一种微纳织构化石墨烯基仿生pH传感器及其制备方法

文档序号:10487140阅读:243来源:国知局
一种微纳织构化石墨烯基仿生pH传感器及其制备方法
【专利摘要】本发明提供了一种微纳织构化石墨烯基仿生pH传感器及其制备方法,包括基板、工作电极、参比电极、铜触点A、铜触点B、内部引线A和内部引线B;基板上开有槽A和槽B;工作电极位于槽A内,参比电极位于槽B内;工作电极底部通过铜触点A与内部引线A连接;参比电极顶部通过铜触点B与内部引线B连接;工作电极包括石墨烯基A和敏感电极材料层;敏感电极材料层位于石墨烯基A上层;参比电极包括石墨烯基B和金属材料银层;金属材料银层位于石墨烯基B下层;敏感电极材料层上表面和金属材料银层下表面均开有微凹槽或微凹坑。本发明pH传感器能够快速吸附土壤和栽培基质中的水分,进而吸附氢离子,实现对土壤和栽培基质等非均相体系的pH原位测量。
【专利说明】
一种微纳织构化石墨烯基仿生pH传感器及其制备方法
技术领域
[0001]本发明属于电化学传感器的制备领域,尤其是涉及一种微纳织构化石墨烯基仿生PH传感器及其制备方法,用于实现对有一定含水量的土壤、栽培基质等非均相体系pH的原位测量,以及溶液的pH测量。
【背景技术】
[0002]土壤和栽培基质是矿物和有机物的混合组成部分,存在着固体、气体和液体状态,属于非均相体系,液体和气体主要存在于固体颗粒间隙中。复杂的组成和非均相混合态使得土壤表现出迥然不同的物理化学特性,为土壤栽培基质等的理化性状的原位测量带来难度。
[0003]对于土壤和栽培基质等pH测量,实质是检测土壤基质等中的氢离子的浓度。氢离子主要是由酸在水中电离产生。而且氢离子是“裸露”的质子,半径很小,极易被其他水分子吸引生成水合氢离子(H3O+),通常情况下氢离子都是以水合氢离子的形式存在。因此,土壤中氢离子与土壤中的水息息相关,要实现土壤基质等非均相体系的PH的原位测量,就必须找到一种方法能够快速吸附土壤中的水分,进而吸附氢离子,达到快速原位测量土壤栽培基质等的pH。
[0004]而现有的pH传感器研究主要集中在电极材料、电极修饰方法以及复合电极制备Jl0L1-Min Kuo等在其论文《A precise pH microsensor using RF-sputtering IrC^andTa205films on Pt_electrode》中提到采用磁控派射技术在氧化铱电极表面修饰五氧化二组制备一种新型的pH微传感器;Claud1 Zuliani等在《A potent1metric disposablesensor strip for measuring pH in saliva》中提到采用丝网印刷技术,在印刷电极基底上印刷固态的pH电极和离子溶胶的参比电极,构成全固态的复合pH电极,应用于口腔唾液的PH值的快速检测。这些研究虽然能够有效提升pH电极的响应性能,如灵敏度、稳定性、抗干扰性,一定程度的扩展了 PH电极的使用范围,但是对于土壤和栽培基质等非均相体系的PH原位测量,如何让电极快速吸附土壤和栽培基质中的水分,进而吸附氢离子,并未提出切实有效的解决方案。

【发明内容】

[0005]针对现有技术无法对土壤和栽培基质等非均相体系的pH原位测量的不足,本发明提供了一种微纳织构化石墨烯基仿生PH传感器及其制备方法,通过让电极快速吸附土壤和栽培基质中的水分,进而吸附氢离子,实现对土壤和栽培基质等非均相体系的PH原位测量。
[0006]本发明是通过以下技术手段实现上述技术目的的。
[0007]—种微纳织构化石墨烯基仿生pH传感器,包括基板、槽A、槽B、工作电极、参比电极、铜触点A、铜触点B、内部引线A和内部引线B;所述基板上下表面分别开有槽A和槽B;所述工作电极位于槽A内,所述参比电极位于槽B内;所述工作电极底部一端通过铜触点A与内部引线A连接;所述参比电极顶部一端通过铜触点B与内部引线B连接;所述工作电极包括石墨烯基A和敏感电极材料层;所述敏感电极材料层位于石墨烯基A上层;所述参比电极包括石墨稀基B和金属材料银层;所述金属材料银层位于石墨稀基B下层;所述敏感电极材料层上表面和金属材料银层下表面均开有微凹槽或微凹坑。
[0008]优选的,所述微凹槽或微凹坑为纳米级,且表观接触角小于5°。
[0009]优选的,所述敏感电极材料层为主族金属或主族金属氧化物中的一种。
[0010]优选的,所述敏感电极材料层为Ru,Ir,Pd,Sb,Ti,Ta,Sn或其氧化物中的一种。
[0011 ] —种微纳织构化石墨烯基仿生pH传感器的制备方法,包括如下步骤:
[0012]S1:在基板的正反面开设槽A和槽B;在槽A的一端制作铜触点A,并与内部引线A连接;在槽B的一端制作铜触点B,并与内部引线B连接;
[0013]S2:在铜触点A的上表面和槽A沉积石墨烯膜制成石墨烯基A,在铜触点B的表面和槽B沉积石墨稀膜制成石墨稀基B ;在石墨稀基A上表面沉积敏感电极材料层,并在敏感电极材料层上表面加工出微凹槽或微凹坑,制备得到工作电极;
[0014]S3:在石墨烯基B下表面沉积金属材料银层,并在金属材料银层表面加工出微凹槽或微凹坑,随后利用FeCl3溶液对金属材料银层下表面进行氯化处理;将氧化石墨烯粉末分散到去离子水中,超声分散得到氧化石墨烯修饰膜,用移液器取出滴涂于金属材料银层下表面,室温下风干,制得参比电极;进而制备得到微纳织构化石墨烯基仿生PH传感器。
[0015]优选的,步骤S2中所述石墨烯膜的制备方法为微机械剥离转移法,石墨烯膜的厚度为5?10nm。
[0016]优选的,步骤S2中敏感电极材料层和步骤S3中金属材料银层的沉积方式可以是电化学沉积、物理气相沉积、化学气相沉积其中的一种。
[0017]优选的,步骤S2和步骤S3中加工出微凹槽或微凹坑的方法可以为飞秒激光加工、等离子刻蚀、电化学腐蚀或酸碱腐蚀中的一种或几种。
[0018]优选的,步骤S3中氧化石墨稀修饰膜的制备方法为溶胶凝胶法,氧化石墨稀修饰膜厚度为10_20nmo
[0019]本发明的有益效果:
[0020](I)本发明所述的一种微纳织构化石墨烯基仿生pH传感器的制备方法,通过在敏感电极材料层和金属材料银层表面制备出织构化的微凹槽或微凹坑结构,表现出超亲水特性,在有一定含水量的土壤栽培基质等环境下能够快速吸附氢离子,对于土壤和栽培基质等PH测量,实质是检测土壤基质等中的氢离子的浓度,因而能够实现快速测量,减少响应时间;同时纳米级超亲水织构表面还具有自清洁仿生作用。
[0021](2)本发明通过以石墨烯作为基底材料,导电性大大增强,进一步减少了响应时间;在制备参比电极时,以氧化石墨作表面修饰,能够隔绝外部干扰,同时达到电子传导的目的。
[0022](3)本发明将工作电极和参比电极放置在基板所开槽中,减小pH传感器的磨损,提高其使用寿命。
【附图说明】
[0023]图1为微纳织构化石墨烯基仿生pH传感器的基板结构示意图。
[0024]图2为微纳织构化石墨烯基仿生pH传感器的结构示意图。
[0025]附图标记说明如下:
[0026]1-基板,2-槽A,3-槽B,4_工作电极,5_参比电极,6_铜触点A,7-铜触点B,8_内部引线A,9-内部引线B,401-石墨烯基A,402-敏感电极材料层,501-石墨烯基B,502-金属材料银层。
【具体实施方式】
[0027]下面结合附图以及具体实施例对本发明作进一步的说明,但本发明的保护范围并不限于此。
[0028]实施例1
[0029]S1:如图1所示,在基板I正反面分别开设槽A2和槽B3,在槽A2的一端制作铜触点A6,并与内部引线A8连接;在槽B3的一端制作铜触点B7,并与内部引线B9连接;
[0030]S2:在槽A2和铜触点A6的表面通过微机械剥离转移法沉积石墨烯膜制成石墨烯基A401,石墨稀膜的厚度为5nm;在槽B3和铜触点B7的表面通过微机械剥离法沉积石墨稀膜制成石墨烯基B501;在石墨烯基A401上表面通过磁控溅射法沉积金属锑层,溅射条件:真空度为3 X 10—4Pa,工作气压IPa,溅射功率50W,保护气氩气,流量60sccm,溅射时间40min;利用飞秒激光加工设备在金属锑层上表面加工出微凹坑,孔深?80nm,孔径?2m,制备得到工作电极4;
[0031 ] S3:在石墨稀基B501下表面通过磁控派射法沉积金属材料银层502,派射条件:真空度为3 X 10—4Pa,工作气压IPa,溅射功率20W,保护气氩气,流量30sccm,溅射时间30min,室温;利用飞秒激光加工设备在金属材料银层502表面加工出微凹坑,孔深?80nm,孔径?2μm;随后用浓度0.05mol/L FeCl3溶液对金属材料银层502表面进行30s的氯化处理,使表面生成氯化银颗粒;将氧化石墨烯粉末分散到去离子水中,经过Ih超声分散得到氧化石墨烯修饰膜,氧化石墨烯修饰膜厚度为1nm;用移液器取50yL滴涂于参比电极表面,室温下风干,制得参比电极5;进而制备得到微纳织构化石墨烯基仿生pH传感器,见图2。
[0032]实施例2
[0033]S1:如图1所示,在基板I正反面分别开设槽A2和槽B3,在槽A2的一端制作铜触点A6,并与内部引线A8连接;在槽B3的一端制作铜触点B7,并与内部引线B9连接;
[0034]S2:在槽A2和铜触点A6的表面通过微机械剥离转移法沉积石墨烯膜制成石墨烯基A401,石墨稀膜的厚度为1nm;在槽B3和铜触点B7的表面通过微机械剥离法沉积石墨稀膜制成石墨烯基B501;在石墨烯基A401上表面通过磁控溅射法沉积氧化钌层,溅射条件:真空度为3 X 10—4Pa,工作气压IPa,溅射功率100W,工作气体Ar: O2 = 9:1,流量45ccm,溅射时间90min,室温;利用飞秒激光加工设备在氧化钌层上表面加工出微凹坑,孔深?80nm,孔径?2μπι,制备得到工作电极4;
[0035]S3:在石墨烯基Β501下表面通过磁控溅射法沉积金属材料银层502,溅射条件:真空度为3 X 10—4Pa,工作气压IPa,溅射功率20W,保护气氩气,流量30sccm,溅射时间30min,室温;利用飞秒激光加工设备在金属材料银层502表面加工出微凹坑,孔深?80nm,孔径?2μm;随后用浓度0.05mol/L FeCl3溶液对金属材料银层502表面进行30s的氯化处理,使表面生成氯化银颗粒;将氧化石墨烯粉末分散到去离子水中,经过Ih超声分散得到氧化石墨烯修饰膜,氧化石墨烯修饰膜厚度为20nm;用移液器取50yL滴涂于参比电极表面,室温下风干,制得参比电极5;进而制备得到微纳织构化石墨烯基仿生pH传感器,见图2。
[0036]所述实施例为本发明的优选的实施方式,但本发明并不限于上述实施方式,在不背离本发明的实质内容的情况下,本领域技术人员能够做出的任何显而易见的改进、替换或变型均属于本发明的保护范围。
【主权项】
1.一种微纳织构化石墨烯基仿生pH传感器,其特征在于,包括基板(I)、槽A(2)、槽B(3)、工作电极(4)、参比电极(5)、铜触点A(6)、铜触点B(7)、内部引线A(8)和内部引线B(9);所述基板(I)上下表面分别开有槽A(2)和槽B(3);所述工作电极(4)位于槽A(2)内,所述参比电极(5)位于槽B(3)内;所述工作电极(4)底部一端通过铜触点A(6)与内部引线A(S)连接;所述参比电极(5)顶部一端通过铜触点B(7)与内部引线B(9)连接;所述工作电极(4)包括石墨烯基A(401)和敏感电极材料层(402);所述敏感电极材料层(402)位于石墨烯基A(401)上层;所述参比电极(5)包括石墨烯基B(501)和金属材料银层(502);所述金属材料银层(502)位于石墨烯基B(501)下层;所述敏感电极材料层(402)上表面和金属材料银层(502)下表面均开有微凹槽或微凹坑。2.根据权利要求1所述的一种微纳织构化石墨烯基仿生pH传感器,其特征在于,所述微凹槽或微凹坑为纳米级,且表观接触角小于5°。3.根据权利要求1或2所述的一种微纳织构化石墨烯基仿生pH传感器,其特征在于,所述敏感电极材料层(402)为主族金属或主族金属氧化物中的一种。4.根据权利要求3所述的一种微纳织构化石墨烯基仿生pH传感器,其特征在于,所述敏感电极材料层(402)为Ru,Ir,Pd,Sb,Ti,Ta,Sn或其氧化物中的一种。5.一种微纳织构化石墨稀基仿生pH传感器的制备方法,其特征在于,包括如下步骤: S1:在基板(I)的正反面开设槽A(2)和槽B(3);在槽A(2)的一端制作铜触点A(6),并与内部引线A(8)连接;在槽B(3)的一端制作铜触点B(7),并与内部引线B(9)连接; S2:在铜触点A(6)的上表面和槽A(2)沉积石墨烯膜制成石墨烯基A(401),在铜触点B(7)的表面和槽B (3)沉积石墨烯膜制成石墨烯基B (501);在石墨烯基A( 401)上表面沉积敏感电极材料层(402),并在敏感电极材料层(402)上表面加工出微凹槽或微凹坑,制备得到工作电极(4); S3:在石墨烯基B (501)下表面沉积金属材料银层(502),并在金属材料银层(502)表面加工出微凹槽或微凹坑,随后利用FeCl3溶液对金属材料银层(502)下表面进行氯化处理;将氧化石墨烯粉末分散到去离子水中,超声分散得到氧化石墨烯修饰膜,用移液器取出滴涂于金属材料银层(502)下表面,室温下风干,制得参比电极(5);进而制备得到微纳织构化石墨稀基仿生pH传感器。6.根据权利要求5所述的一种微纳织构化石墨烯基仿生pH传感器的制备方法,其特征在于,步骤S2中所述石墨烯膜的制备方法为微机械剥离转移法,石墨烯膜的厚度为5?1nm07.根据权利要求5所述的一种微纳织构化石墨烯基仿生pH传感器的制备方法,其特征在于,步骤S2中敏感电极材料层(402)和步骤S3中金属材料银层(502)的沉积方式可以是电化学沉积、物理气相沉积、化学气相沉积其中的一种。8.根据权利要求5所述的一种微纳织构化石墨烯基仿生pH传感器的制备方法,其特征在于,步骤S2和步骤S3中加工出微凹槽或微凹坑的方法可以为飞秒激光加工、等离子刻蚀、电化学腐蚀或酸碱腐蚀中的一种或几种。9.根据权利要求5所述的一种微纳织构化石墨烯基仿生pH传感器的制备方法,其特征在于,步骤S3中氧化石墨烯修饰膜的制备方法为溶胶凝胶法,氧化石墨烯修饰膜厚度为10?20nmo
【文档编号】G01N27/30GK105842313SQ201610301183
【公开日】2016年8月10日
【申请日】2016年5月9日
【发明人】徐坤, 张西良, 崔守娟, 耿妙妙, 李萍萍, 张世庆
【申请人】江苏大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1