用于双面dimm放置的可互换连接阵列的制作方法

文档序号:6784005阅读:208来源:国知局
专利名称:用于双面dimm放置的可互换连接阵列的制作方法
背景当前,诸如双列直插存储器模块(DIMM)的存储器封装(package)可以驻留在印刷电路板(PCB)或其他基底(substrate)的两面上。这为系统增加存储器密度。用于存储器的信号可以路由通过可以具有几层的基底。当在基底的两面上都有存储器封装时,信号路由和完整性可能成为问题。
被路由通过基底的信号可以连接到封装的相对面上的球或到DIMM的连接。例如,到基底的一个面上的封装的最近侧的信号一般将无需必须到所述基底的另一个面上的封装的最远侧。用于封装的另一个面的DIMM被“颠倒”以将它安装在另一个面上,导致来自信号源的相关连接处于封装的另一个面上。
附图简要说明通过参照附图阅读公开,本发明的实施方案可以被最好地理解,其中

图1示出双面双列直插存储器模块安装的现有技术实施方案。
图2示出双面双列直插存储器模块安装的实施方案。
图3示出基底上存储器封装的可替换的排列。
图4示出使用双面存储器模块的存储器系统的实施方案。
图5a和5b示出堆叠存储器模块的可替换的实施方案。
图6示出用于具有互换性的双列直插存储器模块的实施方案的连接表。
图7示出用于双列直插存储器模块的可替换实施方案的连接表。
图8示出用于双列直插存储器模块的另一可替换实施方案的连接表。
图9示出设计双列直插存储器模块的方法的实施方案的框图。
具体实施例方式
图1示出基底上的双面双列直插存储器模块(DIMM)安装的现有技术实施方案。双面是指存储器模块被安装在基底的相对面上。基底10可以是多层PCB,或者其上安装多个DIMM的任意其他基底。存储器模块12a和12b相对于对方被安装在基底的相对面上,存储器模块14a和14b也如此。基底10具有内部布线的信号迹线(trace)16a和16b。通过通路(via)13的短线(stub)18允许源自模块12a的焊球或其他连接被连接到第一信号迹线16a。
通路13以比信号迹线大的节距(pitch)被制造以承担特大的宽度,并且几个通路的使用可以限制迹线的数量,所述迹线可以被布线通过基底10的单个层。这可以引起附加的层和额外的成本。另外,为了避免信号短路进基底10的内部电源和接地平层,通常在电源层中使用反面焊盘,所述反面焊盘的使用妨碍模块内存储器的功率传输。
双数据率存储器(DDR)既使用时钟信号的上升沿又使用时钟信号的下降沿来操作存储器,导致两倍于使用时钟信号的前沿(leading edge)或下降沿的存储器速度。DDR3为DDR的第三个版本。在DDR3中,以及其他存储器类型中,命令/地址总线为菊链式或“飞越(fly-by)”总线。这种类型的总线可能具有由不等布线长度而产生的信号完整性问题,所述不等布线长度由双面存储器安装引起。
如图1中所示,信号16a具有连接20与26之间的第一路由长度28a。第二路由长度在模块12b上的连接26与模块14a上的球30之间。第二路由长度28b远远小于第一路由长度。对于信号16b来说也发生相似的长度差异,其中第一路由长度为从连接22到连接24,并且第二路由长度为从模块12a上的连接24到模块14b上的连接32。必须注意虽然连接20、22、24、26、30、32、34和36在这里被示为焊球,但是它们可以是用于在集成电路管芯(die)和基底之间提供连接的任意类型的连接。
路由长度中的差异导致不一致的有效信道阻抗。这限制设备接收可识别信号的能力。典型地,系统被设计为具有被非常规律和均匀地间隔的负载,并且线被调整为匹配所述负载。如果没有匹配阻抗,则信号完整性变得不确定,并且不能支持更高的数据率。
在一个途径中,现有技术已尝试在管芯本身的半导体中完成布线。使用管芯中的逻辑“镜象反射”信号,连接被重定义为不同的信号。数据通道中所需要的逻辑在通道中引入延时,并在设备制造中引入开销(overhead)。
在存储器模块级互换各个连接的物理连接性是可能的,以在提供与镜象反射相同的益处的同时,避免在数据通道中引入逻辑。实施例在图2中被示出。
在本实施方案中路由长度已变得一致。使用在此,术语“一致的”并不意味它们精确地相同,虽然情况可能是这样的。使用在此,一致意味着信号通道中的阻抗在负载之间彼此紧密匹配。路由长度1现在为从连接20到连接30的长度,并且路由长度2为从连接30到未示出的下一个设备上用于同一信号的连接的长度。负载现在被更加一致地间隔,这允许设备以良好的信号完整性支持更高的数据率。
另外,在图2中示出的配置具有数量减少的通路。来自底面存储器模块12b和14b的远侧的信号已移动到近侧的互换允许信号共享通路。减少通路的数量放松对迹线间隔的约束,允许更多的迹线被放置在给定层中。这又可以减少在基底中所需要的层的数量,减少成本,并且减轻电源面和接地面中的短路。
为了使这个途径实用,必须有一些信号可以在模块的两侧之间互换。为了允许对可互换信号的定义的更好理解,讨论通常如何在基底上布图(lay out)存储器模块是有帮助的。如图3中所示,存储器控制器38具有64字节(byte)的数据输出。基底10上的每个模块40a-40h为X8模块;每一个能接收8字节的存储器。
必须注意到在本发明的一个实施方案中,可以这样选择可互换的信号,即不同类型的封装的占地面积(footprint)可以被最优化。例如,如存储器模块40a中所示,数据线已被这样排列,即封装为X4/X8封装,数据线为用于X4存储器的DQ0-3,或者用于X8封装的DQ0-7。如果封装为X16封装,则所有数据线存在并且DQ0-15针对可互换性可用。同样地,当数据线在诸如DQ
和DQ[8:15]的字节“路(lane)”内互换时,如果可互换性被限制在诸如DQ
、DQ[4:7]、DQ[8:11]和DQ[12:15]的半字节内,则可互换信号对不同封装类型的适应性被增强。
可互换性实际上发生在控制器38处。DRAM和DIMM不具有关于数据上是什么、这个数据实际上是用于DQ1还是DQ15的“知识”。因此,这些信号是可互换的。如将要继续进一步讨论的,其他类型的信号已被标识为可互换。必须注意到当控制器的数据输出为64字节时,还有地址信号和基于等级的信号以菊链或“飞越”的方式从控制器被发送。沿总线传递信号,并且针对相关连接到这个总线之间的距离,路由长度被期望为一致。如图2中所示,从连接传送的信号的互换提供这种一致。
在大多数存储器布局中互换性是可能的。例如,图4中的存储器系统采用双面存储器基底。除了面向读者的面上的模块40a-40h外,诸如42a的模块处于背向读者的面上。一般使用诸如芯片选择(CS)信号的基于等级的信号来寻址被排列成这种系统的存储器模块。在这个特定实施方案中,地址和用于两种不同等级的基于等级的信号被示为出自控制器。基于等级的信号一般不可互换。
相似地,可以使用诸如在图5a和5b中示出的“堆叠”存储器模块实现可互换性。图5a示出一种堆叠存储器排列的实施例,其中两个存储器管芯44a与44b之间的连接处于内部,并且它们使用诸如球46的公共连接阵列。在图5b中,每个模块44a和44b具有它们自己的诸如焊球46a和46b的外部连接阵列。在这种排列中也可以采用可互换性。
模块一般以行和列的方式被排列为连接阵列。如将关于图6-8所讨论的,虽然三列是可能的,但是连接的排列被假定为至少有四列。这个假定基于15或16行乘9列的连接的典型DRAM布局。一般在中问3列中没有连接,在模块的任一“侧”保持3列。
在可互换信号的讨论中,几个不同的信号缩略词可能被使用。在下面的表格中包括这些缩略词以及它们的描述。


可互换信号一般包括字节“路”内的DQ信号,例如DQ
和DQ[8:15]。区段地址BA
可互换。可能BA[2:3]不存在,那么只有BA
可以是可互换的。诸如A[3:9]的行内的地址连接是可互换的。虽然未在本实施例中示出,VDD和VSS连接位置一般也可以到处移动以共享通路。
图6示出可以允许可互换信号的存储器模块布局的一般实施方案。如可以看到的,实施例为16×9的连接阵列。阵列已被排列为9列,其中任一侧上的外围两列51、52、58和59被标识为供可互换信号使用,并且中间两列53和56被标识为供非可互换信号使用。每一侧上的外围两列可互换,提供四个可互换列,或者每一侧上的仅外围一列可互换,提供仅两个可互换列。
连接16×9布局的更具体的实施方案在图7中被示出。在该实施例中,VDDQ和VSSQ已使它们的位置重定义以共享从正面到背面的通路。此外,A3与A4、A5与A6,以及A7与A8可以共享DIMM级的通路。这个特定布局具有更进一步的优点,即DIMM的每行只有4个信号,允许针对信号迹线的更好的迹线分离,进一步增强信号完整性。在列52、行J和L处为未来的使用保留的(RFU)连接可以用于sODT和sCS。相似地,在列58、行J的RFU可以用于sCKE,并且在列58、行D的RFU可以用于sZQ。
用这些规则的一些修改得到的15×9连接布局是可能的。如果2∶1定量的信号对接地模式可以达到,并且2个连接被移除,则可能达到有可互换连接的15×9连接布局。这种的实施方案在图8中被示出。在这个实施方案中,ODT信号已被移除,并且区段地址3(BA3)和地址15(A15)共享连接。在列52、行L的RFU连接变为BA0。
想到这些可能的布局,返回到图1和2是有帮助的。想象连接20和22对应于连接阵列的列1中的一个位置,并且连接24和26对应于列9中的一个位置。在图1中,这导致不均匀的路由长度和额外的通路。如果控制器要在列1与9之间互换信号,移动先前已在使用连接22的信号到列9,并且移动先前使用连接26的信号到列1,则图2中的结果将出现。连接22和26留在与之前相同的地方,已被路由到那些列的信号被互换,从而连接20与22,以及24与26可以被连接在一起。连接阵列的外围列之间的可互换信号的可用性允许用于双面DIMM或其他模块放置的连接布局的最优化。
对可互换信号的进一步调整和变化当然是可能的。例如,可互换信号还可以被应用到堆叠DRAM技术。另外,可以采用封装类型的变体。例如,可以使用X16封装以及X4/X8封装类型。
因此,虽然用于存储器模块中的可互换连接的方法和装置的特定实施方案已经被描述到这种程度,但是除了如在所附权利要求书中所阐述的这个范围以外,这种具体的参考并不想要被认为是对本发明的范围的限制。
权利要求
1.一种存储器模块,包括连接阵列,所述连接阵列被排列成行和列,从而有第一和第二外围列,并且所述第一和第二外围列中的连接可以互换。
2.如权利要求1所述的存储器模块,其中所述第一外围列为近侧列,并且所述第二外围列为远侧列。
3.如权利要求1所述的存储器模块,其中有第三和第四外围列,所述第三和第四外围列具有可互换的连接。
4.如权利要求1所述的存储器模块,所述存储器模块还包括从由X16和X4/X8组成的组中选择的封装。
5.一种存储器系统,包括第一存储器模块,所述第一存储器模块被安装在基底的第一面上,所述第一存储器模块包括连接阵列,所述连接阵列被排列成行和列,从而有第一和第二外围列,并且所述第一和第二外围列中的连接可以互换;第二存储器模块,所述第二存储器模块被安装在所述基底的第二面上,所述第二存储器模块包括连接阵列,所述连接阵列被排列成行和列,从而有第一和第二外围列,并且所述第一和第二外围列中的连接可以互换;存储器控制器,所述存储器控制器控制所述存储器模块的第一和第二外围列之间的信号的互换;所述基底中的信号迹线,其中所述第一和第二存储器模块的所述第一和第二外围列中的所述连接被排列,从而在所述迹线上路由的信号具有一致的路由长度。
6.如权利要求5所述的存储器系统,所述基底还包括多层印刷电路板。
7.如权利要求6所述的存储器系统,信号迹线还包括所述印刷电路板的多个层中的多条信号迹线。
8.如权利要求5所述的存储器系统,以从由X16和X4/X8组成的组中选择的封装形式封装所述存储器模块。
9.一种存储器设备,包括存储器阵列,所述存储器阵列具有被排列成行和列的存储器连接阵列;模块,所述模块接收所述存储器阵列;所述模块上的连接器,所述连接器具有被排列成行和列的连接器连接阵列,从而所述存储器连接和所述连接器连接可以互换。
10.如权利要求9所述的存储器设备,所述模块还包括双列直插存储器模块。
11.如权利要求10所述的存储器阵列,从由X16封装和X4/X8封装组成的组中选择所述模块。
12.一种设计存储器设备的方法,包括确定存储器信号的可互换集和存储器信号的固定集;在连接阵列的外围列中排列存储器信号的所述可互换集;以及在连接阵列的内部列中排列存储器信号的所述固定集。
13.如权利要求12所述的方法,确定存储器信号的可互换集的操作还包括将行内地址连接标识为可互换。
14.如权利要求12所述的方法,确定存储器信号的可互换集的操作还包括将区段地址连接标识为可互换。
15.如权利要求12所述的方法,在外围列中排列存储器信号的所述可互换集的操作还包括在所述连接阵列的每一侧上的两个外围列中排列存储器信号的所述可互换集。
16.如权利要求12所述的方法,在外围列中排列存储器信号的所述可互换集的操作还包括在所述连接阵列的每一侧上的一个外围列中排列存储器信号的所述可互换集。
全文摘要
存储器模块具有连接阵列。连接阵列被排列成行和列,从而有第一和第二外围列。第一和第二外围列中的连接可以互换以使基底上的双面模块放置最优化。
文档编号G11C5/00GK1926632SQ200580006652
公开日2007年3月7日 申请日期2005年2月14日 优先权日2004年3月2日
发明者约翰·斯普瑞茨玛, 卡尔吉特·贝恩斯, 迈克尔·莱迪治 申请人:英特尔公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1