应翻转 电流得以降低。这样,写入磁性元件440所需的写电流显著减小。因此,采用 磁性元件440的磁性存储器的密度得以增加,其部分原因是选择晶体管106所 占据的尺寸减小了。再者,采用磁性存储单元100的磁性存储器的功耗得以显 著降低。
图16为本发明的另一磁性元件470的一部分的剖视图。磁性元件470可 用作磁性元件102或磁性元件104。磁性元件470包括种子层472、AFM层474、 参考层476、穿隧势垒层488、数据存储(自由)层490、间隔层492、附加自 由层494、为穿隧势垒层或者非磁性传导间隔层的层496、另一参考(被钉扎) 层498、 AFM层500及覆盖层502。参考层476为包括由传导、非磁性间隔层 450隔开的铁磁层478、 482及486的合成层。
可较容易地制造磁性元件470。此外,磁性元件470的自旋转移感应翻转 电流得以降低。这样,写入磁性元件470所需的写电流显著减小。因此,采用 磁性元件470的磁性存储器的密度得以增加,其部分原因是选择晶体管106所 占据的尺寸减小,并且这些磁性存储器的功耗得以显著降低。
对于磁性元件102、 102'、 102"、 102'"、 104、 104'、 104"及104'",各种层 可采用各种材料。该数据存储层或自由层414、 432、 456、 490及/或494最好 包括Co、 Fe及M中至少之一。 一些实施例中,自由层414、 432、 456、 4卯 及/或494包括至少一个浓度最好不超过30原子百分比的非晶形成组分。 一个 实施例中,该非晶形成组分包括硼。利用该非晶形成组分的该浓度,可将自由 层414、 432、 456、 490及/或494的饱和磁化设计为在400至1500 emu/cm3。 此外,自由层414、 432、 456、 490及/或494可为例如铁磁或亚铁磁材料的单 层。该铁磁材料包括下列材料中的至少一种Co、含5 40原子百分比Fe的 CoFe、含5 40原子百分比Fe及5 30原子白分比B的CoFeB、含5 40原子百
分比Fe及5 30原子百分比Ta的CoFeTa、含约20原子百分比Fe的NiFe、含5 40原子百分比Pt的CoPt、含5 40原子百分比Pd的CoPd、含5 40原子百分比 Pt的FePt、 Co2MnAl、 Co2MnSi或者Co2CrAl、 Co2CrSi、 Co2FeAl及Co2FeSi。。 该亚铁磁材料包括含15 30原子百分比Gd的CoGd以及含10 40原子百分比 Gd的FeGd中至少之一。
自由层414、 432、 456、 490及/或494亦可为多层结构。该多层可仅由铁 磁层制成,或者由铁磁层与非铁磁层的组合构成。该铁磁材料包括下列材料中 的至少一种Co、含5 40原子百分比Fe的CoFe、含5 40原子百分比Fe及5 30原子百分比B的CoFeB、含5 40原子百分比Fe及5 30原子百分比Ta的 CoFeTa、含约20原子百分比Fe的NiFe、含5 40原子百分比Pt的CoPt、含5 40原子百分比Pd的CoPd、含5 40原子百分比Pt的FePt、 Co2MnAl、 Co2MnSi 或者Co2CrAl、 Co2CrSi、 Co2FeAl及Co2FeSi。 一个实施例中,自由层414、 432、 456、 490及/或494为包括铁磁层以及至少-一层非铁磁层的多层结构,所述非 铁磁层将所述多个铁磁层的各部分隔开。该实施例中,该非铁磁层包括Ru、 Rh、 Re、 Cr及Cu中至少之一。亦在该实施例中,交替的铁磁层的磁化为反平 行对齐。然而,亦可使用另一磁化对齐。
这些参考层或被钉扎层404、 422、 446、 476及/或498最好包括Co、 Fe 及Ni中至少之一。 一些实施例中,被钉扎层404、 422、 446、 476及/或498包 括至少一个浓度最好不超过30原子百分比的非晶形成组分。 一实施例中,该 非晶形成组分包括硼。此外,被钉扎层404、 422、 446、 476及/或498可为例 如铁磁或亚铁磁材料的单层。该铁磁材料包括下列材料中的至少一种Co、含 5 40原子百分比Fe的CoFe、含5 40原子百分比Fe及5 30原子百分比B的 CoFeB、含5 40原子百分比Fe及5 30原子百分比Ta的CoFeTa、含约20原 子百分比Fe的NiFe、含5 40原子百分比Pt的CoPt、含5 40原子百分比Pd 的CoPd、含5 40原子百分比Pt的FePt、 Co2MnAl、 Co2MnSi或者Co2CrAl、 Q)2CrSi、C02FeAl及Co2FeSi。该亚铁磁材料包括含15 30原子百分比Gd的CoGd 以及含10 40原子百分比Gd的FeGd中至少之一。
被钉扎层404、 422、 446、 476及/或498亦可为多层结构。该多层可仅由 铁磁层制成,或者由铁磁层与非铁磁层的组合构成。该铁磁材料包括下列材料 中的至少一种Co、含5 40原子百分比Fe的CoFe、含5 40原子百分比Fe 及5 30原子百分比B的CoFeB、含5 40原子百分比Fe及5 30原子百分比 Ta的CoFeTa、含约20原子百分比Fe的NiFe、含5 40原子百分比Pt的CoPt、 含5 40原子百分比Pd的CoPd、含5 40原子百分比Pt的FePt、 Co2MnAl、 Co2MnSi或者Co2CrAl、 Co2CrSi、 Co2FeAl及Co2FeSi。 一个实施例中,被钉 扎层404、 422、 446、 476及Z或498为包括铁磁层以及至少一层非铁磁层的多
层结构,所述非铁磁层将所述多个铁磁层的各部分隔开。该实施例中,该非铁
磁层包括Ru、 Rh、 Re、 Cr及Cu中至少之一。亦在该实施例中,交替的铁磁 层的磁化为反平行对齐。然而,亦可使用另一磁化对齐。
磁性元件102、 102'、 102"、 102'"、 104、 104'、 104"及104'"亦可包括一或 多层穿隧势垒层362、 372、 412、 430、 454、 458、 488及/或496。穿隧势垒层 362、 372、 412、 430、 454、 458、 488及/或496包括含40 70原子百分比O的 AIO、含30 60原子百分比0的MgO、含40 70原子百分比0及含2 30原 子百分比N的A10N、含30 60原子百分比N的A1N、 AlZrO、 AlHfO、 AlTiO 及AlTaO中至少之一。 一些实施例中,穿隧势垒层362、 372、 412、 430、 454、 458、 488及/或496可由单层或多层构成、穿隧势垒层362、 372、 412、 430、 454、 458、 488及/或496的厚度最好为至少5埃且不超过40埃。此外,穿隧 势垒层362、 372、 412、 430、 454、 458、 488及/或496的电阻 一面积乘积最好 为低。较佳实施例中,这一电阻一面积乘积为10 100Q屮m2。间隔层496为导 电的且包括Cu、 Ag、 Pt、 Al、 Ru、 Re、 Rh、 Ta及Ti或其合金中至少之一。间 隔层496亦可包括如下所述的纳米氧化层(NOL)。
若NOL用作间隔层496,则可通过对初始金属原料进行沉积,然后使用 自然氧化及/或等离子氧化对该沉积膜进行氧化而形成该NOL。另一实施例中, 可使用射频溅射初始氧化原料而形成该NOL。另一实施例中,该NOL或可为 磁性的,至少为部分磁性的。该初始金属原料可为被钉扎层或自由层所常用的 材料,例如磁性材料CoFe、 CoFeB及非磁性材料Al、 Ta、 Ru及Ti。例如,该 结构中NOL亦可为Cu/CoFe、 FeSi、 Al、 Ta、 Ru或Ti/NOL/Cu。
一些实施例中,磁性元件102、 102'、 102"、 102"'、 104、 104'、 104"及/或 104'"也包括至少一层间隔层492。该间隔层492最好包括Cu、 Ag、 Pt、 Al、 Ru、 Re、 Rh、 Ta及Ti或其合金中至少之一。
磁性元件102、 102'、 102"、 102"'、 104、 104'、 104"及104"'亦包括八FM 层352、 382、 402、 420、 444、 462、 474及500。较佳实施例中,AFM层352、 382、 402、 420、 444、 462、 474及500中至少之一包括PtMn、 IrMn及类似物。
图17为示出本发明的磁性存储器设置方法的实施例550的流程图。通过 步骤552,设置多个磁性存储单元100。设置磁性存储单元100包括设置多个 能够通过受驱动经过该磁性元件的写电流利用自旋转移激发翻转来进行编程 的磁性元件102与104。各磁性元件102与104具有第一端及第二端。亦将该 至少一个选择晶体管耦合至各个磁性元件的第一端。通过歩骤554,设置多根 字线以使该字线与该选择晶体管耦合、并且选择地致能该多个选择晶体管中的 一部分。通过歩骤556,设置多根位线。然后通过歩骤558,完成该器件。
利用方法550,可设置磁性存储单元100以及存储器110、 140、 170、 200、
240及280。因此,设置了一种利用局部现象(自旋转移)来翻转的磁性存储 器。由于该器件密度随着半导体或CMOS技术发展的成比例縮小法则而增大, 该数据存储层的磁化的电流感应翻转所需的写电流减小。结果,使用方法550 形成的磁性存储器110、 140、 170、 200、 240及280功耗较低,因此晶体管106 的尺寸较小。此外,磁性存储器IIO、 140、 170、 200、 240及280将达成更快 写入及读取时间以及上述的其他优点。
图18为示出本发明的磁性存储器、诸如磁性存储器IIO、 140、 170、 200、 240或280的使用方法实施例560的流程图。对于编程操作,通过步骤562, 驱动写电流经过该多个磁性存储单元100的一部分。各磁性存储单元包括多个 磁性元件(例如磁性元件102与104)以及至少一个选择晶体管106。磁性存 储单元102与104能够通过受驱动经过该磁性元件102和104的写电流利用自 旋转移激发翻转来进行编程。此外,各磁性元件102与104具有第一端及第二 端。选择晶体管106耦合至各磁性元件102与104的第一端。应注意,步骤562 的具体细节取决于进行编程的磁性存储器110、 140、 170、 200、 240或280。 例如,这些线与在步骤562中被致能或禁能以驱动该写电流通过所需磁性元件 102与104的晶体管之间的组合取决于进行编程的磁性存储器110、 140、 170、 200、 240或280。
对于读取操作,在步骤564中,驱动读电流通过至少一个磁性存储单元100 的磁性元件102与104,并且通过根据该读取信号判定差分信号或者通过比较 该读取信号与参考信号来读取数据。较佳的,在步骤564中通过获取存储器110、 140、 170及280的差分信号。该差分信号代表给定单元的磁性元件102与104 的电阻差。步骤564的具体细节取决于进行读取的磁性存储器110、 140、 170 或280。例如,这些线与在步骤564中被致能或禁能以驱动该读电流通过所需 磁性元件102与104且输出差分信号的晶体管之间的组合取决于进行读取的磁 性存储器110、 140、 170或280。
对于磁性存储器220及240,在步骤564中通过比较该读取信号与参考信 号来读取数据。该电压信号代表给定单元的磁性元件102与104的电阻差。步 骤564的具体细节取决于进行读取的磁性存储器200及204。例如,这些线与 在步骤564中被致能或禁能以建立通过所需磁性元件102与104的该读取电压 且输出该电压信号的晶体管之间的组合取决于进行读取的磁性存储器200及 240。
由此,可使用方法560对存储器110、 140、 170、 200、 240及280进行编
程或读取。该方法使用差分法来读取一些存储器的数据,并且比较该读取信号 与其他存储器的参考信号作比较。由于磁性元件102与104共用一个选择晶体 管,该晶体管特性曲线的波动而造成的噪声得以减小或消除。此外,因该数据
线的寄生电容造成的时间延迟为小于一纳秒,以使该存储器件具有高速读取特 性的优点。
揭露了一种提供及使用磁性存储器的方法及系统。根据所示的实施例来描 述本发明,并且本技术领域的技术人员可容易地认识到这些实施例可有多种变 化,且这些变化俱在本发明的精神与范围之内。因此,本技术领域的技术人员 可在不脱离所附权利要求书的精神及范围的情况下作出多种修改。
权利要求
1、一种磁性存储器,包括多个磁性存储单元,各所述多个磁性存储单元包括多个能够通过受驱动经过所述磁性元件的写电流利用自旋转移感应翻转来进行编程的磁性元件,各所述多个磁性元件具有第一端及第二端,并且至少一个选择晶体管耦合至各所述多个磁性元件的所述第一端;及多根字线,其与所述多个选择晶体管耦合且用于选择地致能所述多个选择晶体管中的一部分;及多根位线。
2、 如权利要求1所述磁性存储器,其中所述多个磁性元件包括第一磁性 元件及第二磁性元件,并且其中所述至少一个选择晶体管包括单选择 晶体管。
3、 如权利要求2所述磁性存储器,还包括与所述多根位线耦合的多个位线选择晶体管,其用于选择地致能 所述多根位线中的一部分;及用于各所述多个磁性存储单元的多根数据线,所述多根数据线的 第一数据线与所述第一磁性元件的第二端耦合,并且所述多根数据线 的第二数据线与所述第二磁性元件的第二端耦合,所述多个数据线用 于提供所述多个磁性存储单元的写入过程中的写电流以及读取过程中 的读出电流。
4、 如权利要求3所述磁性存储器,其中所述多个磁性存储单元被分成包 括第一磁性存储单元及第二磁性存储单元的对,其中所述第一磁性存 储单元的选择晶体管与所述第二磁性存储单元的选择晶体管共用漏 极。
5、 如权利要求3所述磁性存储器,其中所述多根位线包括多根辅助位线,各所述辅助位线与所述多个磁性元件中的一部分耦合,所述多个位线 选择晶体管与所述多根辅助位线相对应。
6、 如权利要求5所述磁性存储器,其中所述多根数据线包括多根辅助数 据线,所述多根辅助数据线包括用于所述多个磁性存储单元中一部分 的所述第一数据线及所述第二数据线。
7、 如权利要求3所述磁性存储器,其中第一数据线接地。
8、 如权利要求7所述磁性存储器,其中所述多根位线耦合至多个差分读 出放大器。
9、 如权利要求7所述磁性存储器,其中各所述多根位线耦合至各多个差 分读出放大器。
10、 如权利要求3所述磁性存储器,其中所述多根位线与至少一个电流转 换电路耦合。
11、 如权利要求3所述磁性存储器,其中所述第一数据线是用于各所述多个磁性存储单元的独立数据线,并且其中所述第二数据线是用于所述 多个磁性存储单元的一部分的共用数据线。
12、 如权利要求2所述磁性存储器,其中所述第一磁性元件包括具有第一 磁化的第一存储层,并且所述第二磁性元件包括具有第二存储层的第 二存储层,所述第一磁化与所述第二磁化基本反平行对齐。
13、 如权利要求2所述磁性存储器,其中所述第一磁性元件具有第一磁阻, 并且所述第二磁性元件具有第二磁阻,所述第一磁阻及所述第二磁阻 的量值基本相等。
14、 如权利要求2所述磁性存储器,其中所述第一磁性元件具有第一电阻, 并且所述第二磁性元件具有第二电阻,所述第一电阻与所述第二电阻 不同。
15、 如权利要求1所述磁性存储器,其中所述多个磁性元件的第一磁性元 件基本上是直接放置在所述多个磁性元件的第二磁性元件的上方。
16、 如权利要求15所述磁性存储器,其中各所述第一磁性元件与所述第 二元件包括穿隧磁阻结。
17、 如权利要求16所述磁性存储器,其中所述穿隧磁阻结包括被钉扎层、 穿隧势垒层及自由层,所述穿隧势垒层位于所述被钉扎层与所述自由 层之间。
18、 如权利要求n所述磁性存储器,其中所述被钉扎层为合成被钉扎层, 其包括第一磁性层、第二磁性层及所述第一磁性层与所述第二磁性层 之间的非磁性层。
19、 如权利要求17所述磁性存储器,其中所述第一磁阻存储元件的被钉 扎层位于所述第一磁阻存储元件的自由层的上方,并且其中所述第二 磁阻存储元件的被钉扎层位于所述第二磁阻存储元件的自由层的下 方。
20、 如权利要求15所述磁性存储器,其中所述第一磁阻存储元件及所述 第二磁阻存储元件各自包括独立的单元板,并且由绝缘层隔开。
21、 如权利要求15所述磁性存储器,其中所述第一磁阻存储元件及所述 第二磁阻存储元件共用一块单元板。
22、 如权利要求1所述磁性存储器,其中所述多个磁性元件包括多个双穿 隧磁阻结。
23、 如权利要求22所述磁性存储器,其中各所述多个双穿隧磁阻结包括合成被钉扎层,所述合成被钉扎层包括第一磁性层、第二磁性层及所 述第一磁性层与所述第二磁性层之间的非磁性间隔层。
24、 如权利要求l所述磁性存储器,其中各所述多个磁性元件包括第一被 钉扎层、穿隧势垒层、自由层、非磁性间隔层及第二被钉扎层,所述 穿隧势垒层位于所述自由层与所述第一被钉扎层之间,所述非磁性间 隔层位于所述第二被钉扎层与所述自由层之间。
25、 如权利要求24所述磁性存储器,其中所述第一被钉扎层为合成被钉 扎层,其包括第一磁性层、第二磁性层及所述第一磁性层与所述第二 磁性层之间的非磁性层。
26、 如权利要求1所述磁性存储器,其中各所述多个磁性元件包括多个穿 隧磁阻结,各所述多个穿隧磁阻结由非磁性层隔开。
27、 如权利要求1所述磁性存储器,其中各所述多个磁性元件包括至少一 个穿隧磁阻结及至少一个自旋阀,各所述至少一个穿隧磁阻结及所述 至少 一 个自旋阀由非磁性间隔层隔开。
28、 如权利要求1所述磁性存储器,其中各所述多个磁性元件包括自由层, 所述自由层包括Co、 Fe及Ni中的至少一种。
29、 如权利要求28所述磁性存储器,其中所述自由层包括至少一非晶形 成组分。
30、 如权利要求29所述磁性存储器,其中所述至少一非晶形成组分的浓 度不大于30原子百分比。
31、 如权利要求29所述磁性存储器,其中所述非晶形成组分包括硼。
32、 如权利要求29所述磁性存储器,其中所述自由层的饱和磁化为400 至1500 emu/cm3。
33、 如权利要求28所述磁性存储器,其中所述自由层为包括铁磁材料或 亚铁磁材料的单层。
34、 如权利要求33所述磁性存储器,其中所述铁磁材料包括下列材料中 的至少一种Co、含5 40原子百分比Fe的CoFe、含5 40原子百分 比Fe及5 30原子百分比B的CoFeB、含5 40原子百分比Fe及5 30 原子百分比Ta的CoFeTa、含约20原子百分比Fe的NiFe、含5 40原子 百分比Pt的CoPt、含5 40原子百分比Pd的CoPd、含5 40原子百分 比Pt的FePt、 Co2MnAl、 Co2MnSi或者Co2CrAl、 Co2CrSi、 Co2FeAl 及Co2FeSi中
35、 如权利要求33所述磁性存储器,其中所述亚铁磁材料包括含15 30 原子百分比Gd的CoGd以及含10 40原子百分比Gd的FeGd中的至少一种。
36、 如权利要求28所述磁性存储器,其中所述自由层为包括多个层的多层。
37、 如权利要求36所述磁性存储器,其中所述多个层包括多个铁磁层。
38、 如权利要求37所述磁性存储器,其中所述多个铁磁层包括下列材料 中的至少一种Co、含5 40原子百分比Fe的CoFe、含5 40原子百 分比Fe及5 30原子百分比B的CoFeB、含5 40原子百分比Fe及5 30原子百分比Ta的CoFeTa、含约20原子百分比Fe的NiFe、含5 40 原子百分比Pt的CoPt、含5 40原子百分比Pd的CoPd、含5 40原子 百分比Pt的FePt、 Co2MnAl、 Co2MnSi或者Co2CrAl、 Co2CrSi、 Co2FeAl 及Co2FeSi中。
39、 如权利要求37所述磁性存储器,其中所述多个层包括至少一非磁性 层,所述非磁性层将所述多个铁磁层的一部分隔开。
40、 如权利要求39所述磁性存储器,其中所述铁磁材料包括下列材料中 的至少一种Co、含5 40原子百分比Fe的CoFe、含5 40原子百分 比Fe及5 30原子百分比B的CoFeB、含5 40原子百分比Fe及5 30 原子百分比Ta的CoFeTa、含约20原子百分比Fe的NiFe、含5 40原子 百分比Pt的CoPt、含5 40原子百分比Pd的CoPd、含5 40原子百分 比Pt的FePt、 Co2MnAl、 Co2MnSi或者Co2CrAl、 Co2CrSi、 Co2FeAl 及Co2FeSi。
41、 如权利要求39所述磁性存储器,其中所述非磁性层包括Ru、 Rh、 Re、 Cr及Cu中的至少一种。
42、 如权利要求28所述磁性存储器,其中给所述多个磁性元件包括被钉 扎层,所述被钉扎层包括Co、 Fi及Ni中的至少一种。
43、 如权利要求42所述磁性存储器,其中所述被钉扎层为包括铁磁材料 或亚铁磁材料的单层。
44、 如权利要求43所述磁性存储器,其中所述铁磁材料包括下列材料中 的至少一种co、含5 40原子百分比Fe的CoFe、含5 40原子百分 比Fe及5 30原子百分比B的CoFeB、含5 40原子百分比Fe及5 30 原子百分比Ta的CoFeTa、含约20原子百分比Fe的NiFe、含5 40原 子百分比Pt的CoPt、含5 40原子百分比Pd的CoPd、含5 40原子百 分比Pt的FePt、 Co2MnAl、 Co2MnSi或者Co2CrAl、 Co2CrSi、 Co2FeAl 及Co2FeSi。
45、 如权利要求43所述磁性存储器,其中所述亚铁磁材料包括含15 30 原子百分比Gd的CoGd以及含10 40原子百分比Gd的FeGd中的至少
46、 如权利要求42所述磁性存储器,其中所述被钉扎层为包括多个层的多层。
47、 如权利要求46所述磁性存储器,其中所述多个层包括多个铁磁层。
48、 如权利要求47所述磁性存储器,其中所述多个铁磁层包括下列材料 中的至少一种Co、含5 40原子百分比Fe的CoFe、含5 40原子百 分比Fe及5 30原子百分比B的CoFeB、含5 40原子百分比Fe及5 30原子百分比Ta的CoFeTa、含约20原子百分比Fe的NiFe、含5 40 原子百分比Pt的CoPt、含5 40原子百分比Pd的CoPd、含5 40原子 百分比Pt的FePt、 Co2MnAl、 Co2MnSi或者Co2CrAl、 Co2CrSi、 Co2FeAl 及Co2FeSi。
49、 如权利要求47所述磁性存储器,其中所述多个层包括至少一非磁性 层,所述非磁性层将所述多个铁磁层的一部分隔开。
50、 如权利要求49所述磁性存储器,其中所述铁磁材料包括下列材料中 的至少一种co、含5 40原子百分比Fe的CoFe、含5 40原子百分 比Fe及5 30原子百分比B的CoFeB、含5 40原子百分比Fe及5 30 原子百分比Ta的CoFeTa、含约20原子百分比Fe的NiFe、含5 40原子 百分比Pt的CoPt、含5 40原子百分比Pd的CoPd、含5 40原子百分 比Pt的FePt、 Co2MnAl、 Co2MnSi或者Co2CrAl、 Co2CrSi、 Co2FeAl 及Co2FeSi。
51、 如权利要求49所述磁性存储器,其中所述非磁性层包括Ru、 Re及 Cu中的至少一种。
52、 如权利要求42所述磁性存储器,其中各所述多个磁性元件包括至少 一穿隧势垒层。
53、 如权利要求52所述磁性存储器,其中所述至少一个穿隧势垒层包括 含40 70原子百分比O的A10、含30 60原子百分比O的MgO、含40 70原子百分比O及含2 30原子百分比N的AION、含30 60原子百 分比N的A1N、 AlZrO、 AlHfO、 AlTiO及AlTaO中的至少一种。
54、 如权利要求52所述磁性存储器,其中所述至少一个穿隧势垒层包括 多个层。
55、 如权利要求52所述磁性存储器,其中所述至少一个穿隧势垒层的厚 度为至少5埃且不超过40埃。
56、 如权利要求52所述磁性存储器,其中所述至少一个穿隧势垒层的电 阻一面积乘积为10 100D卞m2。
57、 如权利要求42所述磁性存储器,其中各所述多个磁性元件包括至少一 非磁性问隔层。
58、 如权利要求57所述磁性存储器,其中各所述至少一非磁性间隔层包 括Cu、 Ag、 Pt、 Al、 Ru、 Re、 Rh、 Ta及Ti中的至少一种。
59、 如权利要求57所述磁性存储器,其中各所述至少一非磁性间隔层包 括至少一纳米氧化层。
60、 一种设置磁性存储器的方法,包括设置多个磁性存储单元,各所述多个磁性存储单元包括多个能够 通过受驱动经过所述磁性元件的写电流利用自旋转移感应翻转来进行 编程的磁性元件,各所述多个磁性元件具有第一端及第二端,并且至少一个选择晶体管耦合至各所述多个磁性元件的所述第一端;及设置多根字线,所述字线与所述多个选择晶体管耦合且选择地致能所述多个选择晶体管中的一部分; 设置多根位线。
61、 如权利要求60所述的方法,其中设置多个磁性元件包括设置第一磁性元件及第二磁性元件,并且其中所述至少一个选择 晶体管包括单选择晶体管。
62、 如权利要求61所述的方法,还包括设置与所述多根位线耦合的多个位线选择晶体管,其用于选择地 致能所述多根位线中的一部分;及设置用于各所述多个磁性存储单元的多根数据线,所述多根数据 线的第一数据线与所述第--磁性元件的第二端耦合,并且所述多根数 据线的第二数据线与所述第二磁性元件的第二端耦合,所述多个数据 线用于提供所述多个磁性存储单元的写入过程中的写电流以及读取过 程中的读出电流。
63、 如权利要求62所述的方法,其中设置所述多个磁性存储单元包括将所述多个磁性存储单元分成包括第一磁性存储单元及第二磁 性存储单元的对,其中所述第一磁性存储单元的选择晶体管与所述第 二磁性存储单元的选择晶体管共用漏极。
64、 如权利要求62所述的方法,其中设置所述多根位线包括设置多根辅助位线,各所述辅助位线与所述多个磁性元件中的--部分耦合,所述多个位线选择晶体管与所述多根辅助位线相对应。
65、 如权利要求62所述的方法,其中设置所述多根数据线还包括设置多根辅助数据线,所述多根辅助数据线包括用于所述多个磁 性存储单元中一部分的所述第一数据线及所述第二数据线
66、 如权利要求2所述的方法,其中设置所述多根数据线包括将所述第一数据线接地。
67、 如权利要求66所述的方法,其中设置所述多根位线还包括将所述多根位线耦合至各多个差分读出放大器。
68、 如权利要求66所述的方法,其中各所述多根位线耦合至多个差分读 出放大器中的每一个。
69、 如权利要求62所述的方法,还包括将所述多根位线与至少一个电流转换电路耦合。
70、 如权利要求62所述的方法,其中所述第一数据线为用于各所述多个 磁性存储单元的独立数据线,并且其中所述第二数据线为用于所述多 个磁性存储单元的一部分的共用数据线。
71、 如权利要求61所述的方法,其中设置所述多个磁性存储单元还包括设置所述第一磁性元件,其包括具有第一磁化的第一存储层;及设置所述第二磁性元件,其包括具有第二磁化的第二存储层,所 述第一磁化与所述第二磁化基本反平行对齐。
72、 如权利要求61所述的方法,其中所述第一磁性元件具有第一磁阻, 并且所述第二磁性元件具有第二磁阻,所述第一磁阻及所述第二磁阻 的量值基本相等。
73、 如权利要求61所述的方法,其中所述第一磁性元件具有第一电阻, 并且所述第二磁性元件具有第二电阻,所述第一电阻与所述第二电阻 不同。
74、 如权利要求60所述的方法,其中设置所述多个磁性存储单元包括将所述多个磁性元件的第一磁性元件基本上直接放置在所述多 个磁性元件的第二磁性元件的上方。
75、 如权利要求74所述的方法,其中各所述第一磁性元件及所述第二元 件包括穿隧磁阻结。
76、 如权利要求75所述的方法,其中所述穿隧磁阻结包括被钉扎层、穿 隧势垒层及自由层,所述穿隧势垒层位于所述被钉扎层与所述自由层 之间。
77、 如权利要求76所述的方法,其中所述被钉扎层为包括合成被钉扎层, 其包括第一磁性层、第二磁性层及所述第一磁性层与所述第二磁性层 之间的非磁性层。
78、 如权利要求77所述的方法,其中所述第一磁阻存储元件的被钉扎层 位于所述第一磁阻存储元件的自由层的上方,并且其中所述第二磁阻 存储元件的被钉扎层位于所述第二磁阻存储元件的自由层的下方。
79、 如权利要求74所述的方法,其中所述第一磁阻存储元件及所述第二 磁阻存储元件各自包括独立的单元板,并且由绝缘层隔开。
80、 如权利要求74所述的方法,其中所述第一磁阻存储元件及所述第二 磁阻存储元件共用一块单元板。
81、 如权利要求60所述的方法,其中设置所述多个磁性元件包括设置多个双穿隧磁阻结。
82、 如权利要求60所述的方法,其中设置所述多个磁性元件包括设置用于各所述多个磁性元件的第一被钉扎层、穿隧势垒层、自 由层、非磁性间隔层及第二被钉扎层,所述穿隧势垒层位于所述自由 层与所述第一被钉扎层之间,所述非磁性间隔层位于所述第二被钉扎 层与所述自由层之间。
83、 如权利要求60所述的方法,其中设置所述多个磁性元件包括设置用于各所述多个磁性存储单元的多个穿隧磁阻结,各所述多 个穿隧磁阻结由非磁性层隔开。
84、 如权利要求60所述的方法,其中各所述多个磁性元件包括至少一个 穿隧磁阻结及至少一个自旋阀,各所述至少一个穿隧磁阻结及所述至 少 一 个自旋阀由非磁性间隔层隔开。
85、 一种使用磁性存储器的方法,所述磁性存储器包括多个磁性存储单元, 所述方法包括驱动写电流经过所述多个磁性存储单元中的一部分,各所述多个 磁性存储单元包括多个能够通过受驱动经过所述磁性元件的写电流利 用自旋转移感应翻转来进行编程的磁性元件,各所述多个磁性元件具 有第一端及第二端,并且至少一个选择晶体管耦合至各所述多个磁性 元件的所述第一端;及通过驱动读电流经过所述多个磁性元件、并根据该读取信号判定 差分信号或者比较该读取信号与参考信号来读取至少一个所述磁性存 储单元。
全文摘要
揭露了一种磁性存储器的设置方法及系统。该方法及系统包括设置多个磁性存储单元、多根字线、多根位线。各所述多个磁性存储单元包括多个磁性元件及至少一个选择晶体管。各所述多个磁性元件能够通过受驱动经过所述磁性元件的写电流利用自旋转移感应翻转来进行编程。各所述多个磁性元件具有第一端及第二端。所述至少一个选择晶体管耦合至各所述多个磁性元件的所述第一端。所述多根字线与所述多个选择晶体管耦合且选择地致能所述多个选择晶体管中的一部分。
文档编号G11C11/00GK101194320SQ200680020208
公开日2008年6月4日 申请日期2006年6月7日 优先权日2005年6月8日
发明者刁治涛, 怀一鸣, 钱正宏, 麦亨德拉·帕卡拉 申请人:弘世科技公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1