等离激元发光二极管的制作方法

文档序号:7210244阅读:130来源:国知局
专利名称:等离激元发光二极管的制作方法
等离激元发光二极管
背景技术
发光二极管(LED)能够将电能转换为光能用于照明和光学信号发送。通常,LED为半导体二极管,典型地包含p-i-n结。当LED被正偏时,来自该二极管的η型材料的电子电流与来自该二极管的P型材料的空穴组合。LED通常使用在电子导带和空穴价带之间创建合适的能量差的材料,因此电子和空穴的组合能够自发地发射光子。该能量差通常受限于可用的材料,但是除此之外可以进行调整或选择以产生期望频率的光。此外,LED可以使用具有不同能量导带的多层材料以创建量子势阱,这倾向于限制电子或空穴以及增强自发射率,从而改善光产生能量效率。LED中量子势阱的自发发射率不是该量子势阱的内在特性,而是取决于该量子势阱的电磁环境。等离激元(Plasmonic)LED可以通过将量子势阱靠近金属来利用这种现象, 该金属支持具有扩展到量子势阱中的电子-等离子体振荡的表面等离激元极化声子的形成。这些电子-等离子体振荡或等离激元经由珀塞尔效应(Purcell Effect)增加了量子势阱中电子-空穴对的复合率并且减少了驱动LED的电流中的改变和从LED发射的光中的相应改变之间的延迟。等离激元LED能够发射具有大约IOGHz或更快调制速度的光,而保持大约20%以上的辐射效率,其比VCSEL和其它半导体激光器的调制速度和效率要好。题为 “PLASMON enhanced light-emitting DIODES(等离激元增强发光二极管),,的国际申请号为US/2008/001319描述了一些在先的等离激元LED,其足够快以用于高数据率信号发送。在等离激元LED的制造中的一个问题在于可用的材料,其能够支持用于等离激元 LED的合适频率的表面等离激元。考虑到适合于LED的可用材料对发射光的频率上的限制, 银和金被发现具有与用于改善LED响应所需要的耦合的表面等离激元。不幸的是,银和金 (其必须靠近量子势阱以提供所需的增强)具有迁移或扩散到LED中所使用的半导体材料中的趋势,并且这种扩散会引起LED的迅速退化和短路。


图IA和IB示意性地图示使用可替换的阻挡结构来防止不需要的扩散但是允许与量子势阱进行等离激元相互作用的根据本发明的实施例的等离激元LED的横截面图;图2示出了根据本发明的另一个实施例的等离激元LED的更详细的横截面图;图3示出了根据本发明的另一个实施例的等离激元LED的横截面图;在不同的图中使用的相同附图标记代表类似或相同部件。
具体实施例方式根据本发明的一方面,等离激元LED可以包括在半导体结构和金属层(例如,银或金层)之间的阻挡物,该金属层支持在一定频率下的等离激元振荡,这增强LED性能。在一个实施例中,该阻挡物可以很薄(例如大约IOnm或更小)并且包括诸如氧化物的绝缘材料和诸如非扩散金属(例如钼)的导电材料的接触结构。相对薄并且大部分由介电材料制成的该阻挡物允许金属层的表面等离激元振荡以与LED中的量子势阱相互作用,但是该阻挡物仍能够阻挡诸如银或金等金属从增强层向半导体层进行扩散或穿刺。图案化的接触为欧姆接触用于将电流注入到LED中并且可以由诸如钼的非扩散金属制成。进一步地,可以图案化接触以改进光提取,并且接触区域可以被最小化以确保量子势阱和增强层之间的光-等离激元相互作用,而仍然保证良好的电流注入。在可替换的实施例中,该阻挡物可以甚至薄一些(例如大约2nm)并且由诸如钼的非扩散导电材料制成,其阻挡来自金属层的诸如银或金的金属的扩散或穿刺。尽管该阻挡金属可能对量子势阱中自发发射的增强具有弱的等离激元特性,但是足够薄的该阻挡物仍然允许金属层中所要求的表面等离激元与量子势阱的相互作用。图IA示出了根据本发明的实施例的等离激元LED100的横截面的示意表示。 LED100具有p-i-n结构,其大体上包括ρ型结构110、本征结构(intrinsic structure) 120 以及η型结构130。本征结构120通常是包括量子势阱的多层结构,其是当从η型结构130 注入的电子与从P型结构110注入的空穴相结合时由自发发射产生的光(例如,光子)的源。增强结构140包含材料层142,其支持具有增强来自量子势阱的自发发射率的一定频率的表面等离激元振荡。层142可以是覆盖层或者如果需要可以被图案化或粗糙化以改变层 142中的等离激元特性。通常,将增强结构140(尤其是层142,因为接触146可能具有弱的等离激元特性)放置得离量子势阱越近能获得更大的增强,使得等离激元振荡效应延伸到量子势阱。增强层142典型地需要离量子势阱小于大约50nm以在SOOnm左右的光子波长下的自发发射的显著增强。在产生更长波长的光的LED中这个间隔可能更大。在图IA中, 增强结构140与η型结构相邻,但是其中在ρ型结构110比η型结构130要薄的实施例中最好将其置于与P型结构110相邻。增强结构140中的层142可以由诸如纯的或合金化的银或金的金属制成,但是其它金属可能是合适的。金属原子从层142向半导体结构的扩散或穿刺是一个问题,尤其是因为层142需要靠近量子势阱来增强自发发射。例如,已经发现GaAs很容易溶解到金和金基合金中。这种溶解导致等量的镓(Ga)和砷(As)进入到金晶格中。砷已经被示出能够很容易地穿过金晶格并且能够从金的自由表面上蒸发。可能是这种材料的原子沿着晶界或其它这种瑕疵进入到金属化,但是扩散可以作为非常低浓度的高迁移间隙原子进入是可能的。这种现象在其它LED中使用的InGaP接触层也观察到了。为了防止从层142向邻近的半导体层中的扩散,LED100包括绝缘阻挡层144,其包含将层142和η型结构130电连接的图案化导电接触146。阻挡层144和图案化接触146 可以小于大约IOnm厚并且优选大约5nm。通常,阻挡层144和接触146可以尽可能薄,假若阻挡层144和接触146足以阻挡从层142中的扩散。LED100可以通过在跨越LED100的正偏方向上施加合适的电压进行工作。例如,对于图IA的p-i-n构造,具有正极性的电信号可以施加到LED100的层142上,而层110连接至基准电压或接地。电信号通常通过接触结构(图IA中未示出)施加到LED100上。在η 型结构110上的相对负电压可以认为是在本征结构120中朝向量子势阱驱动电子,而层142 上的相对正电压可以认为朝向量子势阱驱动空穴。量子势阱可以是由直接带隙的半导体材料制造,其具有比LED100的保留层的电子带隙小的电子带隙能。当所施加的电压差足够大使得将来自η型结构130的电子并且来自ρ型结构110的空穴注入到量子势阱中,量子势阱中的电子和空穴的组合导致的自发发射产生从LED100穿过ρ型结构110输出的光,该ρ型结构110与增强结构140相对。结构140所达到的增强可以通过将电子和空穴的组合处理为电子-空穴偶极子的衰变来理解。通常,衰变的偶极子的自发发射率不仅取决于偶极子的强度,而且也取决于偶极子的电磁环境。通过改变偶极子附近的电磁环境,可以调节(即,抑制或增强)偶极子的自发衰变率,其被称为“珀塞尔效应”。在本情况中,引入增强结构140(其支持与所需光频率耦合的等离激元振荡)增强电子-空穴偶极子衰变到所需的电磁模式或频率的速率。珀塞尔因子Fp量化增强并且由下式给出Fp =复杂环境下的自发发射率/体材料中的自发发射率其中复杂环境指具有相邻增强结构140的量子势阱,而体材料指不含增强结构 140的包围材料,诸如η型和ρ型结构130,110。珀塞尔因子越大,自发发射率越快。图IB表示了根据本发明的一个可替换实施例的使用具有阻挡层148的增强结构 145的LED150。LED150包括ρ型结构110、本征结构120、η型结构130和金属层142,其与图IA中LED100的相应结构相同。LED150与LED100的区别在于阻挡物148是一层非常薄 (小于5nm)的诸如钼的非扩散金属,其位于较厚金属(例如银或金)层142和底层半导体结构之间。阻挡层148对自发发射的增强可具有弱的等离激元特性,但是层148足够薄使得层148和142组合的表面等离激元增强与单层厚的层142的表面等离激元增强一样仍然有效。特别的,当Pt部分足够薄(例如小于5nm)时Pt/Au组合层仍可在增强自发发射上与单层Au层一样有效。进一步,如果阻挡层148为厚度为2-3nm的钼层,阻挡物148仍然能够防止在金属层142和底层半导体结构之间不想要的扩散。导电的阻挡层148还具有在层142和底层半导体结构之间提供低电阻连接的优点。图2示出了根据本发明的一个特殊实施例的LED200,其产生具有大约SOOnm波长的光。LED200包括砷化镓(GaAs)衬底250、衬底250上的多层η型结构130、η型结构130 上的多层本征结构120、本征结构120上的多层ρ型结构110以及ρ型结构110上的增强结构140。下面,LED200的描述提供了本发明的一个特殊实施例的细节。但是,如同本领域技术人员所理解的,关于特殊结构参数的细节,诸如材料、掺杂剂、掺杂浓度、层的数量、层的顺序以及层厚度,在不同的LED实施例中发生变化。在衬底250上沉积或生长的η型层130包括如图2所示实施例中的五层232、234、 235,236以及238。底层232为大约20nm厚的铟镓磷(InGaP)的η型层并且掺杂硅(Si)到大约2X IO18CnT3的浓度。接下来的三层234,235和236为铝(Al)、镓(Ga)、砷(As)的混合物。位于层232上的层234是大约300nm厚的Al.35fei. 65As并且掺杂硅到大约2 X IO18CnT3的浓度。位于层235上的层236是大约500nm厚的Al.65Ga 35As并且掺杂硅到大约5 X IO17cnT3 的浓度。位于层234和层236之间的层235是AlxGai_xAs混合物的缓变层,其中χ的范围从 0. 35至0. 65使得层235的组分从层234的组分平滑过渡到层236的组分。缓变层235大约15nm厚并且掺杂硅到大约2 X IO18CnT3的浓度。顶层η型层238是另一个大约15nm厚的 AlxGa1^xAs缓变层,其中χ范围从0. 65至0. 35使得层238从层236的组分平滑过渡到覆盖层222的组分。组分缓变的半导体层235和238具有随位置变化的电带隙并且能够通过改变在沉积工艺中所使用的成分的组分或比率来生成。该缓变层被用于通过最小化结的不连续性改善电流并从而降低半导体层之间的串联电阻。本征结构120包括三层222、225和228以创建量子势阱,其具有产生所需的大约SOOnm的波长的带隙结构。在所阐述的实施例中,底层222为未掺杂的或本征的Al.35Ga65As 混合物且有大约80nm的厚度,层225是大约IOnm厚的GaAs 885P 115混合物,并且层2 是另一未掺杂的Al.35fei 65As层但是大约IOnm厚。层222、225和228的带隙使得层225对应量子势阱。进一步的,量子势阱层225具有大约+0. 42%的拉伸应变,其由于层225的厚度以及量子势阱层225和层222和228的晶格常数的差别导致。在图2的实施例中,ρ型结构110包括三层212、214和216。层212具有与本征层 228相同的Al.35Ga 65As混合物但有大约40nm的厚度并且为碳掺杂浓度为大约IX 1018cm_3 的P型。层214为Al.fa 8As,其大约7nm厚并且掺杂诸如碳的掺杂剂到大约1 X 1018cm_3的浓度。层216为ρ型InGaP,其大约3nm厚并且掺杂锌到大约IX IO18CnT3的浓度。通常,为了最大化珀塞尔因子,P型结构110尽可能薄以最小化在覆盖增强结构140和本征结构120 中的量子势阱之间的间隔。增强结构140能够具有上面关于图IA所描述的大体上相同结构。特别的,增强结构140包括由诸如二氧化硅的绝缘材料或更优选为诸如二氧化钛的高折射率绝缘体组成的阻挡层144,该高折射率绝缘体与相邻半导体结构的折射率更相近匹配。阻挡层144优选为小于大约IOnm厚。接触146由诸如非扩散金属的导电材料组成并且具有带有开口的图案,其允许在层142和阻挡物144之间的界面上具有表面等离激元的量子势阱的光学模式的交互。接触146可由具有弱等离激元属性的材料制成以增强来自量子势阱的自发发射并且相应地可以阻挡接触146区域中所需要的等离激元交互作用。理想的,由接触146所占据的区域保持最小,因为接触146对表面等离激元增强贡献很小。因此,使接触更小可以改善自发发射的增强但是也可以增加对通过LED200驱动的电流的电阻。可以选择接触146 的区域来平衡用于增强自发发射和二极管电阻的问题。可替换的,增强结构140可以用图 IB中的增强结构145替换,其在金属层142和底层半导体结构之间提供低的电阻接触。图3图示了包括外部电极310和360的等离激元LED300。LED300包括ρ型结构 110和本征结构120,其可以为上述的类型。LED300的η型结构330可以包括图2的层234、 235、236和238。层232针对蚀刻穿过衬底250 (图幻以留出包围LED300的发光区域的区域350(图幻的工艺作为蚀刻停止层。电极360在衬底的保留区域350上并且可以由任何合适的组合物制成,并且例如可包括钛粘结层和金接触层。诸如铟锡氧化物的透明导体替换或附加地用于LED300的发光区域之上。LED300的增强结构包括层142,其材料诸如AgZn,或具有非常薄(< 5nm)Pt扩散阻挡物的Pt/AgZn,其能够支持具有强耦合到量子势阱中的自发发射产生的光子的表面等离激元。这层142可以通过诸如电子束(e-beam)沉积或溅射的标准技术来沉积。层142与接触310电性连接。在图3的实施例中阻挡层144和接触146位于层142和ρ型结构110 之间。LED300的有效区域可以用将氧注入到半导体结构的外部部分以创建包围通过其信道化驱动电流的活性区域的绝缘氧化物区域340来限定。可替换的,可以通过蚀刻穿过量子势阱至底层η型AKiaAs层形成台面结构。用于高数据率信号发送的LED300的有效区域典型具有大约10至50 μ m的宽度或直径,因为更大的区域倾向于增加电容并引起信号延迟。 同样可以沉积诸如聚酰亚胺之类材料的绝缘层320以更好限制驱动电流从电极310穿过至 LED300的有效区域。LED300可以通过向电极310施加正极性电信号来进行工作,该正极性电信号可以具有对数据传送的高频调制。接着,电流从电极310穿过层142和接触146流向ρ型结构 110,而ρ型结构110将空穴注入(例如清空电子价态)到本征结构120中。驱动电流还对应从电极360穿过区域350、层232和η型结构330流入到本征结构120中的电子,其中导电电子落入空的价态,引起光子的自发发射。层142中的等离激元振荡的可用性将自发发射增强到所需的电磁模式。 虽然已经参考特定实施例描述本发明,但是描述仅仅是本发明应用的一个例子而不应该作为其限制。所公开的实施例的特征的各种其它改变和组合在由下述权利要求限定的本发明的范围内。
权利要求
1.发光二极管,包括包含量子势阱的二极管结构;增强层,其支持在与由该量子势阱中的电子和空穴的组合产生的光子耦合的频率上的等离激元振荡;以及位于该增强层和该量子势阱之间的阻挡层,其中该阻挡层阻挡在该增强层和该二极管结构之间的扩散。
2.如权利要求1所述的发光二极管,其中该增强层包括从由银和金组成的组中选择的材料。
3.如权利要求1所述的发光二极管,其中该阻挡层包括绝缘层。
4.如权利要求3所述的发光二极管,其中该绝缘层包括二氧化钛。
5.如权利要求3所述的发光二极管,进一步包括穿过该阻挡层的图案化接触,该图案化接触是电导性的。
6.如权利要求5所述的发光二极管,其中该图案化接触包括非扩散金属。
7.如权利要求3所述的发光二极管,其中该绝缘层小于IOnm厚。
8.如权利要求1所述的发光二极管,其中该阻挡层包括小于5nm厚的非扩散金属层。
9.如权利要求1所述的发光二极管,其中该阻挡层包括钼层。
10.如权利要求9所述的发光二极管,其中该钼层为大约2nm和5nm之间的厚度。
11.如权利要求1所述的发光二极管,其中该二极管结构包括包含具有P型掺杂的多层的P型结构;包含多层未掺杂材料的本征结构;以及包含具有η型掺杂的多层的η型结构。
12.一种制造方法,包括制作包含量子势阱的二极管结构;在该二极管结构上沉积阻挡层;以及在该阻挡层上沉积增强层,其中该增强层支持与该量子势阱相互作用的等离激元以增加来自量子势阱中电子-空穴组合的自发发射率,其中该阻挡层阻挡在该增强层和该二极管结构之间的扩散。
13.如权利要求11的方法,其中沉积该阻挡层包括沉积小于大约IOnm厚的绝缘材料。
14.如权利要求13的方法,进一步包括形成穿过该阻挡层的接触,该接触形成该增强层和该二极管结构之间的电连接。
15.如权利要求11的方法,其中沉积该阻挡层包括沉积2nm到5nm之间厚度的钼。
全文摘要
发光二极管(100或150)包括包含量子势阱(120)的二极管结构、增强层(142)以及位于该增强层(142)和该量子势阱(120)之间的阻挡层(144或148)。该增强层(142)支持在与由该量子势阱(120)中电子和空穴的组合产生的光子耦合的频率上的等离激元振荡。该阻挡层用于阻挡该增强层(142)和该二极管结构之间的扩散。
文档编号H01L33/00GK102301498SQ200980155868
公开日2011年12月28日 申请日期2009年1月30日 优先权日2009年1月30日
发明者D·A·法塔尔, M·R·T·谭, M·菲奥伦蒂诺, S·王 申请人:惠普开发有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1