应用多孔(共环)燃烧器部分氧化液态含烃燃料制造合成气的方法

文档序号:5126340阅读:212来源:国知局
专利名称:应用多孔(共环)燃烧器部分氧化液态含烃燃料制造合成气的方法
技术领域
本发明涉及应用多孔(共环)燃烧器部分氧化液态含烃燃料制造合成气的方法。
特别是,本发明涉及部分氧化诸如残油这样的液态含烃燃料的方法,其中把用作氧化剂的含氧气体与液态含烃燃料经一包括n个同心设置的通路或通道的多孔(共环)燃烧器供入气化区。燃烧器的n个通路或通道与上述燃烧器的纵轴共轴,其中的n为大于等于3的整数并且在此于合适的条件下自热地生产一种含有合成气的气态物流。
加入作为氧化剂的含氧气体通常是空气或(纯)氧或水蒸汽或它们的混合物。此外,为了控制气化区的温度,可向上述的气化区中提供减速剂气体(例如水蒸汽、水或二氧化碳或其混合物)。
本领域的技术人员应该知道使用氧化剂和减速剂的条件。
合成气是一种包括一氧化碳和氢气的气体,它被用来作为诸如燃烧气或作为合成甲醇、氨或烃类的原料。烃类合成产生气态烃和液态烃,例如汽油、柴油、润滑油以及蜡等。
在本说明书和权利要求书中,将用“液态含烃燃料”这一术语来表示液态、乳状液或在气化器进料压力和温度下可泵送的浆料形式的含烃燃料。
这包括诸如丁烷、戊烷、己烷以及包括天然汽油、煤油、气油、石脑油、柴油、原油、渣油、常压或真空煤焦油、焦油沙油、页岩油以及可能含有象氧这样的其它原子的烃类等在内的整个液态范围的含烃燃料;但是其比例应不致影响燃料的自持燃烧。此定义亦包括在上述的液态烃中含有固态碳质燃料的浆液。
根据已建立的一种方法,它是在一反应器中采用含氧气体在温度范围从1000℃到1800℃、压力范围从0.1兆帕至6兆帕(绝压)下部分氧化象液态烃这样的燃料,特别是重油残油来制造合成气。
合成气通常是在原油精炼厂附近或精炼厂中生产的,这是因为所制得的合成气能够直接用作生产柴油、氨、氢气、甲醇的原料或者作为燃料气,例如用于加热精炼炉或更有效地用于加热气体透平以生产电能和热能。
在共环(多孔)燃油器的使用中已显现出,由于在燃烧器烧嘴处所发生的火焰现象而引起的严重腐蚀限制了燃烧器的寿命。由于这种现象,燃烧器内件的温度变得太高而将发生严重的燃烧器毁损。
本发明的一个目的是提供一种部分氧化液态含烃燃烧的方法,其中,在燃烧器下游出口之前就已完成了用作氧化剂的含氧气体和含烃燃料的混合过程而火焰是从燃烧器的前部点燃的,在此由于严重腐蚀(高热负荷)所引起的燃烧器毁损得以抑制。
本发明对于上述的燃烧器毁损问题是这样解决的在本发明的方法中,用作氧化剂的含氧气体和液态含烃燃料经上述燃烧器的各个通道供入气化区。其供料方式如下实际应用中,用作氧化剂的含氧气体和液态含烃燃料总是被减速剂隔离开来并有部分时间在燃烧器前部以外以独立物流形式流动。
此方式消除了内缘上所发生的火焰现象;而在燃烧器的通道之间形成隔离壁并具有一定厚度的燃烧器内部托板维持得相当冷并且在靠近燃烧器出口处燃料-氧化剂混合物的活性较低,这就降低了内缘上的热负荷。
为此,本发明提供一种在基本上非催化气体发生器的反应区将作为氧化剂加入的含氧气体(下文称之为“X”)、减速剂气体(下文称之为“M”)以及液态含烃燃料(下文称之为“F”)进行反应制造合成气的方法,其步骤包括将所说的燃料和所说的氧化剂经一台包括n个独立设置的通路或通道的多孔(共环)燃烧器注入反应区,燃烧器的n个独立通路或通道与所说的燃烧器的纵轴共轴,其中n为大于等于3(3,4,5…)的整数,其中,沿所说的燃烧器的纵轴度量时,相对于第n个通道而言,第n-1个通道为内部通道,其中,F流经一个或多个通道,因此至少剩余二个通道;X流经一个或多个剩余通道,因此至少剩余一个通道;而M以此方式流经余下的一个或多个通道即F和X分别流经的任何两个通道由M流经其间的至少一个通道隔离开来。
有利地,液态含烃燃料为粘度在1到1000厘沲之间的残油并以2到40米/秒之间的速度流过一个或多个通道;含氧气体(氧化剂)以20到140米/秒的速度流过剩余的一个或多个通道;而减速剂气体以5到140米/秒之间的速度流过剩余的一个或多个通道。
更为有利地,或者含氧气体(氧化剂)或者减速剂气体流经最外层的通道。
而更有利地,在n大于等于4的情形下,减速剂气体亦流经最外层的通道。
在本发明另一个有利的实施方案中,对于n大于等于4,含氧气体氧化剂或减速剂气体亦流经最内层的通道。
在本发明一个有利的实施方案中,均在通入气化区的上述各个通道的出口测量或计算相应的流速。本领域的技术人员可采用任意适合于此目的的方法进行流速测量或计算,因此不再详细描述。
在本发明另外一个有利的实施方案中,减速剂气体为水蒸汽和/或水和/或二氧化碳。在本发明的一个更有利的实施方案中,是在0.1-12兆帕(绝压)的压力下进行气化过程。
设置有用来向气化区提供含氧气体(氧化剂)、燃料以及减速剂的环状同心通道的多孔燃烧器为众所周知(参见例如EP-A-0,545,281和DE-OS-2,935,754),因此不再详细描述其机械结构。
通常,此类燃烧器包括在燃烧器出口处的许多环隙以及带有内部冷却流体(例如水)通道的中空间壁构件。在燃烧器出口处,各通道可以缩口也可以不缩口。燃烧器可以设置合适的陶瓷或耐火衬里,敷设或用器具悬挂在紧邻燃烧器(前部)间壁的外表面上以抵抗燃烧器操作或加热/停车时的热负荷,可以此代替设置内部冷却流体通道。有利地,一个或多个通道的出口可内缩或外伸。
现参照下面的实施例来更详细地描述本发明。
表中给出多个实施例,其中用到如下的缩略语
进料1一种残余燃料,具有如下的典型元素组成C 83.7%(重量)H 8.6%S 6.8%N 0.5%O 0.3%灰分 0.1%该原料的进料温度为210-290℃,由此其粘度范围为25到250厘沲。
进料2一种液态烃混合物,具有如下的典型元素组成C 85.5%(重量)H 13.2%S 0.5%N 0.2%O 0.5%灰分 0.1%该原料的进料温度为100-180℃,由此其粘度范围为10到100厘沲。
进料3一种重质焦油和水质量比约为1∶0.4的混合物(乳状液),其中焦油具有如下的典型元素组成C 84.4%(重量)H 10.5%S 3.7%N 0.6%O 0.5%灰分 0.3%该原料的进料温度为50-100℃,由此其粘度范围为60到600厘沲。氧化剂1温度在230-250℃的99.4%的纯氧。氧化剂2氧化剂1/水蒸汽以1∶0.05比率混合所得的混合物氧化剂3 氧化剂1/水蒸汽以1∶0.4比率混合所得的混合物减速剂气体1 温度为350-380℃的过热水蒸汽减速剂气体2 温度为200-250℃主要含有CO2的废气。
给出了五个实施例,下表表示对于这些实施例反应物的分布。亦给出了典型的合成气组成。说明书和权利要求书中用到的n值亦给出,通道1为第一或中心通道。
实施例表实施例序号1 2 3 4 5n值 7 5 4 3 3典型合成气组成CO2[%Vol,干燥的] 4-5 9-10 3.5-4.55-6 4-5CO[%Vol,干燥的] 49-52 43-46 45-48 44-47 49-52H2[%Vol,干燥的]42-45 44-47 48-51 47-50 42-45H2S[%Vol,干燥的] 1.5-1.7 0.8-0.9 0.1-0.12 0.09-0.11 1.5-1.7反应器压力[MPa] 6-7 4-5 2.2-2.66-7 5-6反应器温度[℃]1250-1350 1200-1300 1300-1400 1250-1350 1300-1400通道1反应物种类氧化剂2 减速剂1 氧化剂2进料2 氧化剂2质量流量[kg/s]0.8-1.2 0.4-0.6 1.8-2.73-4.5 3.6-5.4流速[m/s] 30-40 20-30 80-120 20-30 80-120通道2反应物种类氧化剂2 进料3 减速剂1减速剂2 减速剂1质量流量[kg/s]2-3 3.7-5.5 0.26-0.39 0.24-0.36 1.4-2.1流速[m/s] 80-1206.7-1080-120 20-30 80-120
实施例表(续)通道3反应物种类 减速剂1减速剂1 进料2 氧化剂3进料1质量流量[kg/s] 0.2-0.30.08-0.12 1.5-2.24.9-7.43.4-5.1流速[m/s]25-35 15-22 3.1-4.655-80 6.7-10通道4反应物种类 进料1 氧化剂1 减速剂1质量流量[kg/s] 5.5-8 3.1-4.6 0.18-0.26流速[m/s]8-12 90-130 27-40通道5反应物种类减速剂1减速剂1质量流量[kg/s]0.27-0.4 0.32-0.48流速[m/s] 25-35 40-60通道6反应物种类氧化剂2质量流量[kg/s]2.7-4流速[m/s] 80-120
实施例表列(续)通道7反应物种类 减速剂1质量流量[kg/s] 1.5-2.5流速[m/s]40-50对于n=6,下列数据是合适的通道1反应物种类 氧化剂2质量流量〔千克/秒〕2.8-4.2流速〔米/秒〕 80-120通道2-6参见实施例1(n=7)中所述的通道3-7的数据。
典型合成气组成、反应器压力与反应器温度参见上述实施例1(n=7)的数据。
本领域的技术人员会注意到,可以来用适于此目的任何环隙宽度,这取决于燃烧器的生产能力。
有利地,第一或中心通道的直径可大至70毫米,而其余同心通道的环隙宽度范围在1-20毫米之间。
根据前述内容对本发明所做的各种改动,对本领域技术人员而言是显而易见的。这类改动视为落入所附权利要求的范围之内。
权利要求
1.一种在基本上非催化气体发生器的反应区将作为氧化剂加入的含氧气体(下文称之为“X”)、减速剂气体(下文称之为“M”)以及液态含烃燃料(下文称之为“F”)进行反应制造合成气的方法,其步骤包括将所说的燃料和所说的氧化剂经一台包括n个独立设置的通路或通道的多孔(共环)燃烧器注入反应区,燃烧器的n个独立通路或通道与所说的燃烧器的纵轴共轴,其中n为大于等于3(3,4,5…)的整数,其中,沿所说的燃烧器的纵轴度量时,相对于第n个通道而言,第n-1个通道为内部通道,其中,F流经一个或多个通道,因此至少剩余两个通道;X流经剩余的一个或多个通道,因此至少剩余一个通道;而M以此方式流经余下的一个或多个通道即F和X分别流经的任何两个通道由M流经其间的至少一个通道隔离开来。
2.根据权项1所说的方法,其中液态含烃燃料粘度在1到1000厘沲之间。
3.根据权项1或2所说的方法,其中液态含烃燃料以2到40米/秒之间的速度流动。
4.根据权项1-3的任一权项所述的方法,其中含氧气体(氧化剂)以20到140米/秒之间的速度流动。
5.根据权项1-4的任一权项所述的方法,其中减速剂气体以5到140米/秒之间的速度流动。
6.根据权项1-5的任一权项所述的方法,其中工艺压力为0.1-12兆帕(绝压)。
7.根据权项1-6的任一权项所述的方法,其中所说的燃料为残油。
8.根据权项1-7的任一权项所述的方法,其中含氧气体(氧化剂)含有至少90%的纯氧。
9.根据权项1-8的任一权项所述的方法,其中各个流速均在通入气化区的上述各个同心通道的出口处测量或计算。
10.根据权项1-9的任一权项所述的方法,其中减速剂气体为水蒸汽、二氧化碳或水或其混合物。
11.根据权项1-10的任一权项所述的方法,其中X或M流经最外层的通道。
12.根据权项1-11的任一权项所述的方法,对n为4或更多时,其中M流经最外层的通道。
13.根据权项1-11的任一权项所述的方法,对n为4或更多时,其中X或M流经最内层的通道。
14.任何根据权项1-13的任一权项所述的方法所制得的合成气。
全文摘要
含氧气体(氧化剂)、减速剂气体以及液态含烃燃料在基本上非催化气体发生器的反应区进行反应制造合成气的方法。包括将所说的燃料和所说的氧化剂经一台包括n个独立设置的通路或通道的多孔(共环)燃烧器注入该反应区,燃烧器的n个独立通路或通道与所说的燃烧器的纵轴共轴,其中n大于等于3。有利地,燃料以2到40m/s之间的流速流过一个或多个通道,因此至少剩余两个通道;含氧气体有利地以20到140m/s之间的流速流过一个或多个剩余通道,因此至少剩余一个通道;而减速剂有利地以5到140m/s之间的流速流过所剩的一个或多个通道。在此方式下,燃料和含氧气体分别流经的任意两个通道总是被减速剂流经其间的至少一个通道隔离开来。
文档编号C10J3/46GK1148841SQ95193159
公开日1997年4月30日 申请日期1995年5月16日 优先权日1994年5月19日
发明者J·H·M·迪塞尔霍斯特, F·尤德林克, P·奥特维津, J·A·J·斯米特, H·M·温廷克 申请人:国际壳牌研究有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1