一种碱土金属或镧系金属M与氧化铝的混合氧化物的制备方法及其应用与流程

文档序号:15613856发布日期:2018-10-09 20:57阅读:292来源:国知局
本发明涉及催化剂制备领域,尤其涉及一种碱土金属或镧系金属m与氧化铝的混合氧化物的制备方法及其应用。
背景技术
:石油和煤炭作为传统的化石资源,是至今100多年来支持人类社会工业化进步的重要资源。但是,近年来石油储量逐渐衰减,煤炭能源使用后产生的大量温室气体,如二氧化碳和氧化氮、氧化硫等,引发了全球变暖和雾霾等现象,促使能源与化工领域开始寻求可再生能源例如太阳能、风能、生物能等来替代石油、煤炭等的利用。而化石能源中环境污染最小的甲烷的开放与利用也越来越受到关注。其中,利用天然气(主要是甲烷)生成包含氢和一氧化碳的混合物的合成气体(合成气),在通过费-托(ft)合成方式将合成气转化呈蜡状烃类或合成原油,作为天然气的环境友好利用方式得到广泛关注。二十世纪90年代,美国明尼苏达大学提出了甲烷催化选择性氧化的概念,其核心技术原理是在高选择性催化剂作用下,使甲烷与氧气发生选择性氧化反应(1-1)。ch4+1/2o2=2h2+co(1-1)2013年,al-sayari(theopencatalysisjournal,2013,6,17-28)针对天然气选择氧化催化剂进行了比较全面地综述。该催化剂的设计与技术改进主要集中在活性组分的选择和耐高温催化剂载体的开发。其中一类最为广泛使用的活性组分为贵金属元素,包括铂、铑、钌、钯及其复合物。sliva等(appl.catal.a:gen,2009,364,122-129)报道了氧化铝负载的天然气氧化铂催化剂。铂负载量大于1.5%(重量)的催化剂才能表现出较好的催化活性。但是,铂表面催化剂的积炭导致催化剂快速失活,虽然加入cezr等助剂可以缓解积炭,但是催化剂的稳定性差、成本高等问题仍然限制负载铂催化剂的商业化应用前景。zhu等(j.nat,gas.chem.2004,13,191-203)利用热稳定性较好的氧化锆为载体负载铂制备的天然气选择氧化催化剂,在甲烷:氧气(摩尔比)为2:1,800℃条件下得到74%的甲烷转化率和95%,90%的氢气和一氧化碳选择性。铂的快速烧结导致催化剂的快速失活。尽管铑的价格昂贵,但是其优良的催化性能使其在天然气转化催化剂的研发中得到最广泛的应用。康菲石油公司专利us7871961b2。主要介绍了以贵金属铑为主要活性组分,辅以各种助剂的催化剂制备技术。实现了在空速1000-1000000hr-1的条件下,天然气的高选择性氧化生成h2:co(摩尔比)接近于2的合成气。donazzi等(j.catal.2010,275,270-279)利用氧化铝载体上负载4%(重量)的铑催化剂,研究了天然气选择氧化反应机理,通过原料氧气在催化剂入口快速完全转化、催化剂入口层形成热点温度等事实,得出铑催化剂上天然气的选择氧化反应是天然气部分燃烧反应和天然气水蒸汽重整的串联反应机理进行的。催化剂的热点温度远高于其出口温度。为催化剂的耐高温性能提出了苛刻的挑战。金属钌由于价格便宜,也在天然气转化催化剂的开发中进行过尝试。但是,负载钌催化剂的稳定性很差,尽管进行了各种制备方法的改进,催化剂助剂的使用,仍然不能与其他金属活性组分的性能相提并论。钯是优良的低温甲烷催化燃烧催化剂活性组分。但是其高温稳定性差的特性,限制了高温下进行天然气选择氧化催化剂中的应用。另一类催化剂活性组分重要指过渡金属。其中镍是工业化的天然气水蒸汽重整催化剂的主要活性组分。但是,与贵金属催化剂相比,其催化天然气选择氧化的活性及催化甲烷水蒸汽重整的活性低得多。而且,镍催化剂上极易生成积炭,导致催化剂失活。因此,虽然有许多学术研究报道,但是,以镍为代表的过渡金属催化剂基本不具备工业化前景。由此可见,铑作为主要活性组分的天然气选择氧化催化剂的工业应用前景最好。而改进该催化剂的重要挑战之一是设计耐高温得催化剂载体材料,使其能够在反应器的热点温度下保持良好的稳定性。目前,以氧化铝为主体的材料是制备耐高温载体的最廉价、最易得的耐高温载体开发的母体。氧化铝材料的高温相变、烧结机理以及镧对氧化铝的稳定性的研究已经进行了广泛报道。(actacryst.(1991),b47,617;appliedcatalysis75(1991)119;appliedcatalysisa:general,138,1991,161;)。美国专利us7,888,278根据相关机理研究,发明了在氧化铝表面上负载镧系金属(la,nb,pr,ce等)和其他金属如ni,mn,ba,k,na,mg,sm等,在800-1300℃热处理,改进氧化铝载体的稳定性,成功地制备了高比表面的天然气选择氧化催化剂。该专利热处理温度选取在高于γ-al2o3的相变温度低于α-al2o3的成型温度。据此,推荐热处理温度在1000-1600℃之间,最好在1100-1600℃煅烧3-24小时。工业氧化铝材料的可供选择的几何结构、物性,不能够满足天然气选择氧化反应中对催化剂性能的要求。为了提高载体几何结构的灵活性,同时借鉴镧对氧化铝改性的基础研究结果,本发明阐述一种以铝和碱土金属或镧系金属m的盐溶液为原料制备高温热稳定好的混合氧化物技术。技术实现要素:本发明提供一种碱土金属或镧系金属m与氧化铝的混合氧化物的制备方法,其利用共沉淀方法,制备由碱土金属或镧系金属m及氧化铝的混合氧化物物质,通过碱土金属或镧系金属m与氧化铝之间形成稳定的混合氧化物,利用氧化铝多孔结构的特点,可实现很大的催化灵活性。本发明进一步在获得的碱土金属或镧系金属m及氧化铝的混合氧化物上负载活性物质铑和铂等贵金属,可获得一种稳定性能优异,且耐高温的负载型催化剂。具体地,本发明一方面提供一种碱土或镧系金属m与氧化铝的混合氧化物的制备方法,其包括以下步骤:1)按照m与al原子的摩尔比为1:6-40,准确称取铝的可溶性盐溶液和碱土或镧系金属m的可溶性盐溶液,并混合;2)向步骤1)所得混合溶液中加入沉淀剂,在5℃-85℃条件下,沉淀反应;3)将步骤2)中所得固体悬浮液老化0.1-8小时后,过滤、洗涤所得沉淀物;4)将步骤3)中所得沉淀物在80-150℃干燥2-20小时;5)将干燥后沉淀物在600-900℃下,恒温煅烧0.5-12小时;6)升温至1200℃,继续煅烧1-24小时;7)自然降至室温,得到malxoy及al2o3组成的混合氧化物。优选地,所述沉淀剂选自碳酸钠、氢氧化钠和/或氨水。优选地,所述碱土金属或镧系金属m选自镁、钙、镧、铈或钐等金属。优选地,步骤5)和6)中的升温速度为3-20℃/分钟。优选地,所述沉淀剂的添加方式可为正加法、反加法或并流加料法。本发明的另一方面,在于提供一种按照上述制备方法获得的混合氧化物,该混合氧化物包含malxoy及al2o3。本发明的另一方面,还在于提供上述混合氧化物在天然气催化氧化制合成气中的应用,具体地,首先采用等体积浸渍法,分别在混合氧化物上负载金属铑-铂,然后将负载有铑-铂的混合氧化物作为催化剂应用于天然气催化氧化制合成气。与现有技术相比较,本发明的技术优势在于:本发明利用共沉淀方法,制备由碱土金属或镧系金属m及氧化铝的混合氧化物物质,其中m和al的含量比远远低于纯malxoy晶体的化学计量比;且,采用分步煅烧法,可获得性能稳定,比表面积大的颗粒。从而,利用碱土金属或镧系金属m与氧化铝形成的耐高温的物相保护氧化铝的骨架结构,制得比表面大、耐高温的氧化铝复合载体材料,为制备耐高温催化剂提供优良载体。本发明进一步在获得的碱土金属或镧系金属m及氧化铝的混合氧化物上负载活性物质铑和铂制备用于天然气选择氧化催化剂。由于混合氧化物经过高温处理后比表面积比普通氧化铝在相同温度下处理后的比表面积大,使得负载的贵金属铑和铂的分散度高,提高了催化剂的活性表面积和金属活性组分的利用效率。因此,所制备催化剂具有更高的活性,减少催化用量,降低成本。同时,由于与氧化铝物相紧密接触的碱土金属或镧系金属m的氧化物物相,充分稳定了亚稳态氧化铝晶格,从而使该混合物在非常高的(1000-1200℃,甚至更高)的反应器热点温度之下,仍然能够保持表面结构稳定,实现天然气转化催化剂的优秀的高温稳定性,减缓催化剂失活,延长催化剂使用寿命,降低天然气选择氧化生产合成气的成本。具体实施方式下面结合具体实施例,详细阐述本发明的优异性。实施例一,共沉淀法制备镧铝比为1:30的混合氧化物载体按照镧与铝原子的摩尔比为1:30称取适量的六水硝酸镧和九水硝酸铝试剂,配置成均匀的混合溶液,以过量的氨水溶液为沉淀剂,在5-85℃下,将镧铝混合溶液加入到不断搅拌的氨水溶液中,确认加料完毕后,悬浮液的ph值在9以上。继续搅拌使固体沉淀在母液中老化5小时。然后,过滤、洗涤至洗涤液呈中性。将滤饼在120℃干燥12小时过夜。用研钵将干燥的固体破碎成粉末。●取上述干燥的固体粉料,在800℃煅烧2小时,得到样品1-1;●取上述干燥的固体粉料,在1200℃煅烧2小时,得到样品1-2;●取样品5-2,继续在1200℃煅烧24小时,得到样品1-3;●取上述干燥的固体粉料,在800℃煅烧2小时,然后继续升温至1200℃,并在该温度下煅烧2小时,得到样品1-4●取样品1-4,继续在1200℃煅烧24小时,得到样品1-5;根据1-4号样品的xrd谱图可以明显地看出,经过1200℃高温处理后的镧铝混合氧化物的结晶度仍然较低。没有形成完整的长程有序的晶型。氧化铝的晶型接近于γ-al2o3。同时可以明显地看到少量的铝酸镧物相。正是这少量的铝酸镧微晶起到了稳定氧化铝结构的作用。对上述1-1至1-5样品进行bet测试样品的比表面积。结果汇总于表1中。表1中数据显示,将共沉淀形成的镧铝混合氧化物在800℃煅烧后,其比表面积达到115m2/g(样品1-1),接近于典型γ-al2o3的比表面积。这与其xrd衍射测试出的主要物相为γ-al2o3和微弱的laalo3物相结构一致。当干燥的共沉淀混合镧铝氧化物直接在1200℃煅烧2小时候得到的样品1-2的比表面积大幅度降低到12m2/g,虽然该比表面积比纯γ-al2o3经过1200℃所得样品的比表面积(通常3-8m2/g)高一些,但是,镧对氧化铝结构的稳定作用还是不够显著。当然,即便如此,该样品仍然显示出了较好的耐高温热稳定性。这可以从该样品在1200℃进一步高温淬火24小时后(样品1-3),其比表面积基本不变加以证明。然而,根据本发明的优选的制备方法制备出的混合氧化物样品1-4的比表面积高达25m2/g,而且在1200℃进一步高温淬火24小时后,其(样品1-5)比表面积基本不变,表现出了优良的高温耐热稳定性。是制备耐高温催化剂的优良载体材料。表1.共沉淀la:al=1:30的镧铝混合氧化物的比表面积样品编号bet比表面积(m2/g)1-11151-2121-3121-4251-524.9实施例二,共沉淀法制备镧铝比为1:3的混合氧化物载体按照镧与铝原子的摩尔比为1:3称取适量的六水硝酸镧和九水硝酸铝试剂,配置成均匀的混合溶液,以过量的氨水溶液为沉淀剂,在5-85℃下,将镧铝混合溶液加入到不断搅拌的氨水溶液中,确认加料完毕后,悬浮液的ph值在9以上。继续搅拌使固体沉淀在母液中老化5小时。然后,过滤、洗涤至洗涤液呈中性。将滤饼在120℃干燥12小时过夜。用研钵将干燥的固体破碎成粉末。●取上述干燥的固体粉料,在800℃煅烧2小时,得到样品2-1;●取上述干燥的固体粉料,在1200℃煅烧2小时,得到样品2-2;●取样品5-2,继续在1200℃煅烧24小时,得到样品2-3;●取上述干燥的固体粉料,在800℃煅烧2小时,然后继续升温至1200℃,并在该温度下煅烧2小时,得到样品2-4●取样品1-4,继续在1200℃煅烧24小时,得到样品2-5;表2.共沉淀la:al=1:30的镧铝混合氧化物的比表面积样品编号bet比表面积(m2/g)2-1982-2182-3182-4452-544.9表2结果显示出与实施例一同样的趋势:经过800℃煅烧的混合氧化物的比表面积为98m2/g,接近于γ-为al2o3主要物相的氧化物载体的数值,但是与实施例一相比,由于镧相对含量的提高,镧对氧化铝结构的稳定作用明显加强。即使是一步煅烧制备的混合氧化物的比表面积也达到了18m2/g,且非常稳定(比较样品2-3和2-4的bet比表面积)。经过分步煅烧的混合氧化物的比表面积更是高达45m2/g,而且在1200℃进一步高温淬火24小时后,其(样品2-5)比表面积基本不变,表现出了优良的高温耐热稳定性。是制备耐高温催化剂的优良载体材料。实施例三,共沉淀法制备镁铝比为1:5的混合氧化物载体镁铝尖晶石(mgal2o4)是非常好的高熔点、高强度、高硬度、高导热的耐火材料。其熔点高达2135℃。然而,按照镁铝尖晶石结构通过共沉淀方法制备的完整的尖晶石物相,虽然热稳定性高,但是比表面积很小(<10m2/g),限制了其作为催化剂载体的应用潜力。本实施例借鉴镧铝混合氧化物的制备技术,根据镁铝尖晶石(mgal2o4)镁铝原子计量比为mg:al=1:2,选取mg:al=1:3-1:10原料配比,制备出含有氧化铝物相和镁铝尖晶石混合物相的混合氧化物,利用氧化铝易于形成大表面多孔结构的特点和尖晶石的热稳定性特征,制备出高比表面积的耐热载体材料。本实施例中,按照mg:al(原子比)=1:5,称取将铝粉和镁粉分别和异丙醇和乙醇反应生成相应的醇盐化合物,然后,将两种醇盐化合物混合均匀,加入蒸馏水进行水解形成相应的混合氢氧化物沉淀。在20℃下老化2小时,过滤,洗涤,在120℃烘箱中干燥12小时。在700℃下干燥3小时,得到样品3-1。再从样品3-1取出四份样品,分别在800℃,900℃,1000℃,1200℃煅烧2小时分别得到样品3-2,3-3,3-4和3-5。再将1200℃煅烧2小时的样品3-5中的一部分在1200℃钝化24小时得到样品3-6。表3列出每个样品的编号、煅烧稳定、时间以及所得样品的bet比表面积。由表3可见,随着煅烧温度提高,混合氧化物材料的比表面积逐渐下降。尤其是在氧化铝从γ向α物相转变的900-1200℃之间,比表面积下降最为明显。即便如此,该镁铝混合氧化物经过1200℃高温煅烧2小时后,仍然保留了高达47m2/g的比表面积,比典型的氧化铝材料经过1200℃高温煅烧2小时后所保留的<10m2/g的比表面积高5倍以上。而且经过2小时煅烧后,在继续于1200℃钝化24小时,其比表面积基本保持不变。实现了制备高比表面、耐高温热稳定的材料的目标。表3,共沉淀法制备mg:al=1:3的混合氧化物的性质样品编号煅烧温度和时间bet比表面积(m2/g)3-1700℃,3小时1753-2800℃,2小时1513-3900℃,2小时1483-41000℃,2小时713-51200℃,2小时473-61200℃,26小时47实施例四.高稳定性催化剂载体制备天然气转化催化剂本实施例是以实施例一中,利用分步煅烧的方法,获得的样品1-4(bet比表面积36m2/g)为载体。采用等体积分步浸渍的方法制备负载型贵金属催化剂。首先,称取适量的载体材料。按照载体的吸水率,按照铑金属负载量为5%(重量)将金属铑的原料(三水合三氯化铑)溶于定量的水中,形成均匀的水溶液。利用等体积浸渍的方法,将铑的水溶液缓慢滴加到不断搅拌的载体上。继续搅拌30分钟,在室温下静止2小时。然后在120℃下干燥过夜。然后,按照负载量0.1%(重量)称取铂的母体化合物(六水合氯铂酸),按照载体的吸水率配置成均匀的溶液。将铂的溶液缓慢滴加到负载有铑的载体上,继续搅拌30分钟,在室温下静止2小时。然后在120℃下干燥过夜。将干燥的样品降至室温,转移到高温煅烧炉中,在800℃煅烧4小时,降温得到氧化态催化剂母体。将氧化态催化剂在h2/n2(h2含量5vol.%)混合气氛下于300℃还原2小时,降温后钝化,得到活化的催化剂1-4a。该催化剂在组成为甲烷:o2:n2=60:35:5(摩尔比)的原料气进行甲烷转化反应,入口温度为300℃,气体进料速度为250000nm3/小时每立方米催化剂的条件下,实现甲烷转化率95.8%,一氧化碳选择性95.2%和氢气选择性95.6%的优良催化性能。催化剂的失活速度小于每天0.01%。应当注意的是,本发明的实施例有较佳的实施性,且并非对本发明作任何形式的限制,任何熟悉该领域的技术人员可能利用上述揭示的技术内容变更或修饰为等同的有效实施例,但凡未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何修改或等同变化及修饰,均仍属于本发明技术方案的范围内。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1