生物油和有机化合物的钯催化氢化的制作方法

文档序号:5105846阅读:518来源:国知局

专利名称::生物油和有机化合物的钯催化氢化的制作方法
技术领域
:本发明涉及生物油的氢化脱氧方法。引言关于生物油(生物质快速热解的液体产物)催化氢化处理的早期研究集中在燃料制备,最初的研究旨在完成氢化脱氧(HDO)以制备与现有的石油产品相容的燃料。随后的工作涉及开发低烈度氢化以制备遇热更加稳定但并非完全脱氧的燃料。这些努力产生了关于生物油在加工系统中的热稳定性,生物油在高温加工中的限制,以及从生物油经催化氢化制备燃料的要求方面的信息。早期的HDO结果表明,在常规石油加氢处理器中运行该工艺需要根据生物油进行调节\例如,在常规较高温度下,在完成HDO之前需要进行低温稳定步骤“。如果不进行该低温步骤,直接高温催化加工将产生大量焦炭阻塞催化床而不能产生液体烃类燃料。结论是,以快速热解制备时,导致比催化氢化更快分解和聚合的生物油的热不稳定性使其转化为轻质烃类液体燃料。并且,虽然常规氧化铝为载体的钴_钼和镍_钼催化剂可用于硫化形式的HD0m’iv,即以高产率制备烃类油产物而并不完全饱和芳香环,但已认识到在高含水量条件下氧化铝载体的不稳定性是缺点v。此外,鉴定到高水平的结焦,估计可以用碳载体代替氧化铝wi。已报道在金属催化剂存在下氢化处理生物油的实验结果。已报道采用钯、亚铬酸铜和镍催化剂的一些间歇反应器结果vii’viiiO在这些测试中,20°c下操作导致稍许变化,而在100°C下测试导致称为“显著变化”的结果。各种酮发生反应,但乙酸并不减少。虽然对产物进行气相色谱分离,但未报道详细的化学转化结论。Scholzeix采用间歇反应器,在低温下存在各种金属催化剂和不存在催化剂的条件下研究快速热解油的氢化。其结论是,高于80°C的反应温度不适合生物油的氢化,因为出现产物相分离。而且,测试的所有生物油、催化剂和条件的组合都未能产生较稳定的油。她发现,钯在60°C时基本无活性。拉尼镍在80°C时导致粘度随时间降低(没有相分离),而亚铬酸铜在该温度下产生随时间变化稍许更粘稠的油。镍金属在22-100°C的温度下进行测试。在22°C,羰基显著减少(约15%)但其物理性质无显著变化。在82°C和100°C,产物油分成两相(类似于亚铬酸铜催化产物)。对这些产物进行了有限程度的化学分析,但几乎没有关于油类组成变化的结论。羰基分析表明,钯催化试验中无变化,镍金属催化剂条件下50°C的中间温度最多还原20%。虽然对产物进行气相色谱分离,但未报道详细的化学转化结论。我们较早的关于钌催化剂的结果也包括一些模型化合物研究x。在该研究中确定,取代的愈创木酚(4-烷基-2-对甲氧酚)通过取代的甲氧基环己醇在低温下转化为取代的环己二醇,在较高温度下转化为取代的环己醇。丙酮醇(1-羟基-2-丙酮)和3-甲基-4-环戊烯-1-酮都易于氢化,分别形成丙二醇和甲基环戊醇。糠醛经一些步骤氢化形成四氢呋喃-甲醇的稳定形式,仅较少证据表明进一步氢化。
发明内容本发明提供了生物油的氢化脱氧方法,该方法包括提供生物油和氢气(H2);和使生物油与氢气在催化剂上在超过200°C的温度下反应。催化剂包括Pd。在该方法中,生物油和氢气反应形成室温下为液体的油。术语“液体油”表示室温下为液体的油。通常,该方法在水存在下进行;生物油通常包含5-50质量%的水。生物油可以是单相或多相液体。在优选实施方式中,在生物油与氢气在催化剂上的反应步骤中去除水。优选地,该方法的特征是,至少50%的生物油脱氧和/或液体油产率至少为60%。在优选实施方式中,生物油包含乙酸,生物油中至少30%的乙酸转化为乙醇。本发明还包括由本发明方法制备的产物混合物。另一方面,本发明提供了氢化糠醛、愈创木酚或取代的愈创木酚的方法,该方法包括提供包含糠醛、愈创木酚或取代的愈创木酚的液体;提供氢气(H2);和使糠醛、愈创木酚或取代的愈创木酚与氢气在催化剂上在超过200°C的温度下反应。催化剂包括Pd。在该方法中,糠醛、愈创木酚或取代的愈创木酚转化为氢化产物。糠醛、愈创木酚或取代的愈创木酚可存在于生物油中或者任何其他组合物中。在糠醛氢化的一些实施方式中,该方法在至少280°C的温度下进行,至少5%的糠醛转化为1-戊醇。在一些实施方式中,至少6%的糠醛转化为2-甲基-四氢呋喃;优选在约250-300°C的温度下。附图简要说明图1是150°C钌上的愈创木酚的氢化反应。图2是200°C钌上的愈创木酚的氢化反应。图2是250°C钌上的愈创木酚的氢化反应。图4是150°C钌上的乙酸的氢化反应。图5是200°C钌上的乙酸的氢化反应。图6是250°C钌上的乙酸的氢化反应。图7是150°C钌上的由糠醛转化为环醚产物。图8是150°C钌上的由糠醛转化为环酮产物。图9是200°C钌上的由糠醛转化为环醚产物。图10是200°C钌上的由糠醛转化为环酮产物。图11是250°C钌上的由糠醛转化为环醚产物。图12是250°C钌上的由糠醛转化为环酮产物。图13是200°C钯上的愈创木酚氢化反应。图14是250°C钯上的愈创木酚氢化反应。图15是300°C钯上的愈创木酚氢化反应。图16是200°C钯上的乙酸转化。图17是250°C钯上的乙酸转化。图18是300°C钯上的乙酸转化。图19是200°C钯上的由糠醛转化为环醚产物。图20是200°C钯上的由糠醛转化为环酮产物。图21是250°C钯上的由糠醛转化为环醚产物。图22是250°C钯上的由糠醛转化为环酮产物。图23是300°C钯上的由糠醛转化为环醚产物。图24是300°C钯上的由糠醛转化为环酮产物。具体实施例方式生物油(生物质快速热解的液体产物)是由生物质中的生物聚合物发生热裂解得到的化合物的复合混合物。在木质纤维素生物质的情况下,三种主要成分纤维素、半纤维素和木质素的结构很好地代表了生物油组分。为了研究生物油催化氢化处理的化学机制,选择这三种模型化合物代表生物油组分。从软木或硬木获得的生物油中通常分别存在大量单或二甲氧基苯酚。用愈创木酚代表生物油中存在的单和二-甲氧基苯酚。纤维质主要的热解产物类型包括糠醛和类似的化合物。乙酸是生物质热解的主要产物,因为其酸性特征而对生物油的进一步加工具有重要影响。这三种化合物在150-350°C的温度下采用钯或钌催化剂进行处理。在4小时的时间内,每次测试过程中对间歇反应器进行取样。样品通过备有质量选择性检测器和火焰离子化检测器的气相色谱进行分析。测定产物,基于这些结果判断形成产物的反应途径。温度和催化剂金属对产物组成都具有显著影响。催化剂本发明方法中的催化剂应包含足够的钯以在选定的反应条件下维持显著水平的活性。.优选地,催化剂包含至少0.1%的Pd(整篇说明书中,除非另有说明,否则,%表示重量%,基于壁涂层或催化剂球粒或包括催化剂载体重量但不包括化学反应器本身重量的其他结构的重量计算Pd重量%)。更优选地,催化剂包括至少1重量%的?(1,在一些实施方式中,催化剂包括2-5重量%的Pd。除Pd之外,可以存在其他金属。在优选实施方式中,催化剂金属基本上由Pd构成(没有显著影响处理过程的其他金属),或者由Pd构成(没有其他金属)。发现即使存在较高水平的水和氧化材料,Pd金属在该处理环境下也是稳定的。优选地,Pd金属颗粒分散在载体上。载体应在反应条件下保持稳定。优选的载体包括碳、氧化钛(优选金红石)和氧化锆(优选单斜晶形式)。活性炭是众所周知的高表面积(通常约1000m2/g)载体材料,在热水处理环境下是稳定的;金红石型氧化钛和单斜晶氧化锆的表面积较小(通常30-80m2/g),可用作催化金属载体,用于热水处理环境中(参见美国专利5,616,154;6,235,797,其内容被纳入本文作为参考)。反应物生物油是由生物聚合物裂解获得的包括氧合物在内的化合物的复合混合物。生物油可源自植物(例如草和树木)以及木质纤维素材料的其他来源,例如源自城市废料、食品加工废料、林业废料以及木浆和纸张副产物。本发明的原料通常包含水,典型地至少5质量%的液体水,在一些实施方式中,至少10%或至少20%的水。在一些实施方式中,存在5-50质量%的水,在一些实施方式中,存在10-40质量%。在一些实施方式中,最高达35%。水和油可位于单相中,或者水主要在第二相中(例如,以水相为主要或次要组分的乳剂),或者各相的混合物。在一些优选的实施方式中,第二(主要)水相在氢化反应期间形成并在氢化处理期间或之后去除。氢可单独加入或与生物油一起加入反应器中。在连续处理的情况下,可沿反应器的长度加入氢。优选加入化学计量过量的氢,通过使传质限制最小化而使反应速率最大化。在我们的试验中,通常输送到反应器中的氢是每桶(bbl)油料10,000标准立方英尺(SCF)的氢(1781升/升),整个测试从5500到18300SCF/bbl。优选地,氢以至少50升/升的水平与生物油原料反应,更优选至少100升/升,甚至更优选至少200升/升,在一些实施方式中,为100-300升/升,在一些实施方式中,为100-175升/升。过量氢可再循环到反应器中。反应器构造进行本发明处理的装置并无限制。处理可分批进行或者连续进行。催化剂可以壁涂层、颗粒或球粒等的流化床、固定床形式存在。催化剂颗粒的固定床具有便于设计和操作的优点(便于清洁和催化剂更换)。在一些实施方式中,优选流化床反应器,尤其是在生物油被无机材料污染的情况下。在一些实施方式中,可能优选壁涂覆的反应器,其具有传热和传质方面的某些优点。操作条件本发明工艺可以在大于200°C的温度下,更优选在220-500°C的范围内进行,在一些实施方式中,至少约250°C或至少约300°C;在一些实施方式中,240°C或约250_450°C,或400°C,或350°C,或约3000Cο反应可以在压力下进行。优选地,所述工艺在至少IMPa的压力下进行,更优选至少5MPa,在一些实施方式中,至少lOMPa,在一些实施方式中,压力为l_25MPa。优选地,氢化反应之前对生物油不进行预加热,因为在较高的温度下长时间加热或储存可能导致降解。类似地,在优选的实施方式中,产物在氢化后快速冷却。对于连续工艺,该工艺理想地具有尽可能高的液时空速(LHSV)。LHSV是基于标准温度和压力下输送到反应器中的原料液体积(包含水)。用于计算LHSV的反应器体积是指存在催化剂的体积(壁涂层情况下,其包括通过催化剂壁涂层的流程体积)。LHSV(体积/体积/小时)优选至少为0.01,更优选至少0.1,在一些实施方式中,约为0.05-0.25。在本说明书中,对于任何给定的生物油(包括衍生的生物油)原料,可控制条件以制备一系列水平的反应物转化率和/或产物产率。本发明方法的定义为包括实施例的任何转化率和/或产率。由于生物油的复杂性,这可能是定义本发明某些方面的最佳途径(事实上也是唯一的途径)。例如,产物优选至少40%脱氧,更优选至少50%脱氧,在一些实施方式中,约50%-65%脱氧。“脱氧”是基于干重(去除水)测定的,基于油中氧质量百分比的减少。油的产率(基于干重定义,除去水)优选至少60%,更优选75%,在一些实施方式中,最高约为83%。产率和脱氧百分比是本发明方法的特性。术语“油”定义为室温下为液体并且不包含水的物质(虽然有时水溶解或悬浮在油中)。愈创木酚是2-甲氧基_苯酚。取代的愈创木酚是具有烷基取代基的2-甲氧基苯酚(最多具有6个碳),例如在4位被丙基、甲基和乙基取代。在本发明一些优选的实施方式中,原料中至少约50%(在一些实施方式中,至少约60%)的愈创木酚转化为2-甲氧基环己醇,或者原料中至少约50%(在一些实施方式中,至少约60%)取代的愈创木酚转化为环己醇衍生物(包括环己醇部分的化合物)。在一些实施方式中,约50%-80%的愈创木酚和/或取代的愈创木酚转化为2-甲氧基苯酚或其他环己醇衍生物。在优选实施方式中,本发明在至少约250°C的温度下进行,在一些实施方式中,在约240°C-270°C下进行。在一些优选的实施方式中,氢化处理期间原料中至少约50%的乙酸被消耗;在一些实施方式中,约50%-65%被消耗。在一些优选的实施方式中,至少约30%的乙酸转化为乙醇,在一些实施方式中,约30%-40%的乙酸转化为乙醇。优选地,氢化处理过程中至少90%,更优选至少99%的糠醛被消耗。在一些优选的实施方式中,至少约5%的糠醛转化为1-戊醇,在一些实施方式中,约5%-9%的糠醛转化为1-戊醇;优选至少约280°C,在一些实施方式中,约280°C-350°C。在一些优选的实施方式中,至少约6%的糠醛转化为2-甲基-四氢呋喃(mTHF),在一些实施方式中,约6%-10%的糠醛转化为m-THF;优选至少约250°C的温度下,在一些实施方式中,约2500C-300"C。为测定生物油处理过程中的转化百分率,将少量标记化合物注入原料流中并分析产物流中的标记化合物。产物本发明还包括产物混合物,尤其是通过本发明方法制备的产物混合物。本发明包括由本发明方法制备的燃料。本发明方法制备的产物混合物是具有以下一个或多个优点的独特混合物,例如理想的燃烧特性以及高比例的所需化学产物如乙醇和/或2-甲基环己醇。氢化处理所得产物无需进一步处理即可使用。更优选地,氢化处理所得产物通过以下额外工艺进行进一步处理去除水,分离一种或多种化学组分,以及额外的氢化或其他燃料加工处理。测试结果_催化剂和条件如实施例所述,采用钯或钌催化剂,三种化学模型物在150、200、250和300°C下反应。产物温度和催化剂金属各不相同。催化试验的实验产物包含约30种浓度足以进行鉴别和定量的组分。复杂程度相当于全氢化生物油,全氢化生物油通常包含数百种组分。这些组分分为四类代表,乙酸、愈创木酚和两种糠醛产物集合。钌催化氢化。对于在钌催化剂存在下的愈创木酚氢化反应,产物类似于我们实验室较早鉴别的那些物质。在150°C,反应器达到图1所示零时间的温度之前,30%的愈创木酚已发生转化。主要产物是酚环饱和所得2-甲氧基环己醇(4小时的产率为60%)。环己二醇是次要产物(11%),不过环己醇也较显著(6%)。发现甲醇副产物(1%)。该温度下几乎不形成酚。在200°C,加热期间愈创木酚的最初转化率为44%。如图2所示,甲氧基环己醇仍然是主要产物(4小时的产率54%),但环己二醇减少(4%)而形成更多环己醇(12%)。存在更多甲醇(2%),也存在更多酚。在250°C,在反应器到达温度之前,60%的愈创木酚发生转化。如图3所示,环己醇几乎超过甲氧基环己醇成为主要产物。在反应进行至次要产物之前1-2小时内甲氧基环己醇产率峰值为17%。环己醇最大产率为13%。环己二醇是唯一的次要产物(1%)。存在更多酚且环己烷变成显著产物(2%);然而,己烷回收可能受到水中低溶解度的限制。实际上产生更多环己烷,保留在反应器中作为独立的轻质相,可通过我们的方法进行取样。在整个试验期间,水相产物的量下降。该试验中产生大量甲烷气体产物,已报道可以在这些温度和催化剂条件下进行加工,其中苯酚在低至250V时大量气化。在300°C,苯酚是可回收的主要产物。环己醇和甲氧基环己醇是早期产物,该温度下第一小时内降至低水平。所有三种甲基-苯酚(甲酚)的异构体是显著的副产物,苯也是。环己烷仅以低浓度存在于水产物中,但可能以独立的相作为显著产物存在。因为形成大量甲烷气体,该试验受氢气限制,运行1小时后反应器压力超过压力设定点,预计该因素导致反应机制偏离常用的氢化途径,例如芳环饱和。测得来自乙酸的产物要有限得多。乙酸氢化产生乙醇和乙酸乙酯。在150°C(见图4),只有少量乙醇形成(2%),未反应乙酸86%。即使在200°C(如图5所示),乙醇产率最小(4%),乙酸残留85%。然而,在250°C,充分证据表明96%的乙酸发生反应,如图6所示。形成乙醇产物,2小时最大产率38%,然后进一步反应,4小时后仅剩下8%。乙酸乙酯的形成并不显著。大量甲烷产物似乎是在这些条件下乙酸的最终产物,因为在试验结束时乙酸和乙醇接近为零。对钌催化剂来说该结果并不令人意外,因为我们实验室已经在关于催化湿法气化的其他工艺开发工作中发现该现象xii。在这种间歇测试模式下,300°C时,实际上乙酸转化为乙醇较少,明显是因为氢化限制以及大量气体(甲烷和二氧化碳)的形成。糠醛在150_250°C的温度下快速反应。在150°C,加热至温度的过程中74%的糠醛发生转化。如图7所示,150°C的主要产物是10%的四氢呋喃-甲醇(THF-MeOH)和较少量5%的Y-戊内酯(GVL)。1,4_戊二醇(14PD0)是较少的中间体,进一步转化为2-甲基-四氢呋喃xm(MTHF),剩下2%。还发现脱甲基化形式的Y-丁内酯(GBL)和四氢呋喃(THF),以及1,2-戊二醇(12PD0)。如图8所示,还存在涉及环戊酮的反应途径,环戊酮是早期产物,随后氢化形成环戊醇和1-戊醇。在200°C较高的温度下,加热期间67%的糠醛发生转化。如图9所示,THF-MeOH仍然是主要产物(22%),但GVL(5%)、14PD0(10%)^PMTHF(3%)产物层变得更加显著。12PD0稍微增加,而GBL和THF增加较少。如图10所示,环戊酮产物不再存在,但试验结束时仍然存在环戊醇和1-戊醇。在250°C较高的温度下,如图11所示,加热期间94%的糠醛发生转化。如图11所示,MTHF产物(30%)及其中间体GVL(14%)和14PD0变成占优势。最初形成THF-MeOH产物(50%),但进一步反应降低至4小时的4%,可能形成THF(12%)。早期存在的GBL类似地反应形成THF。图12所代表的环戊酮途径产物仍然明显,但所有三种产物进一步反应并在试验结束时不再存在,很可能裂解形成甲烷。在300°C,加热期间所有糠醛均被消耗。THF-MeOH产物(0时间的产率10%)进一步反应并在首次取样后消失。MTHF是主要产物(0.5小时产率38%),THF是主要的后续产物。GVL和乙酰丙酸13所代表的逆平衡产物层也显著。0时间发现环戊酮产物(12%),但到1.5小时下降至痕量。未发现后续醇产物。钯催化氢化。在钯催化的情况下,结果是不同的。在150°C,愈创木酚的主要产物是酚环饱和较不完全形成的2-甲氧基-环己酮,而大部分的愈创木酚未发生反应。发现甲氧基环己醇的浓度只有环酮的1/10。环己二醇是较少的产物,环己醇和苯酚几乎可忽略。发现甲醇副产物。在200°C,如图13所示,甲氧基环己醇是主产物,但也存在一些环己二醇。环己醇稍微更加显著。存在更多甲醇。如图14所示,在250°C,甲氧基环己醇是主要产物,但在试验结束时仍然存在显著的愈创木酚。环己二醇是次要产物。环己烷是显著产物,其含量稍微超过环己醇和苯酚。不同于钌催化剂的情况,在试验过程中,水相产物总量似乎保持几乎恒定。在300°C,愈创木酚经甲氧基环己醇反应形成环己烷是明显的,如图15所示。甲醇是另一种显著的产物,试验结束时成为主要的水相产物。与较低温度相比,在此较高的温度下苯酚在转化过程中发挥更重要的作用。该温度4小时后愈创木酚转化接近98%。试验结束时水相产物总量下降约3/4,提示主要产物是挥发性环烃。在200°C(参见图16)或以下钯催化剂上乙酸似乎不反应。如图17所示,250°C,4小时后乙醇产率约为5%。在300°C,产率增加至接近20%并形成少量乙酸乙酯,如图18所示。与钌不同,即使在最高达300°C时,这些产物也几乎不发生气化。钯催化情况下,糠醛转化化学也存在显著不同。在这些条件下糠醛快速反应。发现在150和200°C的试验中只有初始样品存在糠醛。在150°C,主要产物是环戊酮。MTHF的浓度稍高于THF-MeOH。GVL较少,但也是显著产物。如图19所示,从200°C测试回收的MTHF和THF-MeOH的浓度与150°C大致相同,但GVL增至第二优势产物。在200°C较高的温度下,环戊酮产物大量转化为环戊醇,如图20所示。在250°C,MTHF成为最多产物,如图21所示。GVL和THF-MeOH以几乎相等的量存在。早期出现乙酰丙酸,但发生转化(转化为GVL),直到试验结束时消失。在图22中,存在明显过渡,早期产生的环戊酮随后转化为环戊醇和最终产物1-戊醇。在300°C(见图23),早期产生的乙酰丙酸导致GVL和MTHF快速形成。类似地,整个过程期间GBL和THF的形成显著,不过试验结束时GBL消失。如图24所示,1-戊醇是试验结束时的主要产物。水相重整和甲烷化反应的钌催化将其应用限制在250°C以下以实现有效的氢化化学反应。在较高的温度下,甲烷和二氧化碳的形成变成全消耗性反应途径。由于钯不会催化气化反应,可用于在较高温度下的氢化反应。因为这些差异,用这两种催化剂可获得不同的产物层(slate)。用钌催化,乙酸不能有效氢化形成乙醇。在显著活性的温度下,气化反应朝甲烷和二氧化碳的最终产物方向进行。另一方面,我们意外地发现,在300°C采用钯催化剂,乙酸可有效氢化形成乙醇。鉴定了由糠醛形成环戊酮和戊醇的一种重要机制途径。在250°C及以上,采用钌催化剂,这些产物像乙酸和乙醇那样气化。糠醛氢化形成四氢呋喃-甲醇的机制似乎只有在较低的温度下用钌和钯催化才能形成最终产物。经Y-戊内酯(包括一些形成平衡的乙酰丙酸)形成1,4-戊二醇和甲基-四氢呋喃的途径在250°C及以上更加重要。如先前就取代的愈创木酚所述,采用钌催化的氢化途径在低温下经甲氧基环己醇形成环己二醇并在较高的温度下继续反应形成环己醇。在250°C及以上,气化反应变得占优势。相反,钯催化在150°C先形成甲氧基环己酮,在200°C形成甲氧基环己醇和一些环己二醇。在250°C,产物层朝环己醇和环己烷方向移动(无气化),到300°C产物层强烈地朝环己烷移动并伴有大量甲醇副产物。实施例间歇反应器测试方法。使用Parr4562M450mLHastelloyC压力容器进行这些反应。将催化剂(5克)置于反应器中,氢气压力4.2MPa,25(TC还原2小时,然后冷却。催化剂是通过初始湿法制备的在碳细粒(12X50目)上的3重量%钯或者Engelhard制备的在碳挤出物(1.5毫米)上的7.8重量%钌。反应器抽真空,将各5重量%的糠醛、愈创木酚(2-甲氧基-苯酚)和乙酸在水中的液体混合物(200克)倒入反应器容器中。然后用氢气使反应器加压至6.9MPa并加热至所需的温度。整个测试期间,用涡轮桨搅拌器在IOOOrpm搅动溶液。氢气调节器设置成13.SMPa的所需操作压力并在整个实验期间维持该压力。通过该方法,将氢气加入反应器中,用于反应。对于发生气化的较高温度的测试,操作压力高于调节器设置,因而不再有氢气加入系统中,导致化学反应受到氢气的限制。在250°C下进行的单一非催化测试中,由糠醛形成固体聚合物材料(测试结束时检测不到糠醛),水相中愈创木酚和乙酸的残留水平类似于原料中的水平。在0、0.5、1、1.5、2、3和4小时通过样品汲取管回收液体样品(2克)。每次收集样品之前抽取扫气样品,以确保样品管线清洁而没有残留的产物材料。在测试结束后,将系统冷却至室温,排出残留气体产物,样品在Carle系列400GC上进行分析。用湿试计测量死体积。对剩余的液体产物和样品进行称重以获得全面质量平衡。产物分析方法。采用带有火焰离子化检测器(FID)的安捷仑6890型设备进行气相色谱(GC)以分析样品。运行净样品,如果它们是单相,通常只取后期产物。如果存在两相或更多相,则加入丙酮(1毫升)进行稀释并使溶液成为单相。GC参数包括注入体积0.2μL,注入温度260°C;采用无分流注入。程序温度从30°C开始,10°C/分钟升高至260°,然后保持5分钟。采用恒定流速30cm/秒,起始压力16.87psig。分析柱采用安捷仑WaxEtr60mX320μm,薄膜厚度1.0μm。检测器设置在275°C,40毫升/分钟H2和450毫升/分钟空气。载气模式与柱一致,组合补充气流45毫升/分钟;补充气体是氮气。采用以下组分,用3-点校准法进行校准苯酚,顺-1,2环己醇,乙酸,2-甲氧基环己醇,环己醇,糠醛,愈创木酚,环己酮,2-丁醇,乙醇,四氢呋喃,2-甲基-四氢呋喃,环己基-甲基-醚。标准在80/20丙酮/水溶液中进行稀释。未校准的组分基于具有相同碳原子数的类似组分给予半定量值。使用气相色谱-质谱进行定量分析,采用安捷仑5890型GC,在与上述相同的温度程序和相同的分析柱下运行,联接安捷仑5972型质量选择性检测器(MSD)。MSD以1.6扫描/秒的速率在20-500的原子质量单位内进行扫描。用安捷仑化学站软件(Chemstationsoftware)G1701AA版本A02.00分析质量数据。采用基于概率的匹配(PBM)算法测得化合物峰值。用以下两个库鉴定各峰,Wiley275库(275,000种化合物)和内部开发的由先前生物油分析工作所得的化合物库10。采用康奈尔大学(CornellUniversity)开发的基于概率的匹配算法,通过搜索质谱库进行PBM库搜索。搜索算法采用反向搜索技术,将未知谱与各参比谱进行比较。反向搜索技术证实未知谱中存在参比谱中的主峰。热解油氢化处理工艺性能以连续工艺(非间歇式)氢化处理生物油的装置是在并行的生物油和氢气下降流情况下运行的管状反应器中的固定催化床。在实验室中组装具有400毫升固定催化剂床的实验室规模装置,以进行不同原料、催化剂和工艺条件下的工艺测试。生物油通过高压计量活塞泵输送到反应器中。泵输送罐、输送线和反应器均维持在循环的热油系统的温度下。反应器中的压力通过圆顶装载的反压调节器维持。冷却离开反应器的产物,在取样罐中收集浓缩液,且周期性排空。气体产物经计量器排出,间歇抽取样品进行分析。在采用钯催化剂的测试期间,容易在反应器系统中加工生物油。碳载催化剂具有2重量%钯,表观松密度0.5g/mL。测定200-360°C范围内的工艺温度设定点。显著的放热反应导致催化剂床在比设定点高最多达20°C的温度下运行。工艺结果采用由Dynamotive获得的白色软木生物油进行测试,该生物油在储存期间分离形成两相。这些测试在所有反应器组件如设计那样起作用的情况下平稳运行。工艺数据总结在表Y中。温度为测量温度,不是设定点温度。表Y氢化处理软木生物油,重馏分,边缘涂覆1.5%Pd/C催化剂。<table>tableseeoriginaldocumentpage12</column></row><table>注产物产率包括(1)油产物的油馏分(不含水)(2)水相中的有机物。iElliottjD^aiABaker,Ε.G.(1987)Hydrotreatingbiomassliquidstoproducehydrocarbonfuels(氢化处理生物质液体以制备烃类燃料),EnergyfromBiomassandffasteX(来自生物质和废料X的能量),(D.L.Klass编纂),第765-784页,InstituteofGasTechnology,Chicago(芝力口哥气相技术机构)。11Elliott,D.C,&Baker,E.G.(1989)Processforupgradingbiomasspyrolyzates(精炼生物质热解物的方法),美国专利第4,795,841号。iiiBaker,Ε·G.,&Elliott,D.C.(1988)Catalyticupgradingofbiomasspyrolysisoils(催化精炼生物质热角军油),ResearchinThermochemicalBiomassConversion(热化学生物质转化研究),(Α.V.Bridgwater&J.L.Kuester编纂),第883-895页,ElsevierAppliedScience,London(伦敦Elsevier应用禾斗学)。ivBaldauf,W.,&Balfanz,U.(1992)UpgradingofPyrolysisOilsfromBiomassinExistingRefineryStructures(在现有精制结构中精炼来自生物质的热解油),VEBAOELAG,Gelsenkirchen,总结报告J0UB-0015。vLaurent,E.;(1993)Etudeetcontroledesreactionsd'hydrodesoxygenationIorsdel‘hydroraffinagedeshuilesdepyrolysedelabiomasse(关于生物质热解的氢化脱氧或氢化反应的控制研究),D.Sci.thesis,UniversiteCatholiquedeLouvain,Louvain-Ia-Neuve,比禾时。viCenteno,Α.;David,Α.;Vanbellinghen,Ch.;Maggi,R.;Delmon,B.;(1997)Behaviorofcatalystssupportedoncarboninhydrodeoxygenationreactions(碳负载的催化剂在氢化脱氧反应中的行为),DevelopmentsinThermochemicalBiomassConversion(热化学生物质转化进展),(AV.Bridgwater&D.G.B.Boocock编纂),第589-601页,BlackieAcademicandScientific,London(伦敦黑人学术科学协会)。viiMeier,D.;Wehlte,S.;Wulzinger,P.;Faix,0.(1996)UpgradingofBio-oilsandflashpyrolysisofCCB-treatedwoodwaste(精炼生物油和快速热解CCB处理的废木材),Bio-OilProductionandUtilization(生物油的制备与应用),(Α.V.Bridgwater&Ε.N.Hogan编纂),第102-112页,CPLScientificLtd,Newbury,UK(英国新拜利科学有限公司)。viiiMeier,D.;Bridgwater,Α.V.;DiBlasi,C.;Prins,W.(1997)Integratedchemicalsandfuelsrecoveryfrompyrolysisliquidsgeneratedbyablativepyrolysis(整合的从消融热解产生的热解液体的化学和燃料回收),BiomassGasificationandPyrolysis:StateoftheArtandFutureProspects(生物质气化与热解现状与未来前景),(M.Kaltschmitt&A.V.Bridgwater编纂),第516-527页,CPLScientificLtd,Newbury,UK(英国新拜利科学有限公司)。ixScholze,B.(2002)Long-termstability,catalyticupgrading,andapplicationofpyrolysisoils-Improvingthepropertiesofapotentialsubstituteforfossilfuels,(热解油的长期稳定性、催化精炼与应用改善潜在的化石燃料替代品的性能),博士论文,UniversityofHamburg,Hamburg,Germany(德国汉堡的汉堡大学)。xElliott,D.C.;Neuenschwander,G.G.;Hart,Τ.R.;Hu,J.;Solana,Α.Ε.;Cao,C."Hydrogenationofbio-oilforchemicalandfuelproduction.(用于备化学品和燃料的生物油氢化反应)〃,ProceedingsofScienceinThermalandChemicalBiomassConversionConference(热和化学生物质转化科学会议会刊),维多利亚,BCCANADA,2004年8月30日-9月4日。X1Elliott,D.C.,Hart,Τ.R.,Neuenschwander,G.G."ChemicalProcessinginHigh-PressureAqueousEnvironments(高压水相环境中的化学进禾呈),8ImprovedCatalystsforHydrothermalGasification(改良的用于氢化加热气化的催化剂)〃,Ind.Eng.Chem.Res.45(11)3776-81,2006。xllElliott,D.C.,Neuenschwander,G.G.,Hart,T.R.,Low-TemperatureCatalyticGasificationofChemicalManufacturingWastewaters(化学制造废水的低温催化气化)1995-1998总结报告PNNL-11992,PacificNorthwestNationalLaboratory,Richland,Washington(华盛顿礼兰的太平洋西北国家实验室)1998。xiiiElliott,D.C.,&Fyre,J.G.,Jr.(1999)Hydrogenated5-CarbonCompoundandMethodofMaking(氢化的5_碳化合物及其制备方法),美国专利第5,883,266号。_权利要求一种使生物油氢化脱氧的方法,该方法包括提供生物油;提供氢气(H2);和使所述生物油与氢气在催化剂上在超过200℃的温度下反应;其中,所述催化剂包括Pd;和由所述生物油和氢气的反应制得液体油。2.如权利要求1所述的方法,其特征在于,所述生物油包含5-50质量%的水。13.如权利要求1所述的方法,其特征在于,反应之前,所述生物油是单相液体。4.如权利要求1所述的方法,其特征在于,在所述生物油和氢气在催化剂上反应的步骤过程中去除水。5.如权利要求1所述的方法,其特征在于,所述方法以连续而非间歇方式进行。6.如权利要求1所述的方法,其特征在于,所述使生物油与氢气在催化剂上反应的步骤在约250-450°C的温度下进行。7.如权利要求5所述的方法,其特征在于,所述方法在至少约300°C的温度下进行。8.如权利要求1所述的方法,其特征在于,所述方法在至少5MPa的压力下进行。9.如权利要求1所述的方法,其特征在于,所述催化剂包括分散在载体上的催化剂金属,所述催化剂金属基本上由Pd构成。10.如权利要求9所述的方法,其特征在于,所述载体包括碳、氧化钛、氧化锆或它们的混合物。11.如权利要求5所述的方法,其特征在于,LHSV至少为0.1。12.如权利要求1所述的方法,其特征在于,所述使生物油与氢气在催化剂上反应的步骤的特征为生物油脱氧至少50%。13.如权利要求12所述的方法,其特征在于,所述使生物油与氢气在催化剂上反应的步骤的特征为液体油的产率至少是60%。14.如权利要求1所述的方法,其特征在于,所述生物油包含乙酸,生物油中至少30%的乙酸转化为乙醇。15.如权利要求1所述的方法,其特征在于,所述生物油包含糠醛,所述反应步骤在至少280°C的温度下进行,至少5%的糠醛转化为1-戊醇。16.如权利要求1所述的方法,其特征在于,所述生物油包含糠醛,至少6%的糠醛转化为2-甲基-四氢呋喃。17.如权利要求16所述的方法,其特征在于,所述反应步骤在约250-300°C的温度下进行。18.一种通过如权利要求1所述方法制备的产物混合物。19.一种氢化处理糠醛、愈创木酚或取代的愈创木酚的方法,该方法包括提供包含糠醛、愈创木酚或取代的愈创木酚的液体;提供氢气(H2);和使所述糠醛、愈创木酚或取代的愈创木酚与氢气在催化剂上在超过200°C的温度下反应;其中,所述催化剂包括Pd;和所述糠醛、愈创木酚或取代的愈创木酚转化为氢化产物。20.如权利要求19所述的方法,其特征在于,所述液体包含愈创木酚或取代的愈创木酚;所述愈创木酚或取代的愈创木酚在至少约250°C的温度下与氢气反应,所述氢化产物包含2-甲氧基-苯酚或其他环己醇衍生物,和至少约50%的愈创木酚或取代的愈创木酚转化为2-甲氧基-苯酚或其他环己醇衍生物。全文摘要本发明提供了生物油和某些有机化合物的钯-催化氢化。实验结果对于生物油中通常存在的有机化合物的钯催化氢化已显示意外且优异的结果。文档编号C10B53/02GK101821358SQ200880018792公开日2010年9月1日申请日期2008年6月5日优先权日2007年6月6日发明者D·C·埃利奥特,G·G·诺伊施万德,J·胡,T·R·哈特申请人:巴泰勒纪念研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1