氢发生装置的制作方法

文档序号:4974690阅读:144来源:国知局
专利名称:氢发生装置的制作方法
技术领域
本发明涉及可产生供给燃料电池等的氢利用设备的氢锂气体的氢发生装置,该装置以天然气、LPG、汽油、石脑油、灯油及甲醇等烃类物质为主原料。
背景技术
参考图8,对向燃料电池供给氢的以往使用的氢发生装置的启动方法进行说明。图8是表示传统的氢发生装置结构的简图。
图8所示的氢发生装置具备原料供给部1及水供给部2,它们与内部填充了改性催化剂的改性部3连接。由原料供给部1供给的原料在改性部3中得到改性,所得改性气体流入填充了转化催化剂的转化部4,从转化部4流出的转化气体又流入填充了除CO(净化)催化剂的净化部5。然后,从净化部5流出的净化气体作为生成气体通过三向阀门6供给燃料电池7,或者根据不同情况导入设置在改性部3附近的燃烧器8。图8所示的氢发生装置虽然具备改性部3、转化部4及净化部5,但有时该氢发生装置也可以只具备改性部3或者只具备改性部3和转化部4。燃烧器8具备燃烧室8’,还设置了燃料供给部9和供给燃烧用空气的空气供给部10。燃烧器8中产生的燃烧气体从设置在改性部3的排气口11排出。
具备以上构成的氢发生装置在启动时,残留于净化部5的生成气体及来自空气供给部10的燃烧用空气一起导入燃烧器8中。然后,一边利用点火装置(图中未显示)点火一边由燃料供给部9供给燃料形成火焰。确认火焰状态稳定后,由原料供给部1向改性部3供给原料,在燃烧器8中由燃料供给部9供给的燃料与由原料供给部1供给的原料经过改性部3、转化部4及净化部5所得的生成气体一起燃烧,使改性部3加热。
然后,逐渐减少由燃料供给部9供给的燃料量直至停止供应,只利用原料供给部1供给的原料而获得的生成气体形成火焰,使改性部3、转化部4及净化部5的温度升高,以最合适的温度状态启动氢发生装置。
此时,由空气供给部10供给的空气量根据原料供给部1供给的原料量作调整。但是,有时空气量由于仅根据原料量不能够充分满足燃烧器中实际进行燃烧的生成气体中的可燃性气体量,导致空气量不足,引发燃烧排气的特性劣化和不稳定的燃烧状态。
生成气体的组成及各成分的流量由改性部3、转化部4及净化部5等反应部中所含的催化剂的反应状态,例如催化剂的温度所决定。例如,以甲烷为原料气体时,改性部的改性反应主要由式(1)及式(2)表示。
(1)(2)改性催化剂的温度较低,不引起改性反应时,由氢发生装置送入燃烧器8的生成气体是作为原料供给的甲烷。但是,如果改性催化剂的温度提高到可充分进行改性反应的温度,则自改性部3送出的改性气体主要为式(1)及式(2)中的氢及二氧化碳或一氧化碳,改性气体的总流量是供给的甲烷流量的4~5倍。改性催化剂的温度上升到足够进行改性反应时,取生成气体的组成及各成分的流量的中间值,再加上转化部4及净化部5的反应,根据这些反应部的温度会使生成气体的组成及各成分的流量进一步发生变化。
如果各反应部的温度使生成气体的组成等发生变化,则生成气体中的可燃性气体的量也发生变化。因此,如果仅根据供给的原料量来调整空气量,则会出现空气量不足,燃烧器8难以维持良好的燃烧状态的问题。特别是在改性催化剂的温度接近400℃时,温度每上升10℃,反应率则上升数十%,由改性部3送出的气体的流量急剧增加,存在于转化部4及净化部5的大量可燃性气体被挤压入燃烧器8中。所以,如果根据供给的原料量来决定空气量,则会出现空气明显不够,燃烧器8的火焰容易变得不稳定,有时还存在失火的危险。
本发明的目的是解决上述问题,提供氢发生装置的生成气体可在燃烧器中稳定燃烧、操作性及便利性良好的氢发生装置。
以下对使用了上述氢发生装置及燃料电池的以往的燃料电池系统进行说明。图9是表示以往的燃料电池系统结构的简图。图9所示燃料电池系统的燃料电池101中,空气极102和燃料极103中间夹有高分子电解质膜104,空气极102的上流侧与供给空气的鼓风机(空气供给部)105相连通。
向氢发生装置106中供给天然气或甲醇等原料X及水蒸汽改性反应所必须的水Y,生成氢锂气体(改性气体)G。此外,图9中的氢发生装置106仅具备改性部。
生成气体G经过切换阀107供给燃料电池101的燃料极103,然后流向与燃料极103相连的规定流路的下流侧。此时,生成气体G中的氢仅消耗电极反应所必需量,燃料电池101中未反应而残留的气体作为排出气体G’通过气体流路123’供给燃烧器109。生成气体G不供给燃料电池103时,生成气体G经切换阀107通过气体流路123供给燃烧器109。
供给燃烧器109的生成气体G或排出气体G’与由鼓风机(空气供给部)110供给的空气混合后燃烧,在燃烧室108形成火焰111,由燃烧气体对氢发生装置106进行加热。
燃烧室108的火焰111的状态可通过对火焰111施加规定电压时通过的离子电流检测。火焰检测部112由与火焰111接触的耐热性导电体113、隔着火焰111可对导电体113和燃烧器109施加规定电压的直流电源114、将通过火焰111的电流转化为电压的电阻115及对电阻115两端的电压进行检测的电压检测部116构成。通过该火焰检测部112能够对火焰111的着火及失火等燃烧状态进行检测。
这种传统的燃料电池系统中,由于通过水蒸汽改性反应将原料X中的烃类转换为氢,所以生成气体G及排出气体G’中包含的烃类的浓度显著下降。烃类的浓度一旦下降,则火焰111中的离子浓度也下降,通过火焰111的电流值变小,这样电阻115两端的电压也降低。即,火焰检测部112的检测电压降低,则存在着火时及失火时的燃烧状态难以判断的问题。
因此,本发明的目的是解决上述问题,提供能够切实判断对氢发生装置进行加热的燃烧器的着火及失火状态,操作安全的氢发生装置及具备该氢发生装置的燃料电池系统。
发明的揭示本发明的氢发生装置具备包括原料供给部和水供给部的改性部及包括燃料供给部和空气供给部的对前述改性部进行加热的燃烧器。该氢发生装置的特征是,还具备将来自前述氢发生装置的生成气体导入前述燃烧器的的气体流路、测定前述改性部温度的改性温度检测部、根据来自前述原料供给部的信号及来自前述改性温度检测部的信号对前述空气供给部供给前述燃烧器的空气量进行控制的控制部。
前述氢发生装置中的前述控制部在前述氢发生装置启动时,使前述原料供给部所提供的原料量按照规定比例增加,将前述氢发生装置产生的生成气体导入前述燃烧器,且根据来自前述原料供给部的信号及来自前述改性温度检测部的信号对前述空气供给部供给前述燃烧器的空气量进行有效控制。
此外,前述氢发生装置还具备设置在前述改性部下流侧的转化部及测定前述转化部温度的转化温度检测部。这样前述控制部就根据来自前述原料供给部的信号、来自前述改性温度检测部的信号及来自前述转化温度检测部的信号对前述空气供给部导入前述燃烧器的空气量进行有效控制。
此外,前述氢发生装置还具备设置在前述转化部下流侧的净化部及测定前述净化部温度的净化温度检测部。这样前述控制部就根据来自前述原料供给部的信号、来自前述改性温度检测部的信号、来自前述转化温度检测部的信号及来自前述净化部的信号对前述空气供给部供给前述燃烧器的空气量进行有效控制。
此外,前述控制部能够根据前述生成气体中的可燃性气体量及前述燃料供给部供给前述燃烧器的燃料量对供给前述燃烧器的可燃性气体量进行预测,对由前述空气供给部供给前述燃烧器的空气量进行有效控制。
又,前述燃烧器具备形成火焰的燃烧室及根据前述火焰的离子电流对火焰状态进行检测的火焰检测部,前述控制部能够有效地将前述改性部的温度控制在规定温度以下。
又,前述控制部能够通过调节前述水供给部供给前述改性部的水量对前述改性部的温度进行有效控制。
前述氢发生装置具备可检测前述生成气体中的烃浓度的烃传感器,前述控制部根据前述烃传感器的输出功率值对前述改性部的温度进行有效控制。
本发明还涉及具备燃料电池及上述氢发生装置的燃料电池系统。
附图的简单说明

图1为本发明的氢发生装置的结构简图。
图2表示利用改性催化剂的甲烷改性反应率。
图3表示转化催化剂的反应性。
图4表示净化催化剂的反应性。
图5为本发明另一氢发生装置的结构简图。
图6为本发明另一氢发生装置的结构简图。
图7为本发明的燃料电池系统的结构简图。
图8为以往的氢发生装置的结构简图。
图9为以往的燃料电池系统的结构简图。
实施发明的最佳方式参照附图对本发明的氢发生装置及具备该装置的燃料电池系统的实施方式进行说明。
实施方式1图1为本发明实施方式1的氢发生装置的结构简图。图1所示氢发生装置中的原料供给部1及水供给部2与内部填充了改性催化剂的改性部3相连。原料供给部1供给的原料在改性部3被改性成为改性气体,改性气体流入填充了转化催化剂的转化部4,形成转化气体。转化气体再流入填充了除CO(净化)催化剂的净化部5,被净化后转变为净化气体。该净化气体作为生成气体通过气体流路利用三向阀6导入燃料电池7或设置在改性部3附近的燃烧器8。燃烧器8中设置了燃料供给部9及供给燃烧用空气的空气供给部10。此外,燃烧器8的燃烧排气通过设置于改性部3的排气口11排出。
分别由原料供给部1及燃料供给部9提供的原料及燃料可采用天然气、煤气或LPG等气体状烃类燃料或汽油、灯油或甲醇等液体状烃类燃料。但是,采用液状燃料时,必须要有可使燃料气化的装置,来自改性部3或燃烧器8的传导热或燃烧排气中的热量等都可使燃料气化。
此外,利用泵或鼓风机等或另外设置在泵或鼓风机等的下流侧的阀门等流量调整器也可对分别来自原料供给部1、燃料供给部9及空气供给部10的原料、燃料及空气流量进行调整。本说明书中的原料供给部1、燃料供给部9及空气供给部10中都包括上述流量调整器。
图1中的箭头分别表示原料、反应气体及燃料等的流动方向。改性部3中设置了对改性催化剂的温度进行测定的改性温度检测部12,控制部15能够根据改性温度检测部12检测出的温度(信号)及原料供给部1提供的原料量(信号)对空气供给部10供给改性部3的空气量进行控制。改性温度检测部12可采用热电偶或高温型热敏电阻等。
以下,对图1所示氢发生装置的启动方法进行说明。
氢发生装置在启动时,首先控制三向阀6使其处于能够将净化部5送出的生成(净化)气体供给燃烧器8的状态。然后,由空气供给部10向燃烧器8提供空气,并在此状态下一边利用点火装置(图中省略)进行点火动作,一边由燃料供给部9向燃烧器8供给燃料形成火焰。这些操作也可同时进行。
在确认燃烧器8的火焰状态稳定后,由原料供给部1向改性部3提供原料。这样就在燃烧器8中使燃料供给部9供给的燃料与原料供给部1供给的原料经过改性部3、转化部4及净化部5的反应部而获得的生成气体一起燃烧对改性部3进行加热。
然后,逐渐减少由燃料供给部9供给燃烧器8的燃料量直至停止供应,通过由原料供给部1供给改性部3的原料供给燃烧器8的生成气体形成燃烧器8的火焰,使各反应部的温度升高,维持最合适温度范围,这样就完成了氢发生装置的启动。
以下,对各反应部的反应进行说明。
(1)改性部改性部3,主要按照式(1)及式(2)所示的2个反应,由1摩尔甲烷生成合计5摩尔的氢及二氧化碳或合计4摩尔的氢及一氧化碳。
图2表示对应于改性催化剂温度的甲烷反应率,即反映催化剂温度和甲烷反应率间的关系。可见在接近400℃的温度下甲烷反应率急剧升高,改性反应急剧进行。这样随着改性催化剂的温度变化,由改性部3送出的改性气体的组成及各成分的流量发生了很大变化。由氢发生装置送出的生成气体是存在于离燃烧器8最近的净化部5的出口附近的净化气体,是由改性气体挤压出的净化气体。启动时在改性催化剂的温度达到600℃左右时,转化部4及净化部5的温度不再升高,所以不能够充分促进转化反应及选择氧化(净化)反应的进行,改性气体基本未经反应就通过了转化部4及净化部5。
因此,由供给改性部3的原料量及改性催化剂温度预测改性气体的组成及各成分的流量,如果能够把握它们随时间的变化率,就能够对被改性气体挤压出的净化部5出口附近的净化气体(生成气体)的组成及各成分的流量进行预测,生成气体中的可燃性气体流量也可获知。
例如,当改性催化剂温度为400℃时,如以1NL/分钟的流量向改性部3供给甲烷作为原料,从图2可看出,甲烷反应率为50%,式(1)的反应和式(2)的反应比例约为10∶1(但图中未显示对应于催化剂温度的式(1)的反应及式(2)的反应的比例)。因此,这种情况下的改性气体包含400℃时未反应的甲烷0.5NL/分钟、式(1)及式(2)获得的氢1.95NL/分钟、式(1)获得的二氧化碳0.45NL/分钟、式(2)获得的一氧化碳0.05NL/分钟。同样根据改性催化剂温度计算出改性气体的流量和各成分的流量,能够获知其时间变化。
根据改性部3的出口到燃烧器8为止的气体流路的容积,可获知利用400℃的改性催化剂获得的改性气体被其后生成的改性气体挤压通过转化部4及净化部5到达燃烧器8所需时间。因此,该改性气体作为生成气体到达燃烧器8时,因为可知该改性气体中可燃性气体的流量(甲烷0.5NL/分钟,氢气1.95NL/分钟,一氧化碳0.05NL/分钟),所以能够算出对应于各成分的理论空气量(理论空气量4.76NL/分钟(对应于甲烷)、4.64NL/分钟(对应于氢气)、0.12NL/分钟(对应于一氧化碳)),能够将最适量的空气由空气供给部10供给燃烧器8。
因此,利用来自原料供给部1的信号(供给的原料量)及来自改性温度检测部12的信号(改性催化剂温度)可检测改性气体的组成及各成分的流量,决定导入燃烧器8的合适的空气量,再根据该量由空气供给部10向燃烧器8供给空气。即使在生成气体的组成及各成分的流量发生变化的情况下,由于也能够通过原料量及改性催化剂温度对生成气体的组成及各成分的流量进行预测,所以能够实现燃烧器8的稳定燃烧状态及良好的燃烧排气特性。燃烧排气特性是指由于空气不足或空气过多而未进行完全燃烧,燃烧排气中是否含有CO或未燃烧的烃类。即,良好的燃烧排气特性是指燃烧排气中几乎不含CO和未燃烧的烃类。
(2)转化部图3所示为向铂族转化催化剂供给含有10体积%的CO、10体积%的CO2及80体积%的H2的标准气体时,对应于转化催化剂温度的前述转化反应后的CO或CO2浓度(体积%)。根据催化剂的温度引发转化反应、逆转化反应及甲烷化反应,确定CO及CH4的量。
控制上述转化催化剂的反应状态可采用以下方法。即,如图1所示,在转化部4中设置转化温度检测部13测定转化催化剂温度,此外,如上所述如果根据供给改性部3的原料量及改性催化剂温度求得改性气体的组成及各成分的流量,则能够根据转化催化剂温度预测转化部4的出口及转化气体的组成及各成分的流量。如果将该转化气体作为氢发生装置产生的生成气体,则比将改性气体作为生成气体时更能够正确地预测生成气体中的可燃性气体的流量。
因此,利用来自原料供给部1的信号、来自改性温度检测部12的信号及来自转化温度检测部13的信号更能够正确地确定供给燃烧器8的合适的空气量。
(3)净化部图4所示为向铂族除CO(净化)催化剂供给含有1体积%的CO、19体积%的CO2及80体积%的H2的标准气体时,对应于CO净化催化剂温度的前述标准气体中的CO浓度(ppm)。根据催化剂温度由氧化反应及逆转化反应可决定CO量。
控制上述除CO催化剂的反应状态可采用以下方法。即,如图1所示,在净化部5中设置净化温度检测部14测定净化催化剂温度。此外,如上所述,如果根据供给改性部3的原料量及改性催化剂温度求得改性气体的组成及各成分的流量,并进一步根据转化催化剂温度求得转化气体的组成及各成分的流量,则能够根据净化催化剂温度预测净化部5获得的净化气体的组成及各成分的流量。如果将该净化气体作为氢发生装置产生的生成气体,则比将改性气体或转化气体作为生成气体时更能够正确地预测生成气体中可燃性气体的流量。
因此,利用来自原料供给部1的信号、来自改性温度检测部12的信号来自转化温度检测部13的信号及来自净化温度检测部14的信号更能够正确地确定供给燃烧器8的合适的空气量。
实施方式2图5所示为本发明实施方式2的氢发生装置的结构简图。图5所示氢发生装置除了控制部15根据燃料供给部9的信号检测的供给燃烧器8的燃料量和上述实施方式1求得的生成气体中的可燃性气体量预测供给燃烧器8的可燃性气体的总流量之外,其他都和实施方式1的氢发生装置相同。
在仅供给改性部3以原料不能够使改性部3的温度充分提高,由燃料供给部9向燃烧器8供给燃料提高燃烧器8的燃烧量的情况下,利用上述构成通过来自燃料供给部9的信号控制燃料流量,并预测生成气体中的可燃性气体流量,能够对导入燃烧器8的可燃性气体的总流量进行预测。此外,如果根据该可燃性气体的总流量由空气供给部10向燃烧器8供给适量的空气,则能够使燃烧器8具备稳定的燃烧状态及良好的燃烧排气特性。
可在各反应部设置一个或多个温度检测部。如果设置多个温度检测部,则能够更精确地控制催化剂的温度状态,可以更准确地对生成气体的状态进行预测。
实施方式3图6所示为本发明的另一氢发生装置的结构简图。图6所示氢发生装置的燃烧器8中形成火焰的燃烧室8’具备根据火焰的离子电流检测火焰状态的火焰检测部。该火焰检测部由与火焰21接触的耐热性导电体17、隔着火焰21对导电体17及燃烧器施加规定电压的直流电源18、将流过火焰21的离子电流转换为电压的电阻19及检测电阻19两端的电压的电压检测部20构成。此外,图6中的其他主要结构都与图1所示相同。
本实施方式的特征是控制部15将改性部3的温度控制在规定温度以下。为了确定燃烧器8的燃烧室8’的火焰是否正常,即检测燃烧器8的燃烧状态,必须对火焰21的离子电流进行检测。如果供给燃烧器8的气体中不存在甲烷等烃类,则不会出现该离子电流。因此,如果使改性部3、转化部4及净化部5的温度上升,提高作为生成气体的氢气的纯度,则很难对离子电流进行正确地检测。针对这一情况,本实施方式中为了利用火焰检测部对离子电流进行检测,控制部15将改性部3的温度控制在规定温度以下,使生成气体中包含烃类。这样就能够正确地对离子电流进行检测,确认燃烧及失火状态。
此外,利用控制部15控制改性部3的温度的方法还包括通过调节水供给部2供给改性部3的水量来控制改性部3的温度的方法;以及设置检测生成气体中的烃浓度的烃传感器(图中未显示),根据烃传感器的输出功率值对改性部3的温度进行控制的方法等。
以上对氢发生装置在启动时的情况进行了说明,这一说明也同样适用于常规运转时,使各反应部的催化剂温度发生变化,从而使氢生成量发生变化的情况。
实施方式4本发明还涉及包括上述氢发生装置及燃料电池的燃料电池系统(发电装置)。图7为本实施方式的燃料电池系统的结构简图。图7中,与图9所示使用了以往的燃料电池的燃料电池系统中的主要构件功能相同的构件用同一符号表示。这些构件的功能说明如上所述。
图7所示燃料电池系统具备检测作为氢发生装置主体的改性部106温度的改性温度检测部120、由供水Y的泵组成的水供给部121及检测生成气体中的烃浓度的烃类检测部122。烃类检测部122可采用气相传感器、红外线吸收式传感器或光音式传感器等。
从燃料电池101的燃料极103排出的排出气体G’及改性部106产生的生成气体G分别通过气体流路123及123’供给燃烧器109。燃烧器109中设置了由鼓风机构成的用于供给空气的空气供给部110。此外,控制部124根据改性温度检测部120或烃类检测部122的测定值对水供给部121及空气供给部110的运转进行控制。
以下,对本实施方式的燃料电池系统的运转及作用进行说明。如果向改性部106供给原料X及水Y,通过水蒸汽改性反应由原料X的烃类获得氢锂生成气体G。该生成气体G及来自燃料电池的排出气体G’通过气体流路123或123’供给燃烧器109。供给燃烧器109的生成气体G或排出气体G’因空气供给部110供给的空气而燃烧,在燃烧室108中形成火焰111。火焰111的燃烧气体对改性部106进行加热使其温度上升,从而进行水蒸汽反应。
通过将火焰111中的离子的离子电流转换为电阻115两端产生的电压,用电压检测部116可检测火焰111。供给燃烧器109的生成气体G或排出气体G’中包含的烃类如果较多,则火焰111的离子电流也变大,但烃类如果较少,则离子电流小,很难对火焰111进行检测。因此,由于有必要将改性部106中未转化为氢的残留烃量维持在规定值以上,必须将改性部106的温度控制在规定值以下,并将改性部106的烃类转化率控制在规定值以下。
改性温度检测部120所得温度信号被送到控制改性部106温度的控制部124。改性温度检测部120的温度如果比规定温度高时,由控制部124使空气供给部110供给的空气量增加。如果来自空气供给部110的空气量增加,就能供给大于生成气体G或排出气体G’燃烧所需量的空气量。而且过量的空气会使改性部106完全冷却,使改性部106的温度响应性迅速下降,这样就可使供给燃烧的生成气体G或排出气体G’中的烃量达到规定量以上,其结果是,能够稳定地使离子电流值增加。
因此,火焰检测部112检测的电压也可稳定提高,燃烧器109的燃烧及失火的响应性良好可精确检测。此外,如果火焰111消失,不能够马上通过离子电流,但因为由火焰检测部112能检测的电压也马上下降,所以能够以良好的响应性检测燃烧及失火状态。
此外,如果改性部106的温度高于规定温度时,则由控制部124使水供给部121供给的水量增加。如果水供给部121供给的水量增加,因为能向改性部106供给水蒸汽改性反应所必须量以上的水,所以由过量的水的显热及蒸发潜热而使改性部106的温度下降,可降低原料转化率。于是生成气体G或排出气体G’中包含的烃类的量可在规定量以上,离子电流值也增加。因此,能够通过火焰检测部112精确地对电压进行检测,获知燃烧及失火状态。
此外,利用烃类检测部122对生成气体G中包含的烃浓度进行检测,由控制部124算出原料转化率。如果用控制部124对空气供给部110及水供给部121的至少一方进行控制使算出的转化率在99%以下,则生成气体G或排出气体G’中就可残留1%以上的烃类。将该生成气体G或排出气体G’供给燃烧器109,在火焰111中确有离子产生,可确切地检测出离子电流。
产业上利用的可能性如上所述,本发明的氢发生装置具备由启动时的氢发生装置送出的生成气体供给燃烧器的结构,利用供给的原料量及改性部温度,控制改性气体组成及各成分的流量随时间的变化,能够对生成气体中的可燃性气体流量进行预测,供给适量的空气,能够获得稳定的燃烧状态及良好的燃烧排气特性。
此外,通过测定转化部及净化部的温度,也考虑到转化反应及净化反应,能够更精确地对生成气体中的可燃性气体流量进行预测,供给最适量的空气。
又,向燃烧器供给燃料的情况下,通过对供给的燃料量及生成气体中的可燃性气体的流量进行预测,也能够控制供给燃烧器的可燃性气体的总流量,以供给最适量的空气,从而获得稳定的燃烧状态及良好的燃烧排气特性。
此外,通过将改性温度控制在规定温度以下,能够将改性部的原料转化率控制在规定值以下,且将供给燃烧器的气体中的烃量控制在规定值以上,使离子电流值增加。因此,能够提高火焰检测部的检测电压,精确地检测出燃烧及失火情况。此外,由于能够检测火焰的离子电流,所以如果没有火焰存在,立即就没有离子电流通过,检测电压立即下降,能够以良好的响应性检测燃烧及失火情况。
权利要求
1.氢发生装置,具备包括原料供给部和水供给部的改性部及包括燃料供给部和空气供给部的对前述改性部进行加热的燃烧器,其特征在于,还具备将来自前述氢发生装置的生成气体导入前述燃烧器的气体流路、测定前述改性部温度的改性温度检测部、以及根据来自前述原料供给部的信号及来自前述改性温度检测部的信号对从前述空气供给部供给前述燃烧器的空气量进行控制的控制部。
2.如权利要求1所述的氢发生装置,其中,前述控制部在前述氢发生装置启动时使前述原料供给部所提供的原料量按照规定比例增加,将前述氢发生装置产生的生成气体导入前述燃烧器,并根据来自前述原料供给部的信号及来自前述改性温度检测部的信号对从前述空气供给部供给前述燃烧器的空气量进行控制。
3.如权利要求2所述的氢发生装置,其中,还具备设置在前述改性部下流侧的转化部及测定前述转化部温度的转化温度检测部,前述控制部根据来自前述原料供给部的信号、来自前述改性温度检测部的信号及来自前述转化温度检测部的信号对从前述空气供给部供给前述燃烧器的空气量进行控制。
4.如权利要求3所述的氢发生装置,其中,还具备设置在前述转化部下流侧的净化部及测定前述净化部温度的净化温度检测部,前述控制部根据来自前述原料供给部的信号、来自前述改性温度检测部的信号、来自前述转化温度检测部的信号及来自前述净化部的信号对从前述空气供给部供给前述燃烧器的空气量进行控制。
5.如权利要求1所述的氢发生装置,其中,前述控制部根据前述生成气体中的可燃性气体量及从前述燃料供给部供给前述燃烧器的燃料量对供给至前述燃烧器的可燃性气体量进行预测,对从前述空气供给部供给前述燃烧器的空气量进行控制。
6.如权利要求1所述的氢发生装置,其中,前述燃烧器具备形成火焰的燃烧室及根据前述火焰的离子电流对火焰状态进行检测的火焰检测部,前述控制部将前述改性部的温度控制在规定温度以下。
7.如权利要求6所述的氢发生装置,其中,前述控制部通过调节从前述水供给部供给至前述改性部的水量对前述改性部的温度进行控制。
8.如权利要求6所述的氢发生装置,其中,还具备可检测前述生成气体中的烃浓度的烃传感器,前述控制部根据前述烃传感器的输出功率值对前述改性部的温度进行控制。
9.燃料电池系统,其特征在于,具备燃料电池及权利要求1~8的任一项所述的氢发生装置。
全文摘要
本发明涉及氢发生装置,所述装置具备包括原料供给部和水供给部的改性部及包括燃料供给部和空气供给部的对前述改性部进行加热的燃烧器。为了使燃烧器处于稳定的燃烧状态,并提高操作性及简便性,设置了根据改性部温度及供给改性部的原料量对由前述空气供给部供给前述燃烧器的空气量进行控制的控制部。
文档编号B01D53/04GK1388791SQ01802530
公开日2003年1月1日 申请日期2001年8月10日 优先权日2000年8月25日
发明者麻生智伦, 前西晃, 富泽猛 申请人:松下电器产业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1