蒸气/液体分离设备的制作方法

文档序号:5020035阅读:205来源:国知局
专利名称:蒸气/液体分离设备的制作方法
技术领域
本发明涉及在从烃原料中除去不挥发性烃方面显示高效率的蒸气/液体分离设备。
背景技术
蒸汽裂化(也称为热解)早已用于将各种烃原料裂化成烯烃,优选轻质烯烃如乙烯、丙烯和丁烯。常规的蒸汽裂化使用具有两个主要段的热解炉对流段和辐射段。烃原料通常作为液体(除了作为蒸气进入的轻质原料)进入该炉的对流段,其中该烃原料通常通过与来自辐射段的热烟道气间接接触和通过与蒸汽直接接触而被加热和气化。然后将气化的原料和蒸汽混合物引入辐射段,在其中发生裂化。包括烯烃的所得产物离开热解炉用于进一步的下游加工,包括骤冷。
常规蒸汽裂化系统对于裂化高品质原料如汽油和石脑油是有效的。然而,蒸汽裂化经济性有时希望裂化廉价的重质原料如,作为非限制性实例,原油和常压残油(亦称常压管式蒸馏釜底部残余物)。原油和常压残油包含沸点高于590℃(1100)的高分子量、不挥发性组分。随着较轻质组分气化,这些原料的不挥发性重质终馏分在常规热解炉的对流段中作为焦炭沉积下来。在较轻组分完全气化的点的下游的对流段中,仅可以容许非常低水平的不挥发物。
此外,在输送期间,一些石脑油会受含不挥发性组分的重质原油污染。常规热解炉不具有加工受不挥发性组分污染的残油、原油、或许多残油或原油污染的瓦斯油或石脑油的灵活性。
为了解决焦化问题,美国专利3,617,493(该文献在此引入作为参考)公开了使用用于原油进料的外部气化鼓并公开了使用第一闪蒸以除去作为蒸气的石脑油和第二闪蒸以除去沸点在230和590℃(450和1100)之间的蒸气。在热解炉中将蒸气裂化成烯烃,将来自两个闪蒸罐的分离的液体取出,用蒸汽气提并用作燃料。
美国专利3,718,709(该文献在此引入作为参考)公开了最小化焦炭沉积的方法。它描述了在热解炉内部或外部将重质原料预热以用过热蒸汽气化大约50%该重质原料并除去残留的、分离的液体。对气化的烃(其主要包含轻质挥发性烃)进行裂化处理。
美国专利5,190,634(该文献在此引入作为参考)公开了通过如下手段抑制在炉中的焦炭形成的方法在对流段中在少量的、临界量的氢气存在下将原料预热。在对流段中氢气的存在抑制了烃的聚合反应从而抑制焦炭形成。
美国专利5,580,443(该文献在此引入作为参考)公开了一种方法,其中首先将原料预热然后让其从热解炉的对流段中的预热器取出。然后让这一预热的原料与预定量的蒸汽(稀释用蒸汽)混合,然后引入气-液分离器中以从分离器中分离和除去所需比率的作为液体的非挥发物。将来自气-液分离器的分离的蒸汽送回热解炉用于加热和裂化。
于2002年7月3日提交的美国专利申请序列No.10/188,461,即于2004年1月8日公开的专利申请公开US 2004/0004022 A1(该文献在此引入作为参考)描述了优化包含在重质烃原料中的挥发性烃的裂化和降低并避免焦化问题的有利的受控方法。它提供一种方法,该方法通过维持进入闪蒸器的物流相对恒定的温度来维持离开该闪蒸器的蒸气与液体具有相对恒定的比例。更具体地说,闪蒸器流的恒定温度如下维持在进入闪蒸器之前自动地调整与重质烃原料混合的流体流的量。该流体可以是水。
于2005年2月28日提交的美国专利申请序列号11/068,615(该文献在此引入作为参考)描述了重质烃原料的裂化方法,该方法让重质烃原料与流体如烃或水混合以形成混合物流,将该混合物流闪蒸以形成蒸气相和液相,随后将该蒸气相裂化而提供烯烃,在输送线换热器中将排出产物冷却,其中与该原料混合的流体的量根据所选择的工艺操作参数(例如混合物流被闪蒸之前混合物流的温度)改变。
于2004年5月21日提交的美国申请序列号10/851,434(该文献在此引入作为参考)和于2004年5月21日提交的美国临时申请序列号60/573,474(该文献在此引入作为参考)描述了提高蒸汽裂化系统中所使用的闪蒸鼓中的不挥发性物去除效率的方法,该闪蒸鼓具有下部接收器(boot),该接收器包括用于引入汽提蒸汽的进口、用于再循环骤冷油的环分配器、防漩流挡板和炉栅。
本发明人已认识到,在使用闪蒸/分离容器从可以在热解炉中裂化的较轻质挥发性烃中分离重质不挥发性烃方面,最大化不挥发性烃的去除效率是重要的。否则,重质的、形成焦炭的不挥发性烃可能夹带在蒸气相中并被带出塔顶进入炉中,从而在对流段中产生焦化问题。
在简单的闪蒸操作中,液态烃的中等减粘裂化将在鼓的上游发生,在鼓的管道上游存在差的气体/液体质量传递,这导致产生进入鼓底部的轻质烃。此类鼓底部残余物可能包含显著量的轻质烃,它们没有作为进料进入蒸汽裂化炉的辐射段。因此,通过降低存在于闪蒸鼓底部残余物中的轻质烃的量来改进工艺经济性仍存在大量机会。
本发明提供从闪蒸鼓中的挥发性烃蒸气中有效除去不挥发性烃液体的设备和方法,该闪蒸鼓处理来自蒸汽裂化炉对流段的已加热进料。本发明通过以下方式显著地增强了闪蒸鼓中不挥发性烃和挥发性烃的分离改进闪蒸鼓的下部接收器以提高汽提气和进入该接收器的液体(该液体例如来自上部闪蒸鼓或为再循环的已骤冷液体)之间的接触,从而提供来自给定量原料的轻质烃的额外气化。
发明概述在一个方面中,本发明涉及蒸气/液体分离设备,其包括(a)垂直鼓,其具有上部封盖段、包括圆形壁的中间段和下部封盖段;(b)与所述上部封盖段连接的塔顶蒸气出口;(c)在所述中间段的圆形壁中的至少一个进口;和(d)直径比所述中间段小的接收器,所述接收器包括(1)与所述下部封盖段连通的上部,(2)包括气体-液体接触面的中部,和(3)接收液体并保持它处于液位的下部,其还包括除去所述液体的下部出口和在所述气体-液体接触面以下的将汽提气引入所述接收器的进口。
在另一个方面中,本发明涉及处理烃和蒸汽的蒸气/液体混合物的流体的蒸气/液体分离设备,该设备包括(a)基本上圆柱形的垂直鼓,其具有上部封盖段、包括圆形壁的中间段和下部封盖段;(b)与该上部封盖段连接的塔顶蒸气出口;(c)在该中间段圆形壁中的至少一个进口,用于引入该流体;和(d)直径小于中间段且基本上同心布置、基本上呈圆柱形的接收器,该接收器包括(1)与该下部封盖段连通的上部,(2)包括足够的气体-液体接触面以提供至少部分理论蒸馏阶段的中部,和(3)接收液体并保持它处于液位的下部,其还包括除去该液体的下部出口和在该气体-液体接触面以下的将汽提气引入该接收器的进口。
在另一个方面中,本发明涉及含残油的烃原料的裂化设备,该设备包括(a)将该烃原料加热以提供已加热烃原料的加热段;(b)将初级稀释蒸汽流与该已加热烃原料混合的混合区,以提供已加热的两相层状明渠流动的混合物流;(c)处理烃和蒸汽的蒸气/液体混合物的蒸气/液体分离区,该分离区包括(1)基本上圆柱形的垂直鼓,其具有上部封盖段、包括圆形壁的中间段和下部封盖段;(2)与该上部封盖段连接的塔顶蒸气出口;(3)在该中间段的圆形壁中的至少一个进口;和(4)直径小于中间段且基本上同心布置、基本上呈圆柱形的接收器,该接收器包括(i)与该下部封盖段连通的上部,(ii)包括足够的气体-液体接触面以提供至少部分理论蒸馏阶段的中部,和(iii)接收液体并保持它处于液位的下部,其还包括除去该液体的下部出口和在该气体-液体接触面以下的引入汽提气的进口;(d)包括对流段和辐射段的热解炉,该辐射段用于将来自塔顶蒸气出口的蒸气相裂化以产生包含烯烃的排出物;(e)将该排出物骤冷的装置;和(f)用于将来自已骤冷排出物的裂化产物回收的回收线路。
在又一个方面中,本发明涉及含残油的烃原料的裂化方法。该方法包括(a)将该烃原料加热;(b)将该已加热烃原料与初级稀释蒸汽流混合以形成已加热的、优选两相层状明渠流动的混合物流;(c)将该混合物流引导至对烃和蒸汽的蒸气/液体混合物进行处理的蒸气/液体分离设备,该设备包括(1)基本上圆柱形的垂直鼓,其具有上部封盖段、包括圆形壁的中间段和下部封盖段;(2)与该上部封盖段连接的塔顶蒸气出口;(3)在该中间段圆形壁中的至少一个进口,用于引入该流体;和(4)直径小于中间段的且基本上同心布置、基本上呈圆柱形的接收器,该接收器包括(i)与该下部封盖段连通的上部,(ii)包括足够的气体-液体接触面以提供至少部分理论蒸馏阶段的中部,和(iii)接收液体并保持它处于液位的下部,其还包括除去该液体的液体出口和在该气体-液体接触面以下的引入汽提气的进口;(d)通过该蒸气/液体分离设备的液体出口将该液相除去;(e)在热解炉的辐射段中将该蒸气相裂化而制备包含烯烃的排出物,该热解炉包括辐射段和对流段;和(f)将该排出物骤冷并回收来自该排出物的裂化产物。
附图简述

图1示出根据本发明的采用热解炉的方法的示意流程图,其描述了包括切向进口、穿孔圆锥形挡板和接收器的蒸气/液体分离设备,其中该接收器具有单个蒸馏塔板和已骤冷进料进入该蒸馏塔板的进口。
图2示出本发明的闪蒸/分离设备的一个实施方案的正视图,其包括切向进口、穿孔圆锥形挡板和接收器、具有汽提塔气体进口的接收器、上部蒸馏塔板和下部蒸馏塔板。
图3提供本发明的一个实施方案中所使用的穿孔圆锥形挡板的详述透视图。
发明详述本发明涉及处理烃和蒸汽的蒸气/液体混合物的流体的高效蒸气/液体分离设备。该设备包括垂直鼓或容器,其具有上部封盖段、包括圆形壁的中间段和下部封盖段,引入烃/蒸汽混合物的侧进口,塔顶蒸气出口,与一个直径小于该鼓的接收器连通的下部段,该接收器包括足够的气体-液体接触面(例如,由一个或多个梭道(shed)、挡板和/或蒸馏塔板提供的接触面)以提供至少部分理论蒸馏阶段,接收来自该鼓的液体的下部,除去该液体的下部出口,和在该蒸馏塔板之下并且,优选地,在接收器中的液位之上的引入汽提气如蒸汽或氢气的进口。在一个实施方案中,这一容器基本上是圆柱形的。最佳地,该接收器基本上是圆柱形的和基本上与该容器同心地布置以使流体流动不受阻碍。
本发明为来自底部的较低沸点的烃提供增强的气提以在塔顶提供附加的蒸气相。此类气提通常用蒸汽来进行,例如以大约18到大约4000kg/hr(40到8800lbs/hr),比方说大约2000kg/hr(4400lbs/hr)的速度添加汽提蒸汽。通常,以占烃原料大约0.01到大约7wt%,优选大约1到大约7wt%,比方说大约2到大约7wt%的比率将汽提蒸汽引入炉中。此类气提也可以用氢气来进行,例如以大约2到大约1000kg/hr(4到2200lbs/hr),例如大约500kg/hr(1100lbs/hr)的速度添加汽提氢气。该气提氢气不必是纯的;例如,它可以富含氢气的氢气/甲烷混合物。通常,以占烃原料大约0.001到大约1.5wt%,优选大约0.1到大约1.5wt%,例如大约0.2到大约0.8wt%的比率引入气提氢气。轻质的可裂化烃也可以用作汽提气,以代替或补充惰性汽提气例如蒸汽和/或氢气。此类轻质可裂化烃(它们可以作为LPG、石脑油、冷凝物或其它本领域技术人员已知的材料来提供)是尤其有利的,原因在于它们提供气提/分压效果而不会浪费炉中被惰性汽提介质占据的空间并且它们会裂化来提供所需的主要烯烃。此类轻质可裂化烃可以作为汽提气以大约50到大约10,000kg/hr(110到22,000lbs/hr),例如大约2500kg/hr((5500lbs/hr)的速度引入。通常,以占烃原料大约0.04到大约15wt%,优选大约3到大约15wt%,例如大约6到大约15wt%的比率引入此类轻质可裂化烃。在一个实施方案中,汽提气包括甲烷,例如从热解获得的甲烷,使用该甲烷会改进来自本发明方法的所需的烯烃的总选择性。甲烷可以作为汽提气以大约大约18到大约4000kg/hr(40到8800lbs/hr),例如大约2000kg/hr(4400lbs/hr)的速度引入。通常,以占烃原料大约0.01到大约7wt%,优选大约1到大约7wt%,例如大约2到大约7wt%的比率将甲烷引入。
在接收器中提供的气体-液体接触面能足以提供一部分的理论蒸馏阶段,例如至少10%,优选至少20%,例如至少100%的“理论蒸馏阶段”。“理论蒸馏阶段”,亦称“理想平衡阶段”、“理论阶段”、“理论塔板”或“理想阶段”,是这样一个阶段,其具有在热力学平衡中的出口相/流,其中每个相/流从该阶段除去而不会夹带任何其它相/流。可以使用常规技术测量各个接收器的这一值,这包括对液态底部残余物取样接着用任何技术例如ASTM标准D-2887中概述的方法测量该液态底部残余物的沸点曲线。
在本发明的一个实施方案中,气体-液体接触面由梭道(shed)、挡板和蒸馏塔板中的至少一种提供。例如,一排或多排梭道可以基本上垂直于接收器的长度布置。梭道具有倒置V形横截面,这用来从该表面向下将所形成的液体排出该梭道以与汽提气接触或作为底部残余物收集。气体-液体接触面进一步包括至少一排附加的梭道,该梭道布置在第一排梭道的下方并交错布置,所以来自上排梭道的液体滴在下排梭道的顶点上或该顶点附近。其它适合的液体/蒸气接触面可以由Glitsch Grid,例如可以从Koch-Glitsch,Inc.,Wichita,KS,USA获得的FLEXIGRID-2、FLEXIGRID-3、FLEXIGRID-4和FLEXIGRID-5,以及其它蒸馏塔的宽的敞开填充来提供。
在本发明的另一个实施方案中,气体-液体接触面的至少一部分由至少一个蒸馏塔板提供,该蒸馏塔板包括(a)包括至少一个通道的底部,该通道容许蒸气向上流向该塔板和(b)从该底部延伸和在该底部之上延伸的液体可以溢出的堰。蒸馏塔板可以与在该塔板下方延伸的下水管连接以引导从该堰溢出的液体,该下水管通常是该堰的向下延伸部。该下水管可以延伸到等于或低于该接收器的下部中的液位的水平。
该蒸馏塔板的底部包括一种装置,该装置用来允许来自该接收器底部的蒸气的通道进入该塔板,例如通过使用穿孔、泡罩、浮阀塔板开口和/或喷射塔板开口。
在另一个实施方案中,该接收器的中部可以包括上部蒸馏塔板和下部蒸馏塔板,其中与该上部蒸馏塔板连接的下水管在该上部蒸馏塔板下面延伸,与该下部蒸馏塔板连接的下水管在该下部蒸馏塔板下面延伸。通常,与该下部蒸馏塔板连接的下水管延伸到该接收器的下部的液位或在该液位下面延伸。在包括多个蒸馏塔板的实施方案中,下水管优选是分阶段的或彼此偏移的以使它们运载的液体流到塔板部分而不是下面的蒸馏塔板的下水管部分。预期可以使用两个以上蒸馏塔板,例如三个、四个、五个乃至更多蒸馏塔板,优选大约三个。
在又一个实施方案中,接收器的中部包括用于将原料流引入蒸馏阶段的侧进口。该侧进口可以设置在蒸馏塔板的堰的上方。
或者,该用于将原料流引入蒸馏塔板的侧进口在沿着该堰的垂直长度的水平上设置,这样可以允许塔板内容物与该原料流混合。通过该侧进口引入的原料流可以是任何适合的原料流,例如再循环的底部残余物。优选地,该原料流是衍生自外部冷却再循环的底部残余物的已骤冷原料流。在本发明的又一个实施方案中,该设备进一步包括位于该垂直鼓中间段下部的至少一个挡板,其提供从该鼓的中心朝着圆形壁向下倾斜的表面并提供挡板和圆形壁之间的间隙用于沿着或接近该圆形壁将液体引导至该下部封盖段。这一挡板(形状可以基本上是圆锥形的)部分地将闪蒸鼓的底部和接收器与该闪蒸鼓的上部分离,但是防止热漩流蒸气引起液体呈漩流和防止该接收器中的较冷液体将较热的蒸气冷凝。此外,该挡板可以防止痕量底部残余物夹带在运行到闪蒸器顶部的汽提气中。当呈圆锥形时,该挡板的形状有利地例如具有足够的倾斜,以防止液体在其上汇聚。该挡板通常是穿孔的,该穿孔例如通过允许空气和蒸汽穿过该挡板而改进了在脱焦期间的质量传递。在一个实施方案中,该穿孔的数目和尺寸经选择以在正常操作期间使进入鼓底部的热蒸气扩散最小化。仍然,在脱焦期间,该穿孔增加有效地接触整个鼓的流出接收器的底部的蒸汽/空气混合物的比例。不采用穿孔,更厚的焦炭层可能在鼓的下部和挡板上堆积。因此,穿孔有利地在尺寸方面足以防止焦炭堵塞它们。在一个实施方案中,该挡板是穿孔的,具有基本上圆形的穿孔和/或基本上矩形的穿孔中的至少一种。该挡板的穿孔的尺寸为大约50到大约200cm2(8到31in2);例如,该穿孔可以具有如大约5cm×20cm(2in×8in)的矩形和直径为大约10到15cm(4到6in)的圆形的尺寸。有利地,与相应的未穿孔挡板相比,穿孔挡板的穿孔程度为其表面积的大约1%到大约20%,例如穿孔程度足以增加从用于脱焦的蒸汽/空气混合物的设备的质量传递。虽然在鼓中间段的下部通常使用单个挡板,但是也可以使用多个挡板。
如先前指出的那样,本发明设备的一个实施方案包括直径比该中间段小的且基本上同心布置的基本上呈圆柱的接收器,该接收器与该下部封盖段连通,并且还包括骤冷油进口和在其下端的液体出口。该接收器是可以通过外部冷却液体的再循环将热液体骤冷的场所。该接收器的尺寸有利地在骤冷期间提供可以忽略不计的液体停留时间,这防止焦炭形成和提供足够的可控制液位。该液位也提供净正吸入压头(通常称为NPSH)以防止泵中的空化,该泵用来转移来自鼓的底部流出液体。接收器可以包括附加的内部构件以确保再循环的骤冷油与热液体彻底且迅速地混合而不会引起该液体的漩流。液体漩流使得液位难以控制并且可能允许气体与该液体一起流入泵中。
在一个实施方案中,本发明涉及其中接收器还包括再循环骤冷油进口的设备。
在应用本发明中,含残油的烃原料可以在与流体混合之前通过与热解炉的第一对流段管组中的烟道气间接接触而受到加热。优选地,该烃原料在与流体和/或蒸汽混合之前的温度为大约150到大约290℃(300到550)。所得的原料和流体的混合物可以在进入闪蒸鼓之前进一步受到预热。
除非另有说明,所有百分率、份数、比例等按重量计。除非另有说明,提到的化合物或组分包括化合物或组分本身以及与其它化合物或组分的结合,如化合物的混合物。
另外,当量、浓度或其它值或参数作为一系列上限优选值和下限优选值给出时,这应理解为具体公开了由任一对上限优选值和下限优选值形成的所有范围,不管所述范围是否单独公开。
本文所使用的不挥发性组分或残油是根据ASTM D-6352-98或D-2887测量的标称沸点大于590℃(1100)的烃进料级分。本发明对标称沸点大于760℃(1400)的不挥发物效果非常好。烃进料的沸点分布通过气相色谱蒸馏(GCD)根据ASTM D-6352-98或D-2887测量。非挥发物包括焦炭前体,它们是大的可冷凝分子,这些分子在蒸气中冷凝然后在本发明方法中的操作条件下形成焦炭。
烃原料可以包含大比率如大约0.3到大约50%的不挥发性组分。此类原料可以包含,作为非限制性例子,一种或多种蒸汽裂化瓦斯油和残油、瓦斯油、加热用油、喷气燃料、柴油、煤油、汽油、焦化汽油馏分、蒸汽裂化石脑油、催化裂化石脑油、加氢裂化油、重整油、残液重整油、Fischer-Tropsch液体、Fischer-Tropsch气体、天然汽油、馏出液、直馏石脑油、常压管式蒸馏釜底部残余物、包括底部残余物的真空管式蒸馏釜流、宽沸程石脑油到瓦斯油冷凝物、来自精炼厂的重质非直馏烃流、真空瓦斯油、重质瓦斯油、被原油污染的石脑油、常压残油、重质残油、C4/残油混合物、石脑油/残油混合物、烃气/残油混合物、氢/残油混合物、瓦斯油/残油混合物和原油。
烃原料可以具有至少大约315℃(600),一般大于大约510℃(950),通常大于大约590℃(1100),例如大于大约760℃(1400)的标称终沸点。经济上优选的原料通常是低硫含蜡残油、常压残油、被原油污染的石脑油、各种残油混合物和原油。
如图1所示,本发明的烃原料10的裂化方法包括在蒸汽裂化炉3的上部对流段1中,在有或者没有水11和蒸汽12的情况下,通过换热器管2的管组将烃原料预热以气化该原料的一部分并形成包含小液滴的雾流13,该小液滴包含在挥发性烃/蒸汽蒸气中的不挥发性烃。该原料/水/蒸汽混合物的进一步预热可以通过换热管6的管组进行。当离开该对流段14时该雾流具有第一流速和第一流向。该方法还包括处理该流以使小液滴聚结,在闪蒸/分离容器5中让该小液滴的至少一部分与该烃蒸气分离以形成蒸气相15和液相16,并将该蒸气相8供给下部对流段7,从那里通过连通管道18到热解炉3的辐射段。将来自辐射段的烟道气经由19引入炉3的下部对流段7。
如所指出的那样,在炉1的上部对流段中将重质烃原料预热。原料可以任选地在预热之前或在预热之后(例如,优选在预热器2之后在分布器4中)与蒸汽混合。重质烃的预热可以按照本领域中普通技术人员已知的任何形式来进行。优选的是,加热包括在炉的对流段中让原料与来自炉辐射段的热烟道气间接接触。这可以如下完成作为非限制性例子,让原料穿过位于热解炉3的上部对流段1内部的换热管2的管组。在控制系统17之前已预热的原料14具有大约310到大约510℃(600到950)的温度。优选地,已加热的原料的温度为大约370到大约490℃(700到920),更优选大约400到大约480℃(750到900),非常优选大约430到大约475℃(810到890)。
作为预热结果,原料的一部分气化,包含小液滴的雾流形成,该小液滴包含在挥发性烃蒸气(有或者没有蒸汽)中的不挥发性烃。在大于大约30米/秒(100英尺/秒)的流动速度下,该液体作为包含夹带在蒸气相中的不挥发性烃的小液滴存在。此二相雾流极其难以分离成液体和蒸气。优选在进入闪蒸鼓之前将该细雾聚结成大的小液滴或单一连续液相。然而,为了实际上进行来自热烟道气的热传递并降低焦化(尤其是在下部对流段7和/或更远的下游),大约30m/sec(100ft/sec)或更大的流动速度通常是必需的。
次级稀释蒸汽20可以在炉3中对流加热然后经由管线9送往闪蒸鼓5。在一个实施方案中,已加热的次级稀释蒸汽可以经由管线9直接地添加到闪蒸鼓5中。或者,已加热的次级稀释蒸汽可以通过任选的旁路22添加到闪蒸鼓塔顶。
闪蒸通常在至少一个闪蒸鼓中进行。在闪蒸鼓5中,蒸气相流从至少一个上部闪蒸鼓出口15除去,液相穿过接收器23并作为在接收器底部的已气提液态底部残余物25以设定的液位收集。蒸馏塔板27具有穿孔底板、在所述塔板之上延伸的堰29和下水管31(该堰的伸出部),该下水管在所述塔板之下延伸到接收器底部中的液体中。该下水管具有足够的横截面以确保流入它的液态底部残余物不会堵塞它。该堰29具有足够的高度以允许汽提气和液态底部残余物之间具有良好的接触,但是足够短以使在该蒸馏塔板中的停留时间最小化到足以避免不需要的焦化反应的程度。该接收器还包括汽提气33的进口,该进口在液位和蒸馏塔板以下之间穿过该接收器的侧壁。提供任选的冷却液体35的进口,该进口优选将冷却液体引入已气提的液态底部残余物25中,从而将它们骤冷。液态底部残余物通过下部闪蒸鼓出口16从该接收器除去。
假定在该接收器内提供了一个理论蒸馏阶段,500kg/hr氢气或摩尔当量蒸汽或其它汽提气(为对流进料的大约1%)可以通常将由进入该工艺的常压残油进料提供的总蒸气从大约66%增加到大约74%。来自接收器的作为裂化进料回收的液态底部残余物的量是(74-66)/(100-66)×100%,或大约25%。根据本发明,气提该底部液优选简单地将500kg/hr氢气添加到对流段进料或稀释蒸汽中,这仅会将本工艺的总常压残油进料从大约66%增加到大约70%。塔模拟还显示,当使用本发明时,使用一个阶段效率为70%的蒸馏塔板的4000kg/hr的气提蒸汽可以气化液体塔底流出液体的25%或常压残油进料的8%。
一个筛板可能不会提供足够数目的理论蒸馏分离阶段。图2描述了本发明的一个实施方案,其中将多个筛板(在这一图例中是两个)安装在接收器中。图2也描述了在主闪蒸鼓中的任选的圆锥形挡板。在图2中,待闪蒸的物流通过切向闪蒸鼓进口202和204成切向地进入闪蒸鼓200。优选地,切向进口在流体水平线上或略低于流体水平线。不挥发性烃液相将沿着闪蒸鼓内壁形成外环形流,挥发性蒸气相将起初形成内芯然后在闪蒸鼓中向上流动。该液相沿着该侧壁向下流入接收器206。该接收器包括上部蒸馏塔板208,其底部包括穿孔210,该塔板收集从该鼓和接收器的侧壁流下的液体。上部蒸馏塔板包括上部堰212,其中上部下水管214在该塔板以下延伸并优选延伸进入在下面的蒸馏塔板的液体中。当上部蒸馏塔板中的液位达到上部堰的边缘时,该液体越过上部下水管跌下到下部蒸馏塔板216上。下部蒸馏塔板包括穿孔218、下部堰220和下部下水管222,该下水管在下部蒸馏塔板以下延伸,优选延伸到或延伸进入在该接收器底部中收集的已气提液体224,该已气提液体经由下部接收器出口226从该接收器排出。当下部蒸馏塔板中的液位达到下部堰的边缘时,该液体越过下部下水管跌下进入接收器中收集的已气提的液体中。汽提气通过汽提气进口228引入接收器中。包括汽提气的汽提蒸气向上穿过下部蒸馏塔板中的穿孔并鼓泡通过在下部蒸馏塔板中收集的液体。在那里,该蒸气穿过上部蒸馏塔板中的穿孔并穿过在上部蒸馏塔板中收集的液体。从上部蒸馏塔板中的液体中逸出的蒸气从该接收器向上通入该闪蒸鼓并从该闪蒸鼓穿过塔顶蒸气出口230。当气提剂的上升气泡在上部蒸馏塔板处的液位破裂时,包括穿孔234的圆锥形挡板232俘获任何夹带的已气提液体底部残余物。不采用该圆锥形挡板的话,被夹带的液体的向上动量可能将它推到鼓的顶部。该圆锥形挡板可以由连接到鼓壁的柱或托架236支撑。在接收器之上的自由空间中,气提剂的上升速度可以是一或更多m/sec(数ft/sec)。优选地,该挡板在其外部区域中包括穿孔并且在其中段区域(例如,通常与该接收器直径对应的区域)中是实心的,即没有穿孔。该穿孔的存在在蒸汽/空气脱焦期间提供良好的质量传递。
参照图3,提供了本发明一个实施方案中所使用的穿孔圆锥形挡板301(具有顶点303)的透视图,沿着其外部包括圆形、椭圆形或矩形的穿孔305。
虽然已经参考特定的实施方案对本发明进行了描述和说明,但是本领域普通技术人员将理解本发明适用于不必在本文中说明的变化。因此,应该仅根据所附权利要求书来确定本发明的真实范围。
权利要求
1.蒸气/液体分离设备,包括(a)垂直鼓,其具有上部封盖段、包括圆形壁的中间段和下部封盖段;(b)与所述上部封盖段连接的塔顶蒸气出口;(c)在所述中间段的圆形壁中的至少一个进口;和(d)直径比所述中间段小的接收器,所述接收器包括(1)与所述下部封盖段连通的上部,(2)包括气体-液体接触面的中部,(3)接收液体并保持它处于液位的下部,其还包括除去所述液体的下部出口和在所述气体-液体接触面之下的将汽提气引入所述接收器的进口。
2.权利要求1的设备,其中所述气体-液体接触面足以提供至少10%的理论蒸馏阶段。
3.权利要求2的设备,其中所述气体-液体接触面足以提供至少20%的理论蒸馏阶段。
4.权利要求1、2或3的设备,其中所述气体-液体接触面的至少一部分由梭道(shed)、挡板和蒸馏塔板中的至少一种提供。
5.权利要求4的设备,其中所述气体-液体接触面的至少一部分由至少一个梭道提供。
6.权利要求4的设备,其中所述气体-液体接触面的至少一部分由至少一个挡板提供。
7.权利要求4的设备,其中所述气体-液体接触面的至少一部分由至少一个蒸馏塔板提供,该蒸馏塔板包括(a)包括至少一个容许蒸气向上流向该塔板的通道的底部和(b)从所述底部延伸和在所述底部之上延伸的液体可以溢出的堰。
8.权利要求7的设备,其中所述蒸馏塔板与在所述塔板下方延伸的下水管连接以引导从所述堰溢出的液体。
9.权利要求8的设备,其中所述下水管延伸到等于或低于该接收器的所述下部中的所述液位的水平。
10.权利要求8的设备,其中所述中部包括上部蒸馏塔板和下部蒸馏塔板,其中与所述上部蒸馏塔板连接的下水管在所述上部蒸馏塔板下面延伸,与所述下部蒸馏塔板连接的下水管在所述下部蒸馏塔板下面延伸。
11.权利要求10的设备,其中与所述下部蒸馏塔板连接的所述下水管延伸到所述接收器的下部中的液位或在该液位下面延伸。
12.权利要求1的设备,其中所述底部包括在所述蒸馏阶段之下的用于引入原料流的侧进口。
13.权利要求12的设备,其中所述原料流是已骤冷的原料流。
14.上述任一项权利要求的设备,其还包括位于所述中间段下部的至少一个穿孔挡板,其提供从所述鼓的中心朝着圆形壁向下倾斜的表面并提供所述挡板和所述圆形壁之间的间隙用于沿着或接近所述圆形壁将液体引导至所述下部封盖段。
15.权利要求14的设备,其中所述挡板在其外部段是穿孔的。
16.权利要求14或15的设备,其中所述挡板基本上是圆锥形的。
17.权利要求7的设备,其中该蒸馏塔板的所述底部包括穿孔。
18.权利要求7的设备,其中该蒸馏塔板的所述底部包括泡罩。
19.上述任一权利要求的设备,其中所述垂直鼓基本上是圆柱形的。
20.上述任一权利要求的设备,其中所述接收器基本上是圆柱形的。
21.上述任一权利要求的设备,其中所述接收器相对于所述垂直鼓基本上同心布置。
22.含残油的烃原料的裂化设备,所述设备包括(a)加热区;(b)添加初级稀释蒸汽流并使其与所述烃原料混合的混合区;(c)上述任一项权利要求的蒸气/液体分离设备;(d)包括对流段和辐射段的热解炉;(e)将该排出物骤冷的装置;和(f)用于将来自已骤冷排出物的裂化产物回收的回收线路。
23.含残油的烃原料的裂化设备,所述设备包括(a)将所述烃原料加热以提供已加热烃原料的加热区;(b)将初级稀释蒸汽流与所述已加热烃原料混合以提供已加热的两相层状明渠流动的混合物流的混合区;(c)权利要求1到21中任一项的蒸气/液体分离设备;(d)包括对流段和辐射段的热解炉,该辐射段用于将来自塔顶蒸气出口的蒸气相裂化以产生包含烯烃的排出物;(e)将该排出物骤冷的装置;和(f)用于将来自已骤冷排出物的裂化产物回收的回收线路。
24.含残油的烃原料的裂化方法,所述方法包括(a)将所述烃原料加热;(b)将该已加热烃原料与初级稀释蒸汽流混合以形成混合物流;(c)将所述混合物流引导至权利要求1到21中任一项的蒸气/液体分离设备,其中所述气体-液体接触面足以提供至少部分的蒸镏阶段;(d)通过该蒸气/液体分离设备的所述液体出口将该液相除去;(e)在热解炉的辐射段中将所述蒸气相裂化而制备包含烯烃的排出物,所述热解炉包括辐射段和对流段;和(f)将该排出物骤冷并回收来自该排出物的裂化产物。
25.权利要求24的方法,其中该含残油的烃原料包括一种或多种蒸汽裂化瓦斯油和残油、瓦斯油、加热用油、喷气燃料、柴油、煤油、汽油、焦化石脑油、蒸汽裂化石脑油、催化裂化石脑油、加氢裂化油、重整油、残液重整油、Fischer-Tropsch液体、Fischer-Tropsch气体、天然汽油、馏出液、直馏石脑油、常压管式蒸馏釜底部残余物、包括底部残余物的真空管式蒸馏釜流、宽沸程石脑油到瓦斯油冷凝物、来自精炼厂的重质非直馏烃流、真空瓦斯油、重质瓦斯油、被原油污染的石脑油、常压残油、重质残油、烃气/残油混合物、氢气/残油混合物、C4/残油混合物、石脑油/残油混合物、和瓦斯油/残油混合物。
26.权利要求24或25的方法,其中所述汽提气包括氢气。
27.权利要求24、25或26的方法,其中所述汽提气包括蒸汽。
28.权利要求24、25、26或27的方法,其中所述汽提气包括轻质可裂化烃。
29.权利要求28的方法,其中所述轻质可裂化烃选自LPG、石脑油和冷凝物。
30.权利要求24到29中任一项的方法,其中所述汽提气包括甲烷。
全文摘要
处理烃和蒸汽的蒸气/液体混合物的流体的蒸气/液体分离设备,该设备包括垂直鼓或容器,其具有引入烃/蒸汽混合物的侧进口、塔顶蒸气出口和与直径小于该鼓的圆柱形接收器连通的下部段;该接收器包括足够的气体-液体接触面,例如,由一个或多个梭道、挡板和/或蒸馏塔板的接触面,以提供至少部分理论蒸馏阶段,和接收来自该鼓的液体的下部,除去该液体的下部出口,和在该蒸馏塔板以下并优选在接收器中液位之上的引入汽提气如蒸汽、氢气、轻质可裂化烃和/或甲烷的进口。
文档编号B01D3/38GK1957063SQ200580016285
公开日2007年5月2日 申请日期2005年5月19日 优先权日2004年5月21日
发明者J·M·弗莱伊, R·C·斯特, A·斯里瓦斯塔瓦, D·贝亚蒂耶, S·安娜玛拉莱 申请人:埃克森美孚化学专利公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1