电介质瓷器及叠层陶瓷电容器以及它们的制造方法

文档序号:6855915阅读:194来源:国知局
专利名称:电介质瓷器及叠层陶瓷电容器以及它们的制造方法
技术领域
本发明涉及电介质瓷器及使用了它的叠层陶瓷电容器以及它们的制造方法。
背景技术
近年来,随着携带电话和移动机器的普及、作为个人电脑等的主要部件的半导体器件的高速高频化,对于搭载于此种电子机器中的叠层陶瓷电容器的小型、高容量化的要求逐渐提高。
为了响应此种要求,在叠层陶瓷电容器(MLC)中,通过将电介质层薄层化来提高静电容量,并且增大叠层数,来实现小型、高容量化。由此构成叠层陶瓷电容器的电介质层为了响应电介质层的所述的薄层化及高叠层化的要求,对于构成电介质瓷器的电介质粉末实现了微粒化和介电常数的提高(例如特开2004-210636号公报)。
根据所述公报,记载有如下的情况,即,例如作为电介质粉末的代表例的钛酸钡是通过将氢氧化钡水溶液和烷氧基Ti溶液混合,在其混合容器内老化给定时间后,脱水、干燥,而获得微粒状态的钛酸钡。
但是,利用所述的液相法得到的钛酸钡粉末的混合、老化后的干燥为110℃、3小时的条件,由于只简单地采用将混合液中所含的水分除去的条件,因此在所得的钛酸钡粉末中,就会存在有很多的结晶水、氢氧化物之类的杂质。由此,所得的钛酸钡粉末虽然被制成平均粒径小至0.05μm(50nm),但是晶格常数将大于由原来单晶中导出的值(a=0.4032nm,V=0.065548nm3),在晶体构造上立方晶将成为主体。所以,使用所得的电介质粉末制作的电介质瓷器就有介电常数低这样的问题。
另外,另一方面,为了形成与薄层化对应的平坦的电介质层,并且为了抑制由薄层化造成的对叠层陶瓷电容器的施加电场的增大导致的可靠性降低,进行了粒子的微小化。例如,在特开2003-309036号公报中记载有如下的情况,即,当将电介质层的厚度设为t,将玻璃粒子的最大粒径设为D时,通过按照满足D/t≤0.5的关系的方式形成电介质层,就可以具有高绝缘性,提高高温负载实验的可靠性。另外,在特开2003-40671号公报中记载有如下的情况,即,为了在电介质层的薄层化的同时,抑制施加DC偏压时产生的介电常数的降低,使用平均粒径为0.4μm的钛酸钡粉末。
而且,在所述的叠层陶瓷电容器的电介质材料中主要被使用的钛酸钡例如根据Ferroelectrics,1998,Vols.206-207,pp337-353M.H.FREY,Z.XU,P.HAN and D.A.PAYNE,为具有钙钛矿型的晶体构造的物质,已知介电常数可以显示除大约4800这样极高的介电常数。
但是,在叠层陶瓷电容器的制造中,为了实现电介质层的薄层化,例如当使用所述特开2003-309036号公报中所记载的那样的微粒钛酸钡粉末时,则在通常所进行的大气压下的烧成中会伴随着异常的微粒生长。由此,构成电介质层的晶粒就不会成为均匀的粒径,在局部存在粒子长大了的较大的晶粒。具有此种晶粒的叠层陶瓷电容器中,有介电常数的温度特性变大,绝缘性降低,特别是高温负载实验中的可靠性降低这样的问题。

发明内容
本发明的主要目的在于,获得由即使微粒化介电常数也很高的晶粒构成的电介质瓷器。
本发明的其他的目的在于,获得即使将电介质层的厚度减薄也具有高介电常数和稳定的温度特性以及绝缘性,并且具有高可靠性的叠层陶瓷电容器。
本发明的电介质瓷器含有平均粒径为0.2μm以下、优选0.15μm以下、并且以钛酸钡为主成分的晶粒,所述晶粒的以由该晶粒的X射线衍射图谱求得的晶格常数(a、b、c)的积表示的每个单位晶格的体积V在0.0643nm3以下。这样,本发明的电介质瓷器就可以获得高介电常数。
此种电介质瓷器的制造方法具备(a)利用草酸法、溶胶-凝胶法、水热合成法等当中的任意一种液相法获得平均粒径为0.1μm以下的电介质坯料粉末的工序、(b)对该电介质坯料粉末在大气压下,在温度300~500℃的气氛中,使用沸石类干燥剂进行干燥热处理得到电介质粉末的工序、(c)使用该电介质粉末制成给定形状的成形体,将该成形体烧成的工序。
本发明的第1叠层陶瓷电容器具备将由所述的电介质瓷器构成的电介质层、内部电极层交互地层叠而成的电容器主体。
本发明的第2叠层陶瓷电容器具备将晶粒被夹隔晶界层烧结的电介质层、内部电极层交互地层叠而成的电容器主体,(a)构成所述电介质层的晶粒的平均粒径在0.2μm以下,(b)所述晶粒的主成分为钛酸钡,(c)以由所述电介质层的X射线衍射图谱求得的晶格常数(a、b、c)的积表示的每个单位晶格的体积Vbulk、以由将所述电介质层粉碎而得的晶粒的X射线衍射图谱求得的晶格常数(a、b、c)的积表示的每个单位晶格的体积Vpowder满足Vbulk/Vpowder≥1.005的关系。
这样,就可以获得即使将电介质层的厚度制得极薄也具有高介电常数和优良的温度特性以及绝缘性并且可靠性高的叠层陶瓷电容器。
本发明的叠层陶瓷电容器是将电容器主体成形体烧成而制造的,该电容器主体成形体是含有以钛酸钡为主成分的电介质粉末和玻璃粉末的混合粉末的生片、和内部电极图案交互地层叠而构成的。在此种叠层陶瓷电容器的制造方法中,所述第2叠层陶瓷电容器可以通过采用(a)所述电介质粉末的平均粒径在0.2μm以下,(b)玻璃粉末的软化点在650℃以上,热膨胀系数在9.5×10-6/℃以下的条件而容易地制造。


图1是本发明的叠层陶瓷电容器的纵剖面图。
图2是表示对使用了交流阻抗测定的电介质层中的晶界的电阻进行评价的方法的示意图。
图3(a)是表示对使用了交流阻抗测定的电介质层中的晶界的电阻进行评价后的结果的一个例子的图表,图3(b)是表示用于解析电介质层中的晶界的电阻的等价电路的电路图。
图4是表示本发明的叠层陶瓷电容器的制造方法的工序图。
具体实施例方式
(电介质瓷器)本发明的电介质瓷器的以钛酸钡为主成分的晶粒的平均粒径在0.2μm以下,优选0.15μm以下,并且以由所述晶粒的X射线衍射图谱求得的晶格常数(a、b、c)的积表示的每个单位晶格的体积V在0.0643nm3以下。
这里,从形成钙钛矿型晶体构造这一点考虑,体积V优选0.062nm3以上。以所述的晶格常数(a、b、c)的积表示的每个单位晶格的体积V更优选0.063~0.064nm3的范围。
从获得高介电常数这一点考虑,晶粒的平均粒径更优选0.03μm以上。另外,本发明的电介质瓷器的瓷器密度达到5.8~5.9g/cm3。而且,在晶粒中立方晶和正方晶共存,由此晶格常数的c/a为1.005~1.01,从高介电常数化这一点考虑,特别优选1.006~1.009。
在晶粒的平均粒径大于0.2μm,特别是在大于0.15μm的情况下,叠层陶瓷电容器的电介质层的每单位厚度的晶界数变少,无法获得高绝缘性。另外,当以晶格常数(a、b、c)的积表示的每个单位晶格的体积V大于0.0643nm3时,则介电常数降低。
另外,本发明的电介质瓷器中,由如下的峰位置的偏移求得的应力,以绝对值表示在1MPa以上的结果,从高介电常数化这一点上考虑是理想的,即,该峰位置的偏移,是由电介质瓷器表面的X射线衍射得到的衍射图谱的与钛酸钡单晶的X射线衍射图谱的比较中的峰位置的偏移。特别是,如果叠层陶瓷电容器中叠层数在100层以上,则附加例如由于与以镍为主成分的内部电极层的热膨胀系数差而作用到电介质层的压缩应力,应力以绝对值表示更优选5MPa以上。
(电介质瓷器的制造方法)下面,对本发明的电介质瓷器的制造方法进行说明。首先,利用草酸法、溶胶-凝胶法、水热合成法等当中的任意一种液相法得到平均粒径在0.1μm以下的电介质坯料粉末。所述的方法当中,从单分散性高这一点考虑,特别优选溶胶-凝胶法。此时,作为Ba源使用Ba(OH)2,作为Ti源使用TiO2。Ba/Ti比从介电常数的提高及烧结性的方面考虑,优选0.995~1.005的范围。将Ba及Ti源混合得到的料浆在大气压、200℃的条件下进行预备干燥。
然后,将所得的电介质坯料粉末在大气压下,在温度300~500℃下,特别是在350~450℃的气氛中,使用沸石类干燥剂进行干燥热处理而得到电介质粉末。所得的电介质粉末的粒度的偏差(CV值)优选50%以下。
作为沸石类干燥剂优选分子筛、金属硅酸盐、cloverite等。特别是,从耐热性的方面考虑,更优选分子筛。另外,沸石类干燥剂的比表面积只要在400m2/g以上即可,特别是从干燥效率及耐久性的方面考虑,优选500~700m2/g。
相对于100质量份电介质坯料粉末的沸石类干燥剂的量优选5~20质量份。从维持沸石类干燥剂的比表面积的方面考虑,温度最好低于600℃,在高于该温度的情况下,沸石类干燥剂就会变质,比表面积变小。
然后,将所得的电介质粉末作为主成分使用,制成给定形状的成形体,烧成该成形体。成形是将所述电介质粉末与粘结剂一起成形,例如形成成为单片电容器的给定形状(例如圆板状)。
在形成叠层陶瓷电容器的情况下,将所述电介质粉末与粘结剂及溶剂一起混合得到料浆,然后利用刮刀法等薄片成形法,将该料浆制成例如厚度1μm的薄片状成形体。其后,在薄片状成形体上印刷导体图案,制成形成了导体图案的薄片,将这些薄片层叠多层而形成叠层成形体。然后,通过在导体图案的烧结温度附近的温度下烧成,得到叠层陶瓷电容器。
在利用液相法得到的电介质坯料粉末的平均粒径大于0.1μm的情况下,烧结后所得的晶粒的大小变大,绝缘电阻降低。另外,在电介质坯料粉末的干燥温度在300℃以下的情况下,就会干燥不足,在粉末中依然难以除去氢氧化物等来自液相法的杂质,难以引起晶粒生长。另一方面,在温度高于600℃的情况下,电介质坯料粉末的平均粒径变得过大,无法获得所需的大小的电介质粉末,无法获得薄层化了的生片。当压力低于大气压时,或者在高于大气压的情况下,在工业上就需要高成本的减压装置或加压装置,从而难以用低成本制造成为原料粉末的电介质粉末。
即,利用所述工序得到的电介质粉末与以往的简单地干燥的电介质粉末相比,是在粉末的表层或内部除去了杂质的状态。由此因缺陷变多,表层部分的晶格容易收缩而在粉末内部加载压缩应力,整体上晶格常数变小,由此每单位晶格的体积减少。
(叠层陶瓷电容器)以图1的概略剖面图为基础,对本发明的叠层陶瓷电容器进行详细说明。图1是表示本发明的叠层陶瓷电容器的概略剖面图。图1所示的局部放大图是表示构成电介质层的晶粒9和晶界层11的示意图。本发明的叠层陶瓷电容器在电容器主体1的两个端部形成有外部电极3。该外部电极3例如是烧粘Cu或Cu和Ni的合金糊状物而形成的。电容器主体1是将电介质层5和内部电极层7交互地层叠而构成的。电介质层5由晶粒9和晶界层11构成。
从使叠层陶瓷电容器小型高容量化的观点考虑,电介质层5的厚度优选在1.6μm以下。像这样在电介质层5的厚度较薄的情况下,形成由介电性的晶粒构成的构造的有效性提高。
另外,本发明中,为了实现静电容量的偏差及容量温度特性的稳定化,电介质层5的厚度偏差更优选在10%以内。
从即使高叠层化也可以抑制制造成本的观点考虑,内部电极层7优选镍(Ni)或铜(Cu)等贱金属,特别是从实现与本发明的电介质层5的同时烧成的观点考虑,更优选镍(Ni)。
构成所述电介质层5的晶粒9主要由钙铁矿型的钛酸钡晶粒构成。即,由于本发明的晶粒9以钛酸钡为主成分,因此如上所述,将会显示出高介电常数。此外,构成本发明的电介质层5的所述晶粒9在所述电介质层5中,由于具有高绝缘性及高温负载可靠性的理由,平均粒径在0.2μm以下是十分重要的。在平均粒径大于0.2μm的情况下,就无法获得高绝缘性及高温负载可靠性。而且,平均粒径以作为粒度分布中的以体积表示的加和累积值的D50表示。
另一方面,作为晶粒9的粒径的下限值,从提高电介质层5的介电常数,并且抑制介电常数的温度依赖性的理由考虑,优选0.05μm以上。
另外,所述晶粒9优选含有Mg、稀土类元素及Mn。该晶粒9中所含的Mg、稀土类元素及Mn的含有量优选相对于100质量份钛酸钡成分,Mg为0.04~0.3质量份,稀土类元素为0.5~2质量份及Mn为0.04~0.3质量份。这些Mg、稀土类元素及Mn由于来源于烧结助剂,因此这些元素虽然一部分固溶于晶粒9中,但是多数存在于晶界层11中。
即,在电介质层5中,Mg、稀土类元素是使晶粒成为芯壳构造的成分。另一方面,Mn可以补偿因还原气氛中的烧成而生成的晶粒9中的氧缺陷,可以提高绝缘性及高温负载寿命。
本发明的电介质层5中,稀土类元素以作为粒子表面的晶界层11为最高浓度,从晶粒9表面朝向粒子内部具有浓度梯度,该浓度梯度优选0.05原子%/nm以上。即,如果稀土类元素的浓度梯度为此种条件,则可以实现介电常数及高温负载寿命的提高,并且作为容量温度特性也可以满足X5R规格。作为本发明的稀土类元素,优选La、Ce、Pr、Nd、Sm、Gd、Tb、Dy、Ho、Y、Er、Tm、Yb、Lu、Sc当中的至少一种,从晶粒9的高介电常数化及高绝缘性化的观点考虑,特别优选Y。
电介质层5中,从可以较高地维持电介质层5的介电常数,并且提高加速实验的耐受性的理由考虑,电介质瓷器中所含的氧化铝的杂质量优选在1质量%以下。
如上所述,构成电介质层5的晶粒9在比粒子中心更靠粒子表面侧形成来源于烧结助剂的元素、特别是Mg及稀土类元素偏析了的芯壳型构造,其结果是,达到高介电常数,并且粒子表面侧具有高绝缘性这样的特性。本发明的电介质层的介电常数优选2000以上,特别优选2500以上。
另外,本发明的电介质层5中,以由X射线衍射图谱求得的晶格常数(a、b、c)的积表示的每个单位晶格的体积Vbulk、以由将所述电介质层粉碎而得的晶粒的X射线衍射图谱求得的晶格常数(a、b、c)的积表示的每个单位晶格的体积Vpowder满足Vbulk/Vpowder≥1.005的关系。该关系是由电介质瓷器中的晶粒9从晶界层11受到的残留应力造成的,在晶粒9和晶界层11的热膨胀系数差较大的情况下,介电常数将会变大。即,作为添加成分的玻璃粉末的热膨胀系数越小,则越有效果。另一方面,当Vbulk/Vpowder小于1.005时,则介电常数的提高被抑制。当求算所述Vbulk/Vpowder的关系时,X射线衍射图谱形成指数(hkl)都在1~4的范围的峰。例如h(100)、(200)、(400)。对于其他的k、l也相同。
另外,在构成所述的电介质层5的晶粒9中,当晶格常数比满足c/a≥1的关系时,则可以获得更高的介电常数。从提高电介质层5的介电常数的理由考虑,晶格常数比c/a特别优选1.005以上。
此外,本发明中,构成晶粒9的钛酸钡的钡的A位及钛的B位的摩尔比优选满足A位/B位≥1的关系,特别是从抑制晶体生长的理由考虑,优选满足A位/B位≥1.003的关系。通过将A位/B位如上所述地规定,就可以抑制晶粒9的晶粒生长,从而可以使介电常数的温度特性稳定化。
在本发明中,成为Vbulk/Vpowder≥1.005的关系是因为,本来晶粒9比晶界层11热膨胀系数大,因此在烧结体烧成后被冷却的状态下,晶粒9处于被晶界层11拉伸的状态。因而,如果该烧结体被粉碎,晶粒9从晶界层11的束缚中解放出来,则体积变大。
图2是表示对使用了交流阻抗测定的电介质层中的晶界的电阻进行评价的方法的示意图。图2中,20a为安装作为试样的叠层陶瓷电容器而进行温度控制的恒温槽,20b为对试样施加直流电压的HALT(加速寿命实验,Highly Accelerated Life Test)测定装置,20c为具有交流电源的阻抗测定装置。图3(a)为表示使用了交流阻抗测定的电介质层中的晶界的电阻评价结果的图表,图3(b)是表示用于解析的等价电路的电路图。
本发明中,将叠层陶瓷电容器放置于比构成电介质层5的钙钛矿型钛酸钡晶粒所显示的居里温度更高的温度、并且是所述叠层陶瓷电容器的额定电压的1/3以上的电压的高温负载气氛中。此外,在放置于该高温负载气氛中之前和之后,测定以相同的条件进行交流阻抗测定中的所述电介质层5中的晶界层11的电阻减少率。图3是本发明的叠层陶瓷电容器的晶粒9的芯(中心部)、壳(外周部)、晶界层及内部电极7和电介质层5的界面的阻抗变化的图表(call-call图)。该评价中,将电介质层5像图3(a)的等价电路那样,区分为芯(中心部)、壳(外周部)、晶界层11及内部电极层7和电介质层5的界面这4个成分。图表的横轴表示阻抗信号的实部,纵轴表示虚部。表示阻抗的变化的图表是利用加速寿命实验(HALT)前和后的差异及模拟形成的拟合。本发明中,特别着眼于晶界层11的电阻变化。其实部的变化率(负载时间期间的变化率),即电介质层中的晶界的电阻减少率优选0.5%/min以下。
该评价例如可以利用专用软件,分成所述4个成分而求得加速寿命实验(HALT)前后的图3的call-call图。这里,从高温负载处理前后的电介质层5中的离子的扩散或电子的移动变大而可以明显地看到晶界层11的电阻减少率的观点考虑,作为温度优选居里温度的1.5倍,作为电压优选额定电压的2/5V以上。
(叠层陶瓷电容器的制造方法)下面,对本发明的叠层陶瓷电容器的制造方法进行详细说明。图4是表示本发明的叠层陶瓷电容器的制造方法的工序图。
本发明的叠层陶瓷电容器例如是对如下的电容器主体成形体进行烧成而制造的,即,该电容器主体成形体是将含有以钛酸钡为主成分的电介质粉末和玻璃粉末的混合粉末的生片、与内部电极图案交互地层叠而构成的。此时,本发明中,最好电介质粉末的平均粒径在0.2μm以下,玻璃粉末的软化点在650℃以上,热膨胀系数在9.5×10-6/℃以下。
所述叠层陶瓷电容器的制造方法中,最好是电介质粉末为覆盖了Mg、稀土类元素及Mn的氧化物的粉末,当将钛酸钡电介质粉末中的钡位设为A,将钛位设为B时,以摩尔比表示满足A/B≥1,并且玻璃粉末的平均粒径在0.3μm以下。
以下将依照图4所示的各工序,对本发明的制造方法进行说明。
(a)工序首先,将以下所示的原料粉末与聚乙烯醇缩丁醛树脂等有机树脂、甲苯及乙醇等溶剂一起,使用球磨等进行混合,调制陶瓷料浆。然后,对所述陶瓷料浆使用刮刀法或金属型涂料机法等薄片成形法,在承载薄膜22上形成陶瓷生片21。从用于实现电介质层的高容量化的薄层化、维持高绝缘性的观点考虑,陶瓷生片21的厚度优选1~2μm。
作为本发明的制造方法中所使用的电介质粉末的钛酸钡粉末(BT粉末)是以BaTiO3表示的原料粉末。该BT粉末以作为其构成成分的A位(钡)和B位(钛)的摩尔比表示最好满足A/B≥1的关系,特别是从抑制烧成时的晶粒生长的观点考虑,A/B优选1.003以上。这些电介质粉末是利用从固相法、液相法(包括借助草酸盐生成的方法)、水热合成法等当中选择的合成法获得的。其中,根据所得的电介质粉末的粒度分布窄,结晶性高的理由,优选利用水热合成法获得的电介质粉末。
从使电介质层5的薄层化更容易的观点考虑,BT粉末的粒度分布在0.2μm以下是十分重要的,特别是从提高c/a比而提高介电常数,并且提高绝缘性的观点考虑,优选0.05μm~0.2μm。
另外,作为介电常数如此高的电介质粉末,其结晶性在使用X射线衍射进行评价时,例如表示正方晶的峰大于表示立方晶的峰,如果是此种粉末,则可以提高晶格常数比c/a。添加覆盖在所述电介质粉末上的成分相对于100质量份,分别优选Mg0.04~0.3质量份,稀土类元素0.5~2质量份,以及Mn0.04~0.3质量份。
添加于所述电介质粉末中的玻璃粉末的软化点最好在650℃以上。当软化点低于650℃时,则在烧成时就会长时间地产生玻璃的软化流动,容易发生钛酸钡的晶粒生长。根据以上理由,以及从抑制由玻璃成分自身的软化造成的凝聚,提高电介质瓷器中的分散性的观点考虑,特别优选690℃以上。
另外,本发明的玻璃粉末的热膨胀系数在室温~300℃下最好为9.5×10-6/℃以下。玻璃成分的热膨胀系数虽然在9.5×10-6/℃以下会显示出效果,但是在设为9×10-6/℃以下的情况下,介电常数提高效果十分明显。另外,在所述玻璃的软化点例如在700℃以上,以至高达800℃以上的玻璃的情况下,在晶粒9和晶界层11之间,在冷却过程中就会被施加更大的应力,并且在介电特性控制方面是有效的。
另一方面,当热膨胀系数大于9.5×10-6/℃(从室温到300℃的温度范围)时,与电介质粉末的热膨胀系数(12.5×10-6/℃)的差就变小,由此对于电介质晶粒的应力变小,介电常数降低。
从减小与钛酸钡粉末的粒径差,提高分散性的观点考虑,所述玻璃粉末的平均粒径优选0.3μm以下。
作为构成成分,优选以SiO2、BaO、CaO及B2O3为主成分,其组成优选SiO2=40~70摩尔%,BaO=5~40摩尔%,CaO=5~40摩尔%,以及B2O3=1~30摩尔%,从较高地维持软化点的观点考虑,优选不含有Li成分的材料。
另外,作为所述本发明的玻璃粉末,除了所述成分以外,作为满足所述软化点及热膨胀系数的玻璃粉末,也可以优选使用不含有Si成分的BaO=10~40摩尔%、CaO=10~40摩尔%,以及B2O3=30~60摩尔%的玻璃。从提高电介质瓷器的烧结性的观点考虑,玻璃粉末的添加量相对于100质量份作为BT粉末的电介质粉末,优选0.7~2质量份。
本发明的钛酸钡粉末如上所述,A/B优选1以上,特别优选1.003以上。此种粉末可以通过在钛酸钡粉末的表面粘合碳酸钡等粉末而形成。考虑到对晶粒生长的抑制,其量相对于100质量份BT粉末,优选0.1~1质量份。
(b)工序在所述(a)工序中获得的陶瓷生片21的主面上印刷形成矩形的内部电极图案23。成为内部电极图案23的导体糊状物,是以Ni、Cu或它们的合金粉末为主成分金属,向其中添加有机粘结剂、溶剂及分散剂而调制。作为金属粉末,从能够实现与所述电介质粉末的同时烧成,成本低的观点考虑,优选Ni。根据叠层陶瓷电容器的小型化以及减少由内部电极图案23造成的阶梯的理由,内部电极图案23的厚度优选1μm以下。
而且,根据本发明,为了消除陶瓷生片21上的由内部电极图案23造成的阶梯,最好在内部电极图案的周围,以与内部电极图案23实质上相同的厚度形成陶瓷图案25。从使同时烧成下的烧成收缩相同的观点考虑,构成陶瓷图案25的陶瓷成分优选使用所述电介质粉末。
(c)工序将形成了内部电极图案23的陶瓷生片21重叠所需片,在其上下重叠多片未形成内部电极图案23的陶瓷生片21,使得上下层达到相同片数,形成临时叠层体。临时叠层体中的内部电极图案沿长度方向逐个错开半个图案。根据此种层叠工艺,就可以在切割后的叠层体的端面上交互地露出内部电极图案23。
本发明中,除了如上所述,在陶瓷生片21的主面上预先形成内部电极图案23而层叠的工艺以外,还可以利用如下的工艺来形成,即,在使陶瓷生片21暂时与下层侧的基材密接后,印刷内部电极图案23,在使之干燥后,在该被印刷干燥了的内部电极图案23上,重叠未印刷内部电极图案23的陶瓷生片21,使之临时密接,将此种陶瓷生片21的密接和内部电极图案23的印刷逐次进行。
然后,通过对临时叠层体在高于所述临时层叠时的温度压力的高温、高压的条件下进行冲压,就可以形成将陶瓷生片21和内部电极图案23牢固地密接了的叠层体29。
然后,将叠层体29沿着切割线h,即,将形成于叠层体29中的陶瓷图案25的大致中央,分别沿相对于内部电极图案23的长边方向垂直的方向和平行的方向切断,使内部电极图案的端部露出地形成电容器主体成形体。图4(C-1)和(C-2),是分别沿相对于内部电极图案23的长边方向垂直的方向和平行的方向切断的断面图。另一方面,在内部电极图案23的宽度最大的部分,在侧边缘部侧该内部电极图案被以不露出的状态形成。
然后,对该电容器主体成形体在给定的气氛下、温度条件下烧成,形成电容器主体,也可以根据情况不同,进行该电容器主体的棱线部分的倒角处理,并且为了使从与电容器主体的相面对的端面露出的内部电极层露出,也可以进行滚磨。脱脂优选在直至500℃的温度范围,升温速度5~20℃/h,烧成温度优选在最高温度为1150~1300℃的范围中,从脱脂开始到最高温度的升温速度优选200~500℃/h,最高温度下的保持时间优选0.5~4小时,从最高温度到1000℃的降温速度优选200~500℃/h,气氛优选氢气-氮气中,烧成后的热处理(再氧化处理)最高温度优选900~1100℃,气氛优选氮气。
然后,在该电容器主体1的相面对的端部,涂布外部电极糊状物、进行烧粘,形成外部电极3。另外,为了提高安装性,在该外部电极3的表面形成镀膜。
所述的本发明的晶粒9一般来说在烧结时容易引起由原子扩散造成的晶粒生长,难以获得粒径微小的致密的烧结体。特别是,当所使用的原料粒子尺寸小于亚微细时,相对于粒子体积,表面积占据很大的比例,因表面能量大,在能量上就变为不稳定的状态。由此,在烧成之时,产生由原子扩散造成的晶粒生长,使得表面积变小,产生由表面能量降低造成的稳定化。所以,容易引起晶粒生长,难以获得由微小尺寸的粒子构成的致密烧结体。
具体来说,小于0.2μm的微小粒子尺寸的晶粒9的烧结体容易产生固溶·粒子生长,如果将抑制粒子间的原子移动的物质导入粒子间,则会形成由超过1μm的较大粒子尺寸构成的烧结体,从而难以获得由亚微细以下的微小粒子尺寸构成的致密的烧结体。然而,本发明中,与微小晶体原料一起,选择软化点更接近烧结温度的、热膨胀系数小于钛酸钡的添加成分,继而通过调整烧成条件,就可以获得反映了原料晶粒的尺寸的微小粒子烧结体。另外,当在钛酸钡中提高A位侧的元素比时,则因在粒子表面存在有较多的钡,因此通过这些钡向粒子表面扩散,形成液相,就会促进烧结,并且存在于晶界附近及晶界上,抑制作为母相的BT的晶粒9间的Ba、Ti或Mg、Mn、稀土类元素等添加原子的移动,抑制粒子生长。
其结果是,在晶粒9的表面形成除了钡以外还扩散固溶了Mg及稀土类元素的晶体相。即,形成Mg及稀土类元素在粒子表面偏析了的芯壳构造。而且,此种芯壳构造的形成可以通过用透过型电子显微镜观察这些晶粒9而确认。
实施例以下的实施例将说明本发明可以用何种方式实现。然而可以理解,这些实施例是用于说明的目的,而本发明并不限定于任何的特别的物质或条件。
实施例1对于本发明的电介质瓷器,确认了以由X射线衍射求得的晶格常数(a、b、c)的积表示的每个单位晶格的体积的效果。首先,准备了利用表1所示的溶胶-凝胶法、水热合成法、草酸盐法以及固相法得到的电介质坯料粉末。将这些粉末混合,使得Ba/Ti比达到1.005。
然后,在粉末的干燥中不使用沸石类干燥剂的情况下,对所述的粉末在大气压下,温度200℃的气氛的条件下,进行了预备干燥。
另一方面,当使用沸石类干燥剂时,将调制的电介质坯料粉末在大气压和400℃下,使用以氧化铝硅酸盐为主成分且比表面积为600m2/g的沸石类干燥剂,进行干燥热处理,得到了电介质粉末。沸石类干燥剂的相对于100质量份的电介质坯料粉末的量设为10质量份。
使用所述操作中所得的电介质粉末,制成直径15mm、厚度1mm的成形体,在温度900℃、压力107Pa的条件下进行热冲压,其后,在大气中、800℃下进行了氧化处理。
对于所得的电介质瓷器,使用扫描型电子显微镜测定了晶粒的平均粒径。每一个试样采取1000个测定点,作为平均值求得。平均粒径为0.1μm。
然后,对所得的试样进行X射线衍射的测定,算出了每单位晶格的体积V。衍射角度设为44~46°,求得晶格常数a、b、c,根据这些值求出了单位晶格的体积。另外,对于该X射线衍射峰,求出了与对钛酸钡单晶求得的相同衍射角度的X射线衍射峰的差,而求得了应力。本发明的试样的应力都为1.5MPa。另外,构成这里所制作的本发明的试样的电介质瓷器的晶粒,根据Rietveld分析,都是立方晶和正方晶共存。另外,晶格常数比c/a为1.008(试样No.6)、1.009(试样No.7)。对于用本发明以外的制造方法制作的试样的晶格常数比c/a为从1.003到1.007。
然后,为了形成电极,在对烧成了的电介质瓷器进行了研磨后,测定尺寸和重量,其后将Ga-In电极涂布在相面对的表面上。其后,使用LCR仪,对电介质瓷器的静电容量在频率1kHz、电压1V下测定1分钟,由试样的直径及厚度和其静电容量算出了介电常数。另外,对于介电常数的温度特性(TCC)也进行了评价。将结果表示在表1中。
表1

※本发明以外的试样从表1的结果可以清楚地看到,在调制电介质坯料粉末时,采用对电介质粉末使用沸石类干燥剂进行干燥热处理而得的电介质坯料粉末,进行烧成而得的电介质瓷器中,电介质坯料粉末的含水率为0.21、0.23%,所构成的晶粒的平均粒径达到0.2μm以下,并且以由X射线衍射图谱求得的晶格常数(a、b、c)的积表示的每个单位晶格的体积V达到0.064~0.0643nm3的范围,介电常数在1565以上,作为相对于以25℃为基准的介电常数的变化率的温度特性为1.22%、2.19%。
与之相反,利用以往的制造方法调制的电介质粉末的情况下,虽然电介质坯料粉末的含水率为0.44~0.56%,构成电介质瓷器的晶粒的平均粒径也可以达到0.2μm以下,但是以由X射线衍射图谱求得的晶格常数(a、b、c)的积表示的每个单位晶格的体积V大于0.0643nm3,介电常数低于1500,作为相对于以25℃为基准的介电常数的变化率的温度特性为-3.92~-10.98%,与本发明的试样相比,在绝对值上更大。
实施例2首先,为了确认玻璃的软化点和热膨胀系数的效果,将电介质粉末制成直径12mm、厚度1mm的药片状,将其烧成而进行了评价。将其结果作为电介质瓷器表示在表2及3中。将所使用的钛酸钡的平均粒径、A/B比、c/a比、添加量、烧成温度、玻璃组成表示在表2及3中。所使用的钛酸钡粉末使用了如下的材料,即,相对于100质量份钛酸钡粉末,将Mg、Y、Mn以氧化物换算,覆盖含有0.1、1、0.2质量份。玻璃粉末使用了如下的材料,即,其玻璃成分量相对于100质量份钛酸钡粉末含有1质量份。这里所使用的BT粉末的A/B位比为1.003及1.001。
玻璃粉末的软化点是将玻璃粉末制成药片状,使用TG-DTA测定。热膨胀系数是将玻璃粉末也制成药品状,使用热膨胀系数测定装置,在从室温到300℃的范围中进行了测定。
对所述粉末,使用氧化锆球,作为溶剂添加甲苯和乙醇的混合溶剂,进行了湿式混合。然后,向进行了湿式混合的粉末中,添加聚乙烯醇缩丁醛树脂及甲苯·乙醇的混合溶剂,同样地使用氧化锆球进行湿式混合,制成成形体而进行了比较。
然后,将本发明的叠层陶瓷电容器如下所示地制作。所使用的钛酸钡粉末及玻璃粉末使用了调制所述电介质瓷器的粉末。
对该混合粉末,使用直径5mm的氧化锆球,作为溶剂添加甲苯和乙醇的混合溶剂,进行了湿式混合。然后,向进行了湿式混合的粉末中添加聚乙烯醇缩丁醛树脂及甲苯·乙醇的混合溶剂,同样地使用氧化锆球进行湿式混合,调制陶瓷料浆,利用刮刀法制作了厚度2μm的陶瓷生片。然后,在该陶瓷生片的上面,形成多个以Ni为主成分的矩形的内部电极图案。
将印刷了内部电极图案的陶瓷生片层叠100片,在其上下面分别层叠未印刷内部电极图案的厚度5μm的陶瓷生片20片,使用冲压机,在温度60℃、压力107Pa、时间10分钟的条件下一起层叠,切割为给定的尺寸。
然后,将由所述粉末形成的成形体及叠层成形体以10℃/h的升温速度在大气中进行脱粘结剂处理直到500℃,从500℃开始的升温速度为300℃/h的升温速度,在氢气-氮气中,1140~1300℃下烧成2小时,接着以300℃/h的降温速度冷却至1000℃,在氮气气氛中,1000℃下进行4小时再氧化处理,以300℃/h的降温速度冷却,制作了电容器主体。该电容器主体的大小为2×1×1mm3,电介质层的厚度为1.5μm。
在对烧成了的电子部件主体进行了滚磨后,在电子部件主体的两个端部涂布含有Cu粉末和玻璃的外部电极糊状物,在850℃下进行烧粘,形成了外部电极。其后,使用电解滚光机,对该外部电极的表面,依次进行镀Ni及镀Sn,制作了叠层陶瓷电容器。该叠层陶瓷电容器的电介质层厚度为1.5μm。
对这些叠层陶瓷电容器进行了以下的评价。对构成本发明的电介质层的BT晶粒中的稀土类元素(Y)而言,以作为粒子表面的晶界层为最高浓度,从晶粒表面朝向粒子内部的浓度梯度为0.7原子%/nm以上。
单位晶格体积比率是将所制作的电容器主体收集30个,将全部的试样分为2份,集中定位在试样台上,使用X射线衍射装置进行了测定。然后,对于将该电容器主体按照使电介质层的粉碎物的平均粒径尽可能达到1μm以下的方式粉碎了的材料,同样地进行了测定。
静电容量及介电常数以及介电常数的温度特性是在频率1.0kHz、测定电压0.5Vrms的测定条件下进行的。介电常数由静电容量和内部电极层的有效面积、电介质层的厚度算出。构成电介质层的晶粒的平均粒径利用扫描型电子显微镜(SEM)求出。对研磨面进行蚀刻,任意地选择20个电子显微镜照片内的晶粒,利用截取法(intercept)求得各晶粒的最大直径,求得了它们的平均值(D50)。
作为晶界相的评价,使用所述交流阻抗法另外进行了测定。作为此时的高温负载条件,将温度设为250℃,施加在叠层陶瓷电容器的外部电极上的电压设为3V。测定时的电压为0.1V,频率为10mHz~10kHz之间,对30个试样评价了该处理前后的交流阻抗。
作为比较例,使用玻璃粉末的软化点低于650℃、热膨胀系数大于9.5×10-6/℃的材料,利用与所述相同的制造方法进行了制作。将结果表示在表2~5中。
表2

※表示本发明以外的试样。
15表3

※表示本发明以外的试样。
表4

※表示本发明以外的试样。
表5

※表示本发明以外的试样。
从表2~5的结果可以清楚地看到,在由使用本发明的制造方法中所规定的玻璃粉末形成的电介质材料制作的电介质瓷器中,单位晶格体积比率达到1.0059以上,介电常数在2010以上,介电常数的变化率为-19.8~+14.5%。另外,即使使用相同的玻璃粉末,当BT粉末的A/B比大时,则介电常数的温度特性变小,当c/a大时,则介电常数提高。
与之相反,对于本发明的制造方法中所规定的范围外的玻璃粉末的情况,单位晶格体积比率变为1.0039以下,介电常数低于2000,或介电常数的温度特性在低温侧很大,达到-21%以上。
另外,具备本发明的电介质层的叠层陶瓷电容器中,单位晶格体积比率达到1.0056以上,介电常数在3030以上,温度特性在-55℃显示为-12.4%以内,在85℃显示为6.7%以内,温度特性良好,交流阻抗的变化率在-0.43%/min以下。
与之相反,在具备使用玻璃粉末的软化点低于650℃、热膨胀系数大于9.5×10-6/℃的材料形成的电介质层的叠层陶瓷电容器中,单位晶格体积比率变为1.0048以下,介电常数低于本发明的电容器,另外介电常数的温度特性较大。
权利要求
1.一种电介质瓷器,其中,含有平均粒径为0.2μm以下并且以钛酸钡为主成分的晶粒,所述晶粒的、以由该晶粒的X射线衍射图谱求得的晶格常数(a、b、c)的积表示的每个单位晶格的体积V在0.0643nm3以下。
2.根据权利要求1所述的电介质瓷器,其中,晶粒的平均粒径在0.15μm以下。
3.根据权利要求1所述的电介质瓷器,其中,晶粒中立方晶和正方晶共存。
4.根据权利要求1所述的电介质瓷器,其中,晶格常数的c/a比为1.005~1.01。
5.根据权利要求1所述的电介质瓷器,其中,由如下的峰位置的偏移求得的应力,以绝对值表示在1MPa以上,即,该峰位置的偏移,是由电介质瓷器表面的X射线衍射得到的衍射图谱的与钛酸钡单晶的X射线衍射图谱的比较中的峰位置的偏移。
6.一种电介质瓷器的制造方法,包括(a)利用液相法获得平均粒径为0.1μm以下的电介质坯料粉末的工序、(b)对该电介质坯料粉末在大气压下、在温度300~500℃的气氛中,使用沸石类干燥剂进行干燥热处理而得到电介质粉末的工序、(c)使用该电介质粉末制成给定形状的成形体,将该成形体烧成的工序。
7.一种叠层陶瓷电容器,包括将由权利要求1所述的电介质瓷器构成的电介质层与内部电极层交互地层叠而成的电容器主体、形成于该电容器主体的两个端部的外部电极。
8.一种叠层陶瓷电容器,是包括多个晶粒被夹隔晶界层烧结的电介质层与内部电极层交互地层叠而成的电容器主体、形成于该电容器主体的两个端部的外部电极的叠层陶瓷电容器,其中,(a)构成所述电介质层的晶粒的平均粒径在0.2μm以下,(b)所述晶粒的主成分为钛酸钡,(c)以由所述电介质层的X射线衍射图谱求得的晶格常数(a、b、c)的积表示的每个单位晶格的体积(Vbulk)、以由将所述电介质层粉碎而得的晶粒的X射线衍射图谱求得的晶格常数(a、b、c)的积表示的每个单位晶格的体积(Vpowder)的比满足Vbulk/Vpowder≥1.005的关系。
9.根据权利要求8所述的叠层陶瓷电容器,其中,当将构成晶粒的钛酸钡的钡设为A位,将钛设为B位时,以摩尔比表示,满足A位/B位≥1的关系。
10.根据权利要求8所述的叠层陶瓷电容器,其中,电介质层的晶格常数比满足c/a≥1.005的关系。
11.根据权利要求8所述的叠层陶瓷电容器,其中,当将叠层陶瓷电容器暴露在由高于构成电介质层的钙钛矿型钛酸钡晶粒所显示的居里温度的温度、及所述叠层陶瓷电容器的额定电压的1/3以上的电压构成的高温负载气氛中时,在其前后的交流阻抗测定中的所述电介质层中的晶界的电阻减少率在0.5%/min.以下。
12.一种叠层陶瓷电容器的制造方法,是将如下的电容器主体成形体烧成的叠层陶瓷电容器的制造方法,该电容器主体成形体是将含有以钛酸钡为主成分的电介质粉末和玻璃粉末的混合粉末的生片与内部电极图案交互地层叠而构成的,其中(a)所述电介质粉末的平均粒径在0.2μm以下,(b)玻璃粉末的软化点在650℃以上、热膨胀系数在9.5×10-6/℃以下。
13.根据权利要求12所述的叠层陶瓷电容器的制造方法,其中,电介质粉末为覆盖了Mg、稀土类元素及Mn的氧化物的粉末。
14.根据权利要求12所述的叠层陶瓷电容器的制造方法,其中,当将钛酸钡电介质粉末的钡设为A位,将钛设为B位时,以摩尔比表示,满足A位/B位≥1的关系。
15.根据权利要求12所述的叠层陶瓷电容器的制造方法,其中,玻璃粉末的平均粒径在0.3μm以下。
全文摘要
本发明提供叠层陶瓷电容器及其制造方法。通过使以钛酸钡为主成分的晶粒的平均粒径在0.2μm以下、并且将以由所述晶粒的X射线衍射图谱求得的晶格常数(a、b、c)的积表示的每个单位晶格的体积V设为0.0643nm
文档编号H01G4/30GK1770341SQ200510118730
公开日2006年5月10日 申请日期2005年10月27日 优先权日2004年10月27日
发明者山崎洋一, 伊东裕见子, 神垣耕世, 松原圣 申请人:京瓷株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1