排气净化系统的制作方法

文档序号:12070689阅读:279来源:国知局
排气净化系统的制作方法与工艺

本发明涉及排气净化系统,尤其涉及具有对排气中的NOx进行还原净化的选择性还原催化剂(以下称作SCR)的排气净化系统。



背景技术:

以往,已知一种具有SCR的排气净化系统,该SCR以从尿素水中加水分解而生成的氨(以下称作NH3)作为还原剤,对排气中的NOx选择性地进行还原净化。在这样的排气净化系统中,基于在SCR的排气下游侧设置的NOx传感器的传感器值,对尿素水喷射量进行反馈控制,以使排气中的NOx值成为目标值(例如,参照专利文献1、2)。

现有技术文献

专利文献

专利文献1:(日本)特开2003-293738号公报

专利文献2:(日本)特开2013-181411号公报



技术实现要素:

发明要解决的课题

但是,SCR的NH3可吸附量存在随着催化剂温度的上升而降低的倾向。因此,若由于柴油微粒过滤器(以下称作DPF)的强制再生等而使排气温度急剧上升,则可能引起所谓的NH3漏失,即NH3的一部分脱离SCR而被排放到下游侧。

由于一般的NOx传感器不能区别NOx和NH3,因此,若发生NH3漏失,则NOx传感器会表示较高的NOx值。因此,在基于NOx传感器的传感器值对尿素水喷射量进行反馈控制的系统中,存在将NH3漏失错误识别为过大的NOx排出,从而使尿素水喷射量过剩地增加的可能性,存在引起进一步的NH3漏失的课题。此外,在基于NOx传感器的传感器值进行异常诊断等的系统中,存在由于将NH3漏失错误识别为过大的NOx排出,而引起停止尿素水喷射或发出异常警报等误诊断的课题。

本发明的目的在于提供一种能够有效地防止排气温度急剧上升时的NH3漏失或误诊断的排气净化系统。

用于解决课题的手段

为了达到上述目的,本发明的排气净化系统包括:选择性还原催化剂,设置在内燃机的排气通道上,以从尿素水生成的氨作为还原剤,来净化排气中的NOx;NOx传感器,设置在比该选择性还原催化剂靠下游侧的排气通道上;以及控制部件,基于该NOx传感器的检测值,控制对所述选择性还原催化剂的尿素水喷射量,并且进行异常诊断;其特征在于,包括:排气温度取得部件,取得流入所述选择性还原催化剂的排气温度;温度上升率计算部件,计算由所述排气温度取得部件取得的排气温度从规定的第1温度到达比该第1温度高的规定的第2温度为止的温度上升率;以及禁止部件,在由所述温度上升率计算部件所计算出的温度上升率高于规定的判定阈值的情况下,禁止所述控制部件的异常诊断。

此外,优选还包括低温判定部件,计算出将由所述排气温度取得部件在规定期间内取得的排气温度进行平均化后的平均温度,并且若该平均温度为所述第1温度以下,则判定为低温稳定,所述温度上升率计算部件,在由所述低温判定部件判定为低温稳定,且由所述排气温度取得部件取得的排气温度超过所述第1温度时,开始计算所述温度上升率。

此外,优选还包括降低部件,在由所述温度上升率计算部件所计算出的温度上升率高于规定的判定阈值的情况下,降低所述控制部件控制的尿素水喷射量,所述禁止部件在根据所述平均温度而设定的规定期间,持续禁止异常诊断,并且所述降低部件在根据所述平均温度而设定的规定期间,持续降低尿素水喷射量。

此外,优选在规定的等待时间内,由所述排气温度取得部件所取得的排气温度没有从所述第1温度到达所述第2温度的情况下,所述禁止部件不执行异常诊断的禁止,在规定的等待时间内,由所述排气温度取得部件所取得的排气温度没有从所述第1温度到达所述第2温度的情况下,所述降低部件不执行尿素水喷射量的降低。

此外,优选所述第2温度被设定为比被所述选择性还原催化剂吸附的氨的至少一部分脱离而漏失的温度更低的温度。

附图说明

图1是表示本实施方式的排气净化系统的示意的整体结构图。

图2是表示本实施方式的电子控制单元(ECU)的功能框图。

图3是用于说明本实施方式的排气净化系统的低温判定、温度上升率判定、尿素水喷射量的降低以及异常诊断的禁止的时序图。

图4是表示本实施方式的排气净化系统的控制内容的一例的流程图。

图5是用于说明在以往的排气净化系统中,在排气温度急剧上升时,(A)基于NOx传感器的传感器值而使尿素水喷射继续的情况,(B)NOx传感器检测出异常值而使尿素水喷射停止的情况的时序图。

具体实施方式

以下,基于附图,说明本发明的一个实施方式的排气净化系统。对同一部件赋予同一附图标记,它们的名称以及功能也相同。因此,不重复对于它们的详细说明。

如图1所示,柴油引擎(以下,简称引擎)10的排气岐管10b上连接有用于将排气向大气导出的排气通道11。在该排气通道11中,从排气上游侧起依次设有前级后处理装置30、后级后处理装置40等。

前级后处理装置30在催化剂箱30a内,从上游侧起依次配置氧化催化剂(以下称作DOC)31、DPF32而构成。此外,在比DOC31更上游侧的排气通道11中设有燃料喷射装置(燃料添加阀)33。

燃料喷射装置33根据从电子控制单元(以下称作ECU)50输入的指示信号,对排气通道11内喷射未燃燃料(主要是HC)。另外,在使用基于引擎10的多段喷射的后喷射(Post Injection)的情况下,也可以省略该燃料喷射装置33。

DOC31,例如,通过在堇青石蜂窝结构体等陶瓷制载体表面承载催化剂成分而形成。DOC31若通过燃料喷射装置33或后喷射而被供应HC,则会将其氧化而使排气温度上升。

DPF32,例如,通过将由多孔质地的隔墙所划分的多个单元沿着排气的流动方向配置,并将这些单元的上游侧和下游侧交替进行孔封闭而形成。

DPF32将排气中的PM捕获在隔墙的细孔或表面,并且在PM堆积量达到规定量时,执行将其燃烧除去的所谓强制再生。强制再生是通过燃料喷射装置33或后喷射对DOC31供给未燃燃料(HC),将流入DPF32的排气温度升温到PM燃烧温度而进行的。

后级后处理装置40是具有被容纳在箱40A内的SCR41地构成的。此外,在比SCR41靠上游侧的排气通道11中,设有尿素水喷射装置60以及排气温度传感器21,在比SCR41靠下游侧的排气通道11中,设有NOx传感器22。

尿素水喷射装置60根据从ECU50输入的指示信号使尿素添加阀61进行开闭动作,从而在比SCR41靠上游侧的排气通道11内,喷射通过尿素水泵63从尿素水缸62内压送的尿素水。喷射的尿素水通过排气热而被加水分解从而生成为NH3,并作为还原剂被提供给下游侧的SCR41。

SCR41,例如,在蜂窝结构体等陶瓷制载体表面承载沸石等而形成,包括由多孔质地的隔墙划分的多个单元而构成。SCR41吸附作为还原剤供给的NH3,并且由吸附的NH3从通过的排气中选择性地还原净化NOx。

排气温度传感器21是本发明的排气温度取得部件的一例,检测流入SCR41的排气温度(以下称作SCR入口温度TEMPIN)。NOx传感器22检测通过SCR41后的排气中的NOx值(以下称作SCR出口NOx值NOxOUT)。这些各种传感器21、22的传感器值被发送到电连接的ECU50。

ECU50用于进行引擎10和燃料喷射装置33、尿素水喷射装置60等的各种控制,包括公知的CPU和ROM、RAM、输入端口、输出端口等而构成。此外,ECU50,如图2所示,作为一部分的功能要素而具有NOx净化控制部51、低温稳定判定部52、判定条件计算部53、温度上升率计算部54、降低/禁止部55。这些各功能要素在本实施方式中作为包含在作为一体的硬件的ECU50中的部分进行说明,但是它们的任何一部分都可以被设置为单独的硬件。

NOx净化控制部51基于从NOx传感器22输入的SCR出口NOx值NOxOUT,对尿素水喷射装置60的尿素水喷射量进行反馈控制。此外,NOx净化控制部51也执行异常诊断,即若由于SCR41的NOx净化性能的大幅降低或尿素添加阀61的故障等,NOx传感器22检测出异常值,则发出警报。

低温稳定判定部52基于从排气温度传感器21输入的SCR入口温度TEMPIN,判定流入SCR41的排气温度是否稳定在规定的低温状态。更详细地说,低温稳定判定部52对排气温度传感器21在规定期间内检测到的SCR入口温度TEMPIN进行平均化,从而实时地计算该规定期间内的平均温度TEMPAVE(移动平均)。然后,若计算出的平均温度TEMPAVE在规定的低温判定温度TEMP1以下(参照图3的时刻T0~T1),则判定流入SCR41的排气温度为低温稳定。另外,低温判定温度TEMP1优选被设定在例如约190~200℃的范围内。

在由低温稳定判定部52判定为低温稳定时,判定条件计算部53计算后述的高温判定和喷射量降低、诊断禁止等所使用的(1)高温判定温度TEMP2、(2)上限温度上升率TEMP%MAX、(3)最长等待时间TIMEUP、(4)处理禁止时间TIMEACT

高温判定温度TEMP2是在SCR41中刚要产生NH3漏失之前的排气温度,是根据平均温度TEMPAVE而计算的。上限温度上升率TEMP%MAX是有可能在SCR41中发生NH3漏失的排气温度上升率,是根据平均温度TEMPAVE而计算的。最长等待时间TIMEUP是在排气温度没有到达高温判定温度TEMP2的情况下,用于对高温判定温度TEMP 2等进行初始化的等待时间,根据平均温度TEMPAVE而计算,或者,被设定为预定的任意时间。处理禁止时间TIMEACT是用于在排气温度急剧上升时,为了防止进一步的NH3漏失或误诊断而降低尿素水喷射量,并且禁止异常诊断的时间,平均温度TEMPAVE越低则被设定得越长。

温度上升率计算部54计算由排气温度传感器21检测的SCR入口温度TEMPIN从低温判定温度TEMP1上升到高温判定温度TEMP2时的温度上升率。更详细地说,通过ECU50内置的定时器对由排气温度传感器21检测出的SCR入口温度TEMPIN从超过低温判定温度TEMP1的时刻直至到达高温判定温度TEMP2为止的到达时间TIME1(参照图3的时刻T1~T2)进行计时,并通过将从高温判定温度TEMP2减去低温判定温度TEMP1后的温度上升幅度ΔTEMP除以到达时间TIME1,从而计算实际温度上升率TEMP%ACT

降低/禁止部55在有可能发生NH3漏失的情况下,使NOx净化控制部51控制的尿素水喷射量降低,并且禁止异常诊断。更详细地说,若由温度上升率计算部54计算出的实际温度上升率TEMP%ACT在有可能发生NH3漏失的上限温度上升率TEMP%MAX以上,则从SCR入口温度TEMPIN超过高温判定温度TEMP2的时刻到处理禁止时间TIMEACT经过为止(参照图3的时刻T2~T3),使尿素水喷射量降低,并且禁止异常诊断。由此,有效地防止排气温度急剧上升时的NH3漏失和误诊断。

接着,基于图4说明本实施方式的排气净化系统的控制流程。另外,图4的流程与NOx净化控制部51进行的尿素水喷射控制及异常诊断并行执行。

在步骤(以下,将步骤仅记载为S)100中,基于将在规定期间内由排气温度传感器21检测到的SCR入口温度TEMPIN进行移动平均后的平均温度TEMPAVE,判定流入SCR41的排气温度是否稳定在规定的低温状态。若平均温度TEMPAVE在低温判定温度TEMP1以下(是),则判定流入SCR41的排气温度为低温稳定,本控制进入S110。

在S110中,基于在S100中计算出的低温状态的平均温度TEMPAVE,计算用于高温判定等的(1)高温判定温度TEMP2、(2)上限温度上升率TEMP%MAX、(3)最长等待时间TIMEUP、(4)处理禁止时间TIMEACT

在S120中,判定由排气温度传感器21检测到的SCR入口温度TEMPIN是否超过了低温判定温度TEMP1。若SCR入口温度TEMPIN超过了低温判定温度TEMP1(是),则开始定时器的计时并进入S130。

在S130中,判定由排气温度传感器21检测到的SCR入口温度TEMPIN是否达到了高温判定温度TEMP2。若SCR入口温度TEMPIN没有达到高温判定温度TEMP2(否),则进入S140。

在S140中,判定从S120开始的定时器的计时时间TIME2是否达到了最长等待时间TIMEUP。若计时时间TIME2达到了最长等待时间TIMEUP(是),则由于是缓慢的温度上升、发生NH3漏失的可能性低,故本控制进入S300,将在S110中计算出的各种判定条件进行初始化后返回。

在S130中,若SCR入口温度TEMPIN达到了高温判定温度TEMP2(是),则进入S200。在S200中,通过将S120到S130的温度上升幅度ΔTEMP(=TEMP2-TEMP1)除以由定时器计时的到达时间TIME1,计算出实际温度上升率TEMP%ACT

在S210中,执行如下判定,即由于急剧的温度上升,在SCR41中是否有发生NH3漏失的可能性。若在S200中计算出的实际温度上升率TEMP%ACT小于上限温度上升率TEMP%MAX(否),则由于是缓慢的温度上升、NH3漏失的可能性低,故本控制进入S300,将在S110中计算出的各种判定条件初始化后返回。另一方面,若实际温度上升率TEMP%ACT在上限温度上升率TEMP%MAX以上(是),则由于NH3漏失的可能性高,因此本控制进入S220。

在S220中,为了防止伴随急剧的温度上升的过大的NH3漏失的发生或误诊断,从S130的时刻起到经过处理禁止时间TIMEACT为止,使NOx净化控制部51的尿素水喷射量降低,并且禁止异常诊断。然后,在经过处理禁止时间TIMEACT后,本控制进入S300,将在S110中计算出的各种判定条件初始化后返回。

接着,说明本实施方式的排气净化系统的作用效果。

在DPF强制再生开始时等,若排气温度从低温急剧地上升到高温(参照图5(A)的时刻T1~T2),则由于SCR41的NH3吸附能力降低而发生NH3漏失(参照图5(A)的区域A)。由于NOx传感器22无法区别NH3和NOx,因此在基于NOx传感器22的传感器值来对尿素水喷射量进行反馈控制的系统中,有可能错误识别为比实际的NOx值高的NOx值而使尿素水喷射量增加(参照图5(A)的时刻T2~T3),引起进一步的NH3漏失。

此外,若由于排气温度的急剧上升而发生过大的NH3漏失(参照图5(B)的区域A),则无法区别NH3和NOx的NOx传感器22会检测出异常值(参照图5(B)的B点)。因此,在基于NOx传感器22的传感器值进行异常诊断的系统中,有可能错误识别为排出了过大的NOx,从而进行尿素水喷射的停止(参照图5(B)的时刻T3)或发出警报等误诊断。

本实施方式的排气净化系统被构成为,若SCR入口温度TEMPIN从低温判定温度TEMP1直至到达高温判定温度TEMP2为止的实际温度上升率TEMP%ACT在表示有可能发生NH3漏失的上限温度上升率TEMP%MAX以上,则直至经过处理禁止时间TIMEACT为止,使尿素水喷射量降低并且禁止异常诊断。因此,能够可靠地防止DPF强制再生时等排气温度急剧上升时的NH3漏失的发生以及误诊断。此外,由于防止了尿素水的过剩喷射,因此能够有效地抑制由于尿素水附着等而引起的排气管腐食和SCR41的性能恶化等。

另外,本发明不限定于上述实施方式,在不脱离本发明的主旨的范围内,可以适当变形后实施。

例如,以上是在存在NH3漏失的可能性的情况下降低了尿素水喷射量,但也可以构成为在SCR41的NH3吸附量接近可吸附量的情况下临时中断尿素水喷射。此外,引擎10不限定于柴油引擎,也能够广泛地应用到汽油引擎等其它内燃机。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1