Led封装、led显示器及制造led封装的方法

文档序号:7242676阅读:272来源:国知局
Led封装、led显示器及制造led封装的方法
【专利摘要】本发明披露了LED封装和使用所述LED封装的LED显示器,所述LED封装布置成提供LED显示器中不同像素之间的良好对比度,同时不降低显示器的感知光通量或亮度。所述LED封装还布置成通过减少源自封装外部的光的反射而改进可见度。LED封装的一个实施例包括外壳,在外壳的腔体中具有LED芯片。可包括环绕所述LED芯片的反射区域,所述反射区域基本反射封装的光,在所述反射区域外部包括对比区域,所述对比区域具有与所述封装光形成对比的颜色。所述封装的面对观看者的表面的至少一部分是消光的以减少反射。根据本发明的LED显示器包括彼此相对地安装以产生消息或图像的多个LED封装,其中所述封装提供改进的像素对比度。
【专利说明】LED封装、LED显示器及制造LED封装的方法
【技术领域】
[0001]本发明涉及发光二极管(LED)封装和利用发光二极管封装作为其光源的显示器。【背景技术】
[0002]发光二极管(LED)是将电能转换为光的固态器件,其通常包含一个或更多夹在相反掺杂层之间的半导体材料的有源层。当跨越上述掺杂层施加偏压时,空穴和电子被注入有源层,在那里空穴和电子复合以产生光。光从有源层以及LED的所有表面被发射。
[0003]在最近十年或更长时期内,科技进步已使得LED具有更小的占用空间(footprint)、提高的发射效率以及降低的成本。相比于其它发射器,LED也具有延长的工作寿命。例如,LED的工作寿命可以超过50,000小时,而白炽灯泡的工作寿命大约为2,000小时。LED也能比其它光源更坚固耐用且消耗更少能量。由于这些以及其它原因,LED更为普及且目前在越来越多的白炽、荧光、卤素及其它发射器的传统领域应用中使用。
[0004]为了在传统应用中使用LED芯片,已知的是将LED芯片装入封装中以提供环境和/或机械保护、颜色选择、聚光等。LED封装也包括用于电连接LED封装至外部电路的电引线、接触或迹线。在图1所示的典型双引脚LED封装/部件10中,单个LED芯片12通过焊料接合或导电环氧树脂安装在反射杯13上。一个或更多接合线(wire bond) 11连接LED芯片12的欧姆接触至引线15A和/或15B,引线15A和/或15B可以附着到反射杯13或与反射杯13集成。反射杯13可以被密封材料16填充并且诸如磷光体的波长转换材料可以被包括在LED芯片上方中或者被包括在密封材料中。磷光体可以吸收LED发射的第一波长的光而自发地发射第二波长的光。于是,整个组件可以被装在透明保护树脂14中,其可以被模塑为透镜形状以引导或定形从LED芯片12发射的光。
[0005]图2所示的传统LED封装20可能更适合可产生更多热量的高功率操作。在LED封装20中,一个或更多LED芯片22安装到载体上,如印刷电路板(PCB)载体、基板或基台(submount)23。安装在基台23上的金属反射器24围绕LED芯片22并将LED芯片22发射的光反射离开封装20。反射器24还为LED芯片22提供机械保护。一个或更多线接合连接21制作在LED芯片22上的欧姆接触与基台23上的电迹线25A、25B之间。然后,用密封材料26覆盖安装的LED芯片22,其可以为芯片提供环境和机械保护,同时也充当透镜。典型地,通过焊料或环氧树脂接合,将金属反射器24附着至载体。
[0006]不同的LED封装,如图1和2示出的那些,不论大小,都可以作为广告牌和显示器的光源使用。在许多户内和户外场合,例如在体育场、赛马场、音乐会以及在大型公共区,如纽约城的泰晤士广场,大型屏幕基于LED的显示器(常称作巨屏)变得更普遍。这些显示器或屏幕中的一些可以是60英尺高且60英尺宽那样大。随着技术进步,期望开发更大的屏眷。
[0007]这些屏幕可以包括数千“像素”或“像素模块”,其每一个可以包含多个LED。像素模块可以使用高效率、高亮度LED,这些LED允许显示器从相对遥远处是可见的,即使是白天在日光的条件下。在一些广告牌中,每个像素可以具有单个LED芯片,而像素模块可以具有如3个或4个这样少的LED ( —个红光、一个绿光以及一个蓝光),这允许像素从红、绿和/或蓝光的结合中发射许多不同颜色的光。在最大的巨屏幕中,每个像素模块可以具有几十个LED。这些像素模块被设置为矩形网格。在一种类型的显示器中,该网格可以是640个模块宽以及480个模块高,且屏幕的尺寸取决于像素模块的实际尺寸。
[0008]传统的基于LED的显示器的一个重要方面是显示器中像素之间的对比度,对于好的图像质量,像素之间的对比度应该是最大化的。时常,增大像素之间的对比度可能导致像素中发射器的总发射强度降低,结果,LED显示器的总发射强度降低。
[0009]为了改善LED显示器的对比度,已经开发了 LED封装,这些封装具有环绕LED芯片的表面区域,其包含与从LED芯片发射的光形成对比的颜色。然而,这些封装仅用红光LED、绿光LED和蓝光LED作为它们的光源。通常认为,采用这种布置的LED封装发射的光可以包含LED芯片的光和转换材料的光(例如白光),且采用这种布置会导致发射的光的不可接受的亮度损失。所关注的是环绕LED芯片的对比表面区域会吸收封装光,因此,降低了封装以及利用这些封装的广告牌或显示器的总亮度。
[0010]诸如图1和图2中所示的传统的LED封装具有透明密封材料和覆盖LED芯片的透明反射杯,以使从LED封装发射出的光能够被有效地利用。本领域技术人员常规地将封装部件设计为透光的并且不吸收LED产生的或从外部源照射所述封装的任何光。然而,当用在LED显示器中时,传统LED封装中的透明密封材料、透明反射杯、以及周围对比材料可能反射过多的背景光。这些材料固化时可为光滑且镜面状的,导致环境光或周围光的反射。当观看包括传统LED封装的显示器时,如果显示器反射过多的背景光的话,消费者在观看所显示的内容方面就存在问题。例如,如果显示器反射大部分阳光的话,消费者会发现在太阳下很难阅读所显示的文本。因此,存在对于反射更少背景光的显示器和LED封装的需求。
[0011]显示器消费者更青睐具有低反射的高对比度显示器。另外,当显示器暴露于明亮的背景照明中时,消费者更青睐具有最小化反射的显示器。因此,提供了具有提高的屏幕对比度和降低的背景光反射的新LED器件。

【发明内容】

[0012]本发明针对的是发射器封装,更特别地,针对LED封装以及利用LED封装的LED显示器。根据本发明的LED封装采用安装在外壳的腔体中的至少一个LED芯片,以使得封装的面对观看者的表面是消光的(matte)。本发明特别应用于能够安装在标牌或显示器中以显示信息或图像的LED封装。本发明特别适用于能够安装在广告牌(sign)或显示器中以产生消息或图像的LED封装。LED封装提供LED广告牌以及显示器中不同像素之间的良好对比度,同时不降低显示器的感知的光通量或亮度,并且减少从环境光或背景光的反射。
[0013]根据本公开的LED封装的一个构造包括:外壳,所述外壳的至少一部分包括面对观看者的外表面的一部分;以及安装在外壳的腔体中的LED芯片。所述封装还包括设置在腔体中并位于LED芯片上方的填充材料,其中填充材料的至少一部分包括面对观看者的外表面的一部分。另外,所述封装的所述面对观看者的外表面的至少一部分具有消光表面。
[0014]根据本公开的另一个配置提供了一种发光二极管(LED)显示器,包括多个LED封装,所述多个LED封装彼此相对安装以产生消息或图像。所述多个LED封装中的至少一个包括外壳,所述外壳的至少一部分包括面对观看者的外表面的一部分。所述封装还包括安装在所述外壳的腔体中的LED芯片以及设置在所述腔体中并位于LED芯片上方的填充材料,其中所述填充材料的至少一部分包括面对观看者的外表面的一部分。另外,所述封装的所述面对观看者的外表面的至少一部分包括消光表面。
[0015]本公开的另一个配置提供了用于制造具有降低的外部反射的发光二极管(LED)封装的方法。该方法包括提供具有能够容纳LED芯片的腔体的外壳,其中所述外壳的表面的一部分包括面对观看者的外表面的一部分。所述方法还包括在腔体中提供填充材料,其中填充材料的表面的至少一部分包括面对观看者的表面的一部分。另外,所述面对观看者的表面的至少一部分是消光的。
[0016]本发明的这些和其它方面以及优点将从随后以实例阐明的本发明的特征的详细描述和附图中变得显而易见。
【专利附图】

【附图说明】
[0017]图1是传统发光二极管封装的侧视图;
[0018]图2是另一传统发光二极管封装的透视图;
[0019]图3是根据本公开的LED封装的一个实施例的透视图;
[0020]图4是图3所示LED封装的顶视图;
[0021]图5是图4所示LED封装沿剖面线5-5的剖视图;
[0022]图6是根据本公开的LED显示器的一个实施例的侧视图;
[0023]图7是根据本公开的另一 LED封装的透视图;
[0024]图8是图7所示LED封装的顶视图;
[0025]图9a是根据本公开的具有改进表面的外壳成形模具的侧视图;
[0026]图9b是形成在图9a的模具上方的外壳的侧视图;
[0027]图9c是根据本公开的形成有图9a的模具的外壳的侧视图;
[0028]图10a是由传统模具制成的外壳表面的不意图;
[0029]图10b是使用图9a-图9c中所不的工艺形成的消光外壳表面的不意图;
[0030]图1la是表面消光之前的封装的侧视图;
[0031]图1lb是根据本公开的表面消光之后的封装的侧视图;
[0032]图12a-图12c是根据本公开的封装的侧视图,示出了用于产生表面消光的冲压工艺;
[0033]图13是填充材料在固化过程中的阶段的侧部工艺图;
[0034]图14a是固化之前填充材料中具有消光剂的封装的侧视图;
[0035]图14b是在固化且形成根据本公开的消光表面之后填充材料中具有消光剂的封装的侧视图
[0036]图15a示出了没有使用消光剂所形成的示例性表面;
[0037]图15b示出了根据本公开的使用消光剂所形成的示例性表面;
[0038]图16是示出了根据本公开在填充材料中使用消光剂的示例性光学特性效果的图表;以及
[0039]图17a-图17c是根据本公开的封装的侧视图,示出了用以产生表面消光的研磨处理。【具体实施方式】
[0040]本发明针对的是LED封装以及采用LED封装的LED显示器,其中LED封装包含不同的布置以提高显示器中相邻LED封装之间的发射对比度以及降低所述封装外部的光所导致的反射。这些封装可以包括一个或更多LED芯片和转换材料,LED芯片被安装到基台上或封装外壳中。基台或外壳的部分外部表面可以包括与从LED封装发射的光的颜色形成对比的颜色。基台的部分外部表面还可以包括消光表面以减少反射。
[0041 ] 在一些实施例中,直接环绕LED芯片的基台或外壳的区域可以包括与LED芯片的光颜色基本相同或反射LED芯片的光的材料。这种反射区域可以至少部分地包括反射杯。在这种反射区域外的基台的区域可以包括与LED芯片光形成对比的材料。在具有白色发光LED芯片的实施例中,直接环绕LED芯片的区域可以包括反射白光的材料,而环绕白光反射材料的区域可以与白光形成对比。在这些实施例的一些中,白光反射材料可以是白色的,而对比区域可以是黑色的。可以理解的是,对比区域也可以是许多其它颜色,包括但不限于蓝色、褐色、灰色、红色、绿色等。
[0042]反射材料和对比材料的这种组合提供从LED芯片和周围的封装发射的光之间改善的对比度。这种对比度有助于提供在LED显示器中使用的LED封装之间的对比度,由此提供显示器中不同像素间的对比度。这种改善的对比度可以为观看者产生更高质量的图像。同时,采用白色发光LED芯片的LED封装提供不吸收不合理的LED封装的光量的意想不到的结果。先前认为,采用这种具有白色或其它波长转换光的布置会导致封装光的过度损失。尽管一些来自LED芯片的光可能被对比材料吸收,但是当它们在显示器中使用时,相比于具有无对比材料的LED封装的显示器,对比度可导致观看者意想不到地感知到基本相同的光量。对比度补偿任何吸收的光使得观看者从显示器感知基本相同的图像亮度。
[0043]在下文参考发射LED光的LED封装来描述实施例。在一些配置中该LED光已进行了波长转换。这通常涉及与转换材料(例如磷光体)一起布置的LED芯片,其中至少一些LED光经过转换材料从而LED光中的一些被转换材料吸收并以不同的光波长被重新发射。在这些实施例的一些中,LED封装可以发射作为来自LED与转换材料的光的组合的光。被波长转换的光可以包括不同颜色的光,其包含不同色温的白光和蓝移黄(blueshifted yellow,BSY)光。通常,BSY光涉及被黄/绿转换材料覆盖的蓝色发光LED,其中蓝色LED光中的至少一些被转换材料转换。所得到的LED芯片发射来自LED的蓝光与来自转换材料的黄/绿光的组合。
[0044]根据本发明的封装也可以包括多个LED芯片,每一个LED芯片产生白色波长转换光。在其它实施例中,LED封装可以利用多个芯片,这些芯片发射不同颜色的光,这些光被布置以组合来产生白光。已经开发了从多个分立的光源产生白光以提供所需色温下的改善的CRI的技术,这些技术利用来自不同分立光源的不同的色调。在专利号为N0.7,213,940的题为“Lighting Device and Lighting Method”的美国专利中描述了这样的技术。在一个这样的布置中,用黄色转换材料,例如YAG: Ce磷光体,来涂覆峰值为452nm的蓝色InGaN LED,以提供是清晰的黄色并具有完全停留于CIE图表上的黑体轨迹之上的色点(color point)的颜色。用黄色转换材料涂覆的蓝色发光LED常被称作蓝移黄(BSY)LED或LED芯片。BSY发射与来自淡红色AlInGaP LED的光组合,其将黄色LED的黄颜色“拉”向黑体曲线以产生温和的白光。
[0045]在多LED芯片的实施例中,LED芯片可以被耦合于封装中以使电信号可以被施加于每个LED芯片使它们导通或关断,或使它们发射所需强度的光。在其它实施例中,LED芯片可以被耦合在一起以使单个电信号控制LED芯片导通或关断。这些实施例可以包括串联耦合在一起的LED芯片。
[0046]可以在LED广告牌和显示器中使用根据本发明的LED封装,但可以理解的是,它们可以在许多不同应用中使用。LED封装能够遵照不同的工业标准,使其适合于在基于LED的广告牌、通道文字发光(channel letter lighting)、或普通背光以及照明应用中使用。一些实施例也可以包括平顶发射表面使它们与光管兼容匹配。对于根据本发明的LED封装,这些仅是许多不同应用中的少许。
[0047]根据本发明的一些LED封装实施例可以包括安装到基台或外壳的单个LED芯片或多个LED芯片。这些封装也可以包括环绕LED芯片或多个LED芯片的反射杯。环绕LED芯片的反射杯的上表面可以包括与由LED芯片发射的光形成对比的材料。暴露在杯内的基台的部分、和/或在杯内的反射表面也可以包括反射来自LED芯片的光的材料。在这些实施例的一些中,从LED芯片发射的光可以是白光或其它波长转换光,在反射杯内的基台的表面和杯的反射表面可以是白色或者反射白光或波长转换光。反射杯的对比上表面可以是许多不同颜色,但在一些实施例中是黑色的。
[0048]这里参考一些实施例描述了本发明,但可以理解的是,本发明可以具体实施为许多不同的形式且不应解释为局限于在这里阐明的实施例。特别地,可提供超过上面描述的那些的许多不同的LED芯片、封装、反射杯和引线框设置,并且密封材料可提供改善可靠性和从LED封装的发射特性和使用LED封装的LED显示器的另外多个特征。尽管下面讨论的LED封装的不同实施例针对的是在LED显示器中的使用,但LED封装也可以在许多不同照明应用中使用。
[0049]也可理解的是,当元件例如层、区域或衬底被称为在另一元件“之上”时,它可以是直接在另一元件上或也可以存在介于其间的元件。此外,这里可以使用相对的术语,例如“上面”和“下面”以及相似的术语来描述一层或另一区域的关系。可理解的是,这些术语意在包含除了图中描述的取向之外器件的不同取向。
[0050]尽管这里术语第一、第二等可以用于描述各种元件、部件、区域和/或部分,但这些术语将不限制这些元件、部件、区域和/或部分。这些术语仅用于区分一个元件、部件、区域或部分与另一个元件、部件、区域或部分。因此,在下面讨论的第一元件、部件、区域或部分可以称为第二元件、部件、区域或部分而没有偏离本发明的教导。
[0051]这里参考截面图描述本发明的实施例,其中截面图示出了本发明的实施例的示意性图。依此,部件的实际厚度可以不同,并且由于例如制造技术和/或容限的原因,可预期改变图示的形状。本发明的实施例将不解释为局限于这里示出的区域的特定形状,而是由于例如制造上的原因包括形状上的偏离。典型地,由于标准的制造容限,图示或描述的正方形或矩形区域将具有圆形或弧形特征。因此图中示出的区域实际上是示意性的,并且它们的形状并不旨在说明器件的区域的精确形状,并且也不旨在限制本发明的范围。
[0052]图3-5示出根据本发明的包括表面安装器件(SMD)的发射器封装50的一个实施例。即,布置该器件以使其可以通过采用表面安装技术被安装至诸如印刷电路板(PCB)的结构。可以理解的是,本发明也适用于除SMD之外的其它发射器封装类型,例如引脚安装发射器封装。封装50包括承载集成引线框53的外壳(或基台)52。引线框53包括用于传导电信号至封装的光发射器的多个导电连接部件,该多个导电连接部件还用于帮助耗散发射器产生的热量。
[0053]引线框53可以以许多不同的方式布置,并且在不同的封装实施例中可以采用不同数量的部件。以下描述封装50为利用一个发射器,在示出的实施例中,引线框53被布置为施加电信号至该发射器。引线框54包括导电部件54a-d,导电部件中的两个用于施加电信号至发射器。在所示的实施例中,用于施加电信号至发射器的阳极可以是第二导电部件54b而阴极可以是第四导电部件54d,但可以理解的是,其它实施例可以利用导电部件54a-d的其余的导电部件。可以包括剩余的导电部件54a和54c以提供安装稳定性和提供消散来自发射器的热量的额外的热路径。在所示的实施例中,第二导电部件54b具有管芯附着垫56,其用于安装例如发光二极管(LED)的发射器。
[0054]外壳52可以具有许多不同的形状和尺寸,在所示的实施例中,其通常是正方形或矩形的,具有上下表面58和60、第一和第二侧表面62和64以及第一和第二端表面66和68。外壳的上部进一步包括凹进或腔体70,其从上表面58延伸进入外壳52的主体直至引线框53。封装发射器被布置在引线框53上以使来自发射器的光从封装50经过腔体70发射。腔体70构成环绕发射器的反射杯以帮助将发射器的光反射出封装50。在一些实施例中,可以至少沿腔体70的侧面或壁74的一部分放置和固定反射插入物或环(未示出)。可以通过使腔体70呈锥形并将环朝向外壳的内部向内承载于其中来增强环的反射率的效果和封装的发射角。作为实例,大约50度的反射角提供适合的反射率和视角。外壳52的上表面58构成所述封装的面对观看者的表面的一部分,并且可以是光滑的(如图4所示的)或者所述上表面也可以是粗糙或消光表面90 (如图3和图5中所示的)。在其他配置中,可使用光滑抛光表面和粗糙或消光表面的组合。表面粗糙或消光可有助于来自于所述封装外部的光(诸如阳光、环境光或背景光)从面对观看者的表面朝向观看者的反射。
[0055]在一些实施例中,腔体70可以被至少部分地填充填充材料(或密封材料)78,所述填充材料(或密封材料)能够保护和在位置上稳定引线框53和承载的发射器。在某些情况下,填充材料78可以覆盖发射器和引线框53通过腔体70暴露的部分。可以选择填充材料78以具有预定的光学特性以便增强来自LED的光的投射,在一些实施例中,对于由封装的发射器发射的光,填充材料78基本上是透明的。填充材料78也可以是平坦的,以便其近似地与上表面58在同一水平,或其可以被定形为透镜,例如半球形或子弹形。可替换地,填充材料可以完全或部分地凹入腔体760中。填充材料78可以由树脂、环氧树脂、热塑性缩聚物、玻璃、任何聚合物材料、和/或其它适合的材料或材料组合形成。在一些实施例中,可以向填充材料78加入用于增强至LED的光和/或来自LED的光的发射、吸收和/或散射的材料。填充材料或密封剂78构成所述封装的面对观看者的表面的一部分,并且可以是光滑的(如图4所示的),或者所述填充材料或密封材料也可以是粗糙或消光表面92 (如图3和5中所示的)。在其他配置中,可使用光滑抛光表面和粗糙或消光表面的组合。表面粗糙或消光可有助于减少来自于所述封装外部的光(诸如阳光、环境光或背景光)从面对观看者的表面朝向观看者的反射。
[0056]外壳52可以由优选既电绝缘又导热的材料制备。这种材料是本领域中众所周知的,可以包括而不限于某些陶瓷、树脂、环氧树脂、硅树脂和热塑性塑料,缩聚物(例如聚邻苯二甲酰胺(polyphthalamide, PPA))、和玻璃。可以通过在本领域中众所周知的各种已知方法中的任何一种来形成和/或组装封装50及其外壳52。例如,可以环绕导电部件54a-d例如通过注射成型法来形成或模塑外壳52。可替换地,外壳可以形成在多个部中,例如顶部和底部,在底部上形成有导电部件。然后,顶部和底部可以使用公知方法和材料接合在一起,如通过环氧树脂、粘合剂或其它合适的结合材料。
[0057]根据本发明的封装可以使用许多不同的发射器,且封装50利用LED芯片80。不同的实施例可以具有发射不同颜色光的不同的LED芯片,在所示的实施例中,封装50包括的LED芯片发射白光或其它波长转换光。
[0058]在本领域中LED结构、特征及其制造和操作通常是公知的,并且这里仅简要论述。LED可以具有很多以不同方式布置的不同的半导体层并且可以发射不同颜色。可以使用公知工艺来制造LED的层,且一种合适的制造工艺是使用金属有机化学汽相沉积(M0CVD)。LED芯片的层通常包括夹在第一和第二相反掺杂外延层之间的有源层/区,其所有这些都是连续形成在生长衬底或晶片上的。形成在晶片上的LED芯片可以被单体化并用于不同的应用中,如安装在封装中。可以理解,生长衬底/晶片可以作为最终单体化的LED的一部分而保留或者生长衬底可以被全部或部分地移除。
[0059]还可以理解,在LED中还可以包括另外的层和元件,包括但不限于缓冲层、成核层、接触层和电流扩展层,以及光提取层和元件。有源区可以包括单量子阱(SQW)、多量子阱(MQW)、双异质结或超晶格结构。
[0060]有源区和掺杂层可以由不同材料系统制造,一个这种系统是III族氮化物基材料系统。III族氮化物指的是那些在氮和周期表的III族中的元素(通常是铝(Al)、镓(Ga)和铟(In))之间形成的半导体化合物。该术语还涉及三元和四元化合物,如铝镓氮(AlGaN)和铝铟镓氮(AlInGaN)。在可能的实施例中,掺杂层是氮化镓(GaN)且有源层是InGaN。在替换实施例中,掺杂层可以是AlGaN、铝镓砷(AlGaAs)或铝镓铟砷磷(AlGaInAsP)或铝铟镓磷(AlInGaP)或氧化锌(ZnO)。
[0061]生长衬底/晶片可以由很多材料制成,如硅、玻璃、蓝宝石、碳化硅、氮化铝(A1N)、氮化镓(GaN),合适的衬底是4H多型体碳化硅,然而也可以使用包括3C、6H和15R多型体的其它碳化硅多型体。碳化硅具有某些优点,如与蓝宝石相比晶格匹配更接近III族氮化物,因此导致产生具有更高质量的III族氮化物膜。碳化硅还有非常高的导热性以使碳化硅上的III族氮化物器件的总输出功率不会被衬底的散热所限制(形成在蓝宝石上的一些器件的情况可能是这样)。SiC衬底可从美国北卡罗来纳州杜伦的克里研究公司获得,以及关于制作它们的方法在科学文献中和美国专利N0.Re.34,861、N0.4,946,547和N0.5,200,022中被陈述。LED还可以包括附加特征,如导电的电流扩展结构和电流扩展层,所有这些都可由使用公知方法沉积的公知材料制得。
[0062]LED芯片80可以通过导电且导热的接合材料被电耦合至第二导电部件54b上的附着垫56,所述导电且导热的接合材料例如是焊料、粘合剂、涂层、膜、密封材料、浆糊、油脂和/或其它合适的材料。在优选的实施例中,可以使用LED底部上的焊料垫将LED电耦合并固定到它们各自的垫上以便从顶部不可见焊料。接合线82可以被包括并在LED芯片80与第四导电部件54d之间延伸。跨越第二和第四导电部件施加的电信号使得LED芯片80发射光。
[0063]导电部件54a_d的制备可以通过冲压、注射成型、切割、蚀刻、弯曲或通过其它公知方法和/或方法的组合来完成,以实现所希望的结构。例如,导电部件54a_d可以被部分地金属冲压(例如由相关材料的单个薄片被同时冲压),适当地弯曲,并且被完全分离或者在形成一些或全部外壳之后被完全分离。
[0064]导电部件54a_d可以由导电金属或金属合金制得,如铜、铜合金和/或其它合适的低电阻率的抗腐蚀材料或材料的组合。正如所指出的,引线的热导率可以在某种程度上辅助将热量传导远离LED芯片80。
[0065]这里描述的某些或全部LED芯片可以用转换材料(例如一个或更多磷光体)来涂覆,这些磷光体吸收至少一些LED芯片光并发射不同波长的光以便LED芯片发射来自LED芯片与磷光体的光的组合(即波长转换光)。在其它实施例中,转换材料可以位于封装的其它区域中,包括但不限于密封材料或封装的表面(如反射杯)。
[0066]在根据本发明的一个实施例中,白色发光LED芯片可以包括LED芯片,其发射蓝色波长谱的光,而磷光体吸收部分蓝光并重新发射黄光。LED芯片发射蓝光与黄光结合的白光。在其它实施例中,如上面提到的美国专利N0.7,213,940中所述的那样,LED芯片发射蓝光与黄光结合的非白光。在一些实施例中,磷光体包括可商业上获得的YAG: Ce,然而采用由基于(Gd,Y) 3 (Al, Ga)5012:Ce系统(如Y3Al5O12 = Ce(YAG))的磷光体制成的转换粒子,全范围的宽的黄光谱发射是可能的。其它可用于白色发光LED芯片的黄光磷光体包括:Tb3^xRExO12: Ce (TAG) ;RE=Y, Gd, La, Lu ;或 Sr2_x_yBaxCaySi04:Eu。
[0067]可替换地,在其它实施例中,通过用提供所需发射的期望的转换材料(如磷光体)涂覆,LED芯片发射其它颜色的光。例如,红色发光LED芯片可以包括被吸收LED芯片光并发射红光的磷光体覆盖的LED芯片。LED芯片可以发射蓝光或UV光,一些适合于这些结构的磷光体可以包括:Lu2O3:Eu3+ ; (Sr2_xLax) (Ce1^xEux) O4 ;Sr2^xEuxCeO4 ;SrTi03:Pr3+, Ga3+ ;CaAlSiN3:Eu2+ ;和 Sr2Si5N8:Eu2+。
[0068]可以采用许多不同方法用磷光体来涂覆LED,在序号为N0.11/656,759和N0.11/899,790的美国专利申请中描述了一种合适的方法,这两个专利申请的发明名称都是“Wafer Level Phosphor Coating Method and Devices Fabricated UtilizingMethod”,并且二者通过引用被并入此处。可替换地,可以使用其它方法涂覆LED,如电泳沉积(EF1D),在发明名称为 “Close Loop Electrophoretic Deposition of SemiconductorDevices”的美国专利申请N0.11/473,089中描述了一种合适的EH)方法,其也通过引用并入此处。此外,如本领域中公知的,LED可以具有垂直或横向几何形状。包括垂直几何结构的那些可以在衬底上具有第一接触和在P型层上具有第二接触。施加到第一接触的电信号传播进入η型层,施加到第二接触的信号传播进入P型层。在III族氮化物器件的情况下,公知的是薄的半透明典型地覆盖部分或整个P型层。可以理解,第二接触可以包括这样的层,其典型地为金属,如钼(Pt),或透明导电氧化物,如铟锡氧化物(IT0)。
[0069]LED还可以包括横向几何结构,其中两个接触都在LED的顶部。如通过蚀刻移除P型层和有源区的一部分,以暴露η型层上的接触台面。在n型层的台面上提供第二横向η型接触。这些接触可以包括使用公知沉积技术沉积的公知材料。
[0070]在一些配置中,封装50可以布置成使得上表面58具有与通过凹进/腔体70从封装50发射的光形成对比的颜色。在大部分实施例中,从腔体70发射的光可以包括由LED芯片80发射的光,但在其它实施例中,通过腔体70发射的光也可以包括由位于封装中不同位置的转换材料转换的光。这可以包括在LED芯片80之上的转换材料、混合于填充材料78中的转换材料或在凹进70中暴露的表面上的转换材料。
[0071]在一些配置中,LED封装50从凹进70发射白光,并且上表面可以包括与白光形成对比的颜色。可以使用许多不同的颜色,例如蓝色、褐色、灰色、红色、绿色、紫色等,所示的实施例中,其上表面58上为黑色。可以采用许多不同的已知方法来施加黑色颜料。可以采用不同的方法,例如丝网印刷、喷墨印刷、涂抹等,在外壳52的模塑过程中或在封装制造工艺中的稍后步骤进行上述施加。
[0072]为了从上表面58的对比颜色进一步对照凹进或腔体,在凹进中的表面也可以具有颜色或用材料来涂覆,所述材料充分反射从LED和/或周围的转换材料发射的光。在一些实施例中,通过凹进可见的表面侧壁74以及外壳的其它表面可以包括充分反射来自LED芯片80的光的材料。通过凹进70暴露的导电部件54a-d的表面以及导电部件54a_d之间的空间都可以进一步用反射层(未示出)来涂覆以通过反射来自LED芯片80的光来改善由LED芯片80发射的光的反射,否则来自LED芯片80的光会被这些封装部件吸收。优选地,反射层包括银,但可以理解的是,其它反射材料,例如铝,也可以被提供为各种厚度。反射层可以完全或部分地覆盖导电部件的未被LED芯片80或接合线82占据的部分,但可以理解的是,作为一般事实,反射层覆盖的区域越多,获得的反射面积越大,这可以改善总的封装反射率。
[0073]腔体70可以具有许多不同的形状,例如所示的圆形、或椭圆形、正方形、矩形或其它多边形形状。上表面58的对比区域可以具有许多不同的形状且可以覆盖全部或少于全部的上表面。在一实施例中,上表面58可以被对比材料覆盖,其形状由上表面58的形状限定。
[0074]如上所讨论的,上表面58的较暗的对比色可以导致当某种光从LED芯片80发射并从封装凹进70射出时吸收这种光。为了帮助最小化被吸收的LED光的量,可以布置上表面58使得其在LED芯片之上,从而很少的或没有LED光直接发射于上表面上。即,LED芯片80被布置在腔体70的基底,而上表面58在反射杯的顶部,其在LED芯片80之上。结果,来自LED芯片80的光发射出腔体70而没有直接发射于上表面58上。对比材料的这种组合提供上面提到的对比优点,且意料不到的效果是由于发射器的光被较暗的表面吸收因此很少或不会感知到LED封装(或LED显示器亮度)的降低。
[0075]如上提到的,根据本发明的LED封装实施例可以用于许多不同的应用,但特别适用于在LED显示器中使用以提供倾斜的峰值发射图案。图6示出根据本发明的LED显示器100的实施例,其可利用多个根据本发明的LED封装102以改善像素对比度,不同的LED显示器实施例可以具有全部或若干对比度改善的LED封装。根据本发明的不同的LED显示器可以具有多于300,000的像素,而其它实施例可以具有200,000至300,000的像素。其它实施例可以具有在100,000和200,000之间的像素。
[0076]可以理解的是,根据本发明的LED封装的不同实施例可以以许多不同的方式布置并可以具有许多不同的部件。不同的实施例可以具有多个发射器或LED芯片,图7和8示出根据本发明的LED封装200的另一实施例,其也布置为SMD,但具有3个LED芯片。类似上面的实施例,封装200包括承载集成的引线框204的外壳202。引线框204包括多个导电连接部件,其用于传导电信号至封装的光发射器,并且也辅助消散由发射器产生的热量。
[0077]布置引线框以使每个发射器由各自的电信号驱动。因此,所示的实施例中有6个导电部件,其包括用于每个发射器的导电部件对,通过其导电部件对向每个发射器施加电信号。对于封装200,导电部件包括第一、第二和第三阳极部件206、208、210,以及均具有发射器附着垫的第一、第二和第三阴极部件212、214、216。导电部件和附着垫可以由与上述那些相同的材料制备。
[0078]类似于上述,外壳202通常为正方形或矩形,具有上下表面218和220、第一和第二侧表面222和224以及第一和第二端表面226和228。外壳的上部进一步包括凹进或腔体230,其从上表面218延伸进入外壳202的主体直至引线框204。发射器被布置在引线框204上以使来自发射器的光从封装200经过腔体230发射。在一些实施例中,可以至少沿腔体230的侧面或壁234的一部分放置和固定反射插入物或环(未示出)。如上所述的,在一些配置中,所述封装的面对观看者的表面(由外壳202的上表面218以及填充材料、密封材料或光学镜(optic)构成)的部分或全部可以是光滑的、粗糙的、或是两者的组合。在图7中,外壳202的上表面218示出为粗糙的表面290。
[0079]与封装50 —样,在一些实施例中,腔体230可以至少部分地被填充材料(或密封材料)238填充,所述填充材料(或密封材料)能够保护和在位置上稳定引线框204和承载的发射器。填充材料238和外壳202可以由与前文提到的用于封装50的相同方法和材料制成。
[0080]在描述的说明性实施例中,封装200利用第一、第二和第三LED芯片240、242、244,其每一个可以发射与其它的相同颜色的光或不同颜色的光。在所示的实施例中,LED芯片240、242、244可以分别发出蓝色、绿色和红色,因此当被适当加电时这些LED组合产生基本是全范围的颜色。进一步,当被适当加电时,LED 240、242、244发射不同色温的白光组合。
[0081]阴极部件212、214、216包括用于承载呈线性阵列的LED芯片240、242、244的中央表面或安装垫,该阵列在垂直于侧表面222和224的方向246上延伸,通常,LED 240、242、244沿外壳202的中心轴对准。相比于具有以其它方式(如成群地)布置的LED的封装,这种对准可以提供不同视角下的改善的颜色均匀度。
[0082]在所示的实施例中,封装200也被布置成使得上表面218具有与从封装200经过腔体230发射的光的颜色形成对比的颜色。如前文讨论的,这可以包括来自LED芯片240、242,244的光和/或来自布置在凹进内的一种或更多转换材料的光。在所示的实施例中,LED封装200可以包括发射LED芯片240、242、244或可以发射来自其LED芯片240、242、244的光的白光组合。上表面218可以包括与白光形成对比的颜色。可以使用许多不同的颜色,例如蓝色、褐色、灰色、红色、绿色、紫色等,在所示施实例中,其上表面218上为黑色。可以使用前文描述的方法中的一种来施加黑色颜料。
[0083]为了从上表面218的对比颜色进一步对照凹进或腔体,在凹进230内的表面也可以具有颜色或用材料来涂覆,其反射从LED和/或周围的转换材料发射的光,如前文所讨论的。此外,通过凹进230暴露的其它表面也可以全部用反射层(未示出)涂覆,以及导电部件之间的空间也可以全部用反射层(未示出)涂覆,如前文所讨论的。上表面218的较暗的对比色可以导致当某种光从LED芯片240、242、244发射并从封装凹进230射出时吸收这种光。类似于上文,为了帮助最小化被吸收的LED光的量,可以布置上表面218使得其在LED芯片之上,从而很少的或没有LED光直接照在上表面上。这种布置提供前文所讨论的优点,包括改善的像素对比度同时基本上不降低利用这些封装的LED显示器的感知的光通量或亮度。
[0084]参考第一、第二和第三阳极与阴极部件描述了上面的实施例,第一、第二和第三阳极与阴极部件为相应的电信号被施加至每个LED芯片留出余地,可以理解的是,多个LED芯片可以以许多其它方式被耦合在一起。LED芯片可以以许多不同的串联和并联互连组合方式被稱合在一起。在一些实施例中,LED芯片可以在用于施加电信号至LED芯片的单阳极与单阴极之间的单回路中被耦合在一起。
[0085]如上所述的,有利的是,对所述封装(诸如外壳和填充材料)的上表面或面对观看者的表面进行粗糙化和消光化,以减少来自所述封装外部的光的反射。在一个配置中,外壳的面对观看者的表面或上表面被粗糙化。如图9a_图9c中所示的,可以使用注射模制形成所述外壳。在这些配置中,外壳表面具有与模具表面相同的形状或如模具表面那样抛光。因此,在一个实施例中,使用具有修整的模具表面的模具。修整的模具表面是消光的或粗糙的,以使得在成形过程中模具表面上的粗糙图案被转印到外壳表面。图9a示出了具有粗糙表面94的修整模具92。模具92的粗糙表面94可通过任何合适的工艺形成,所述工艺诸如通过放电进行的微点蚀(micro-pitting)、研磨、修磨(lapping,精磨)、切害I]、冲压或任何其他可用工艺。
[0086]在形成了具有粗糙表面的模具92之后,通过如传统外壳成形那样向模具中进行注射而形成外壳96。如图9b中所示的,在形成过程中,随着注射过程中外壳材料流入模具,模具92的粗糙表面94与外壳相接触。外壳96的该区域用作制造成的封装的上表面。在外壳成形过程中模具92的粗糙表面94上的图案被转印至外壳96。如图9c中所示的,该工艺形成具有粗糙表面94的外壳96。在其他配置中,模具本身可以不包括修整表面,而且掩模可放置在模具与外壳材料之间以提供用于在成形过程中转印至外壳材料的粗糙图案。在又一些配置中,可以在成形之后利用蚀刻、研磨、切割、冲压或任何其他可用工艺对外壳材料进行修整。
[0087]图1Oa和图1Ob分别不出了使用传统光滑模具形成的外壳表面106和使用修整的粗糙表面形成的外壳表面107的示例性图像。如图中所看到的,使用修整的粗糙模具形成的外壳表面107也具有粗糙的纹理。
[0088]在另一配置中,填充材料的外表面可被粗糙化。在一个实施例中,如图1la和图1 Ib所示的,可通过化学工艺(诸如使用蚀刻剂)来实现填充材料或密封剂的表面消光化。尽管各向同性刻蚀和各向异性刻蚀都可以使用,但优选使用各向异性刻蚀工艺,以使得表面的各个区域上的表面反应是不同的,从而产生消光的表面116。在填充材料114已经固化之后可以使用蚀刻剂。可使用可以在填充材料114的整个表面上提供不同的蚀刻率的任何蚀刻剂(诸如湿蚀刻)。图1la示出了具有外壳112的传统封装,所述外壳包括填充有填充材料、密封材料、或光学镜114的腔体118,以使得填充材料114的外表面是光滑的。图1lb示出了具有外壳112的封装,所述外壳包括填充有填充材料、密封材料或光学镜114的腔体118,以通过蚀刻工艺使得填充材料114的外表面是消光的或粗糙的表面116。
[0089]在一个实施例中,如图12a-图12c所示的,可以通过物理工艺(诸如冲压工艺)来实现填充材料或密封剂124的表面消光化,其中有纹理的或带有微纹理的掩模129放置且按压在填充材料124上。可以在固化过程中使用掩模。如图12a所示的,封装具有外壳122。外壳122包括填充有填充材料或密封材料124的腔体128。接下来,在图12b中,表面有纹理的或带有微纹理的掩模129被放置在填充材料124上方。在一些实施例中,首先用脱模剂处理所述掩模129,以使得当冲压工艺完成之后能够容易地将掩模129从填充材料124去除。掩模129可以由有纹理的膜、金属、玻璃、塑料、或能够用于将纹理压印到填充材料24上的任何其他适当的材料制成。在将掩模129放置在填充材料124上之后,将所述研磨按压在适当位置中并且使填充材料固化,以使得纹理126转印至填充材料124的上表面。接着,如图12c中所示的,借助于脱模剂去除掩模129,并且填充材料124的上表面上保留有从掩模129转印至其上的纹理126。
[0090]在又一实施例中,如图13-图14b所示的,可使用消光剂与填充材料144、132—起来实现填充材料或密封剂144的表面消光化。在使用消光剂以产生粗糙或消光的表面的配置中,消光剂134、149设置在填充材料132、144中或与填充材料132、144 一起。图13示出了设置和固化填充材料的三个阶段。在第一阶段131中,示出了填充材料132处于湿的或未固化的形式,且消光剂134基本均匀或随意地设置在所述填充材料中。优选地,消光剂134均匀地设置在填充材料132中,然而,在其他配置中,消光剂134也可以以其他浓度分布。在接下来的阶段133中,示出了填充材料132具有少量收缩,这是因为固化过程中填充材料中的溶剂蒸发所致。如所示的,在该阶段过程中,由于膜收缩,消光剂134的颗粒更靠近于表面。在最后的阶段135中,示出了填充材料132处于干燥或固化的形式中。如从图中可看到的,在该阶段中,由于干燥过程中的进一步收缩,消光剂134的部分颗粒迫使填充材料132的表面以非均匀方式设置,从而提供了粗糙的、有纹理的、或消光的表面136。
[0091]所使用的消光剂应具有适当的质量密度以防止消光剂颗粒在填充材料中下沉或沉淀。与填充材料具有适当质量密度关系的任何材料均可用作消光剂。消光剂还必须具有适当的表面处理(诸如无机处理)和适当的指定表面面积以与填充材料系统匹配。在一些配置中硅石(silica,二氧化硅)颗粒用作消光剂,颗粒大小为4-10 μ m,表面面积为2-200(m2/g)。然而,在其他配置中,也可使用具有适当质量规格和密度规格的其他消光剂,诸如其他多晶颗粒和有机材料。消光剂可具有任何形状,然而,不规则形状的颗粒对于消光效果是优选的。
[0092]图15a示出了没有使用消光剂所形成的表面的示例,图15b示出了使用消光剂所形成的类似表面的示例。如可以看到的,图15b中的表面看起来有纹理,而图15a的表面看起来是光滑的。示例性消光剂是可施加在涂漆(paint coat)、树脂或其他聚合物中的材料,用以在化学物质变干或固化之后帮助表面粗糙化。一些消光剂可包括硅石(表面被处理或未经处理);腊产品,诸如那些基于聚四氟乙烯(PTFE)、聚乙烯、聚丙烯、巴西蜡(Carnauba)以及Amid (酰胺)的蜡产品;以及能够分散在填充材料中并且在填充材料中显示良好抗沉淀特性的其他无机或有机颗粒。优选的消光剂不会影响光输出,并产生具有微小纹理的表面,并且不会在填充材料中下沉或沉淀,并且在一些情况中漂浮在填充材料的顶部上。
[0093]另外,在一些配置中,消光剂(诸如硅石)的使用不会导致显著的光输出恶化。图16示出了对于参考填充材料以及结合有两种消光剂的两种不同填充材料的光输出的影响或恶化。如所示的,最大的恶化是4%,并且在一些示例中输出甚至提高了 3%。优选地,消光剂不应该吸收光。因此,填充材料中的这些消光剂可以反射光,并且这应该有助于甚至在这些“随意”反射之后使得光输出看起来更均匀。[0094]图14a和图14b示出了包括外壳142的封装的侧视图。外壳142具有保持填充材料144的成型腔体148。如参照图13所述的,填充材料144包括基本均匀地设置在全部填充材料144中的消光剂149。图14a示出了固化之前具有光滑表面的填充材料144。图14b示出了填充材料144的固化结果,其中填充材料144中设置有消光剂颗粒149。如以上所示和所述的,具有消光剂149的填充材料144的固化导致填充材料144的收缩并且露出消光剂149的部分颗粒,从而产生了消光的、粗糙的或有纹理的表面146。在一些实施例中,类似的固化工艺可以用于填充材料,并且保持所述填充材料具有或不具有消光剂颗粒。
[0095]如图17a-图17c所示的,在可通过物理工艺实现填充材料或密封剂174和/或外壳172的表面消光化的另一个实施例中,使用研磨或修磨工艺,其中使用有纹理的、微带纹理的、微点蚀的研磨板179对外壳172和/或填充材料进行研磨或修磨,同时将压力施加至所述封装或研磨板179以将这些部件压迫在一起。如图17a所示的,一封装具有外壳172。外壳172包括填充有填充材料或密封材料174的腔体178。接着,在图17b中,表面有纹理的或微带纹理的研磨板179放置在所述封装的至少一部分上方,以使得该研磨板可以用于研磨或修磨外壳172或填充材料174,或者研磨或修磨外壳和填充材料这两者。研磨板179可以用金属、砂纸、附着有磨料的任何其他基片、或与外壳172和填充材料174相比较显示出更高硬度的任何其他合适材料制成。研磨板基片可以包括纸、布、橡胶等等。附着于基片的研磨板磨料可以包括碳化硅、氧化铝、氧化硅、金刚石等。接着,如图17c所示的,在研磨之后,填充材料174和外壳172被示出为具有带纹理的上表面176。在又一些实施例中,也可以使用其他工艺来在外壳或填充材料的表面上形成沟槽、点蚀、或其他纹理。在其他配置中,抗反射涂层可添加到这些表面上。
[0096]可以理解的是,可以以除前文提到的实施例之外的许多不同方式布置发射器封装的不同实施例。封装可以具有许多不同的表面安装或其它类型的安装布置且可以包括具有不同形状和尺寸的反射杯。其它实施例可以布置为没有反射杯,这些实施例的一种包括安装至基台的一个LED芯片或多个LED芯片。光反射和对比材料可以在基台上环绕LED,在一些实施例中,透镜形式的密封材料可以模塑在LED芯片之上。还可以理解的是,粗糙化、纹理化或表面消光技术中的任一种均可仅用在部分上表面上或整个上表面上。另外,这些技术可出于其他目的用在除上表面或面对观看者的表面以外的表面上。此外,这些技术的任意组合可一起使用或单独使用。
[0097]尽管参考其某些优选结构详细描述了本发明,但其它型式也是可能的。因此,本发明的精神和范围不应限于上面描述的型式。
【权利要求】
1.一种发光二极管(LED)封装,包括:外壳,所述外壳的至少一部分包括面对观看者的外表面的一部分;LED芯片,安装在所述外壳的腔体中;填充材料,设置在所述腔体中并位于所述LED芯片的上方,其中所述填充材料的至少一部分包括所述面对观看者的外表面的一部分;以及所述封装的所述面对观看者的外表面的至少一部分包括消光表面。
2.根据权利要求1所述的LED封装,进一步包括被设置用于转换从所述LED芯片发射的至少一些光的转换材料,所述封装发射来自所述转换材料的光或者来自所述转换材料与所述LED芯片的光的组合。
3.根据权利要求1所述的LED封装,进一步包括位于所述腔体内的围绕所述LED芯片的反射区域,所述反射区域基本反射从所述LED芯片发射的光。
4.根据权利要求3所述的LED封装,其 中,所述反射区域包括反射杯。
5.根据权利要求1所述的LED封装,其中,所述面对观看者的外表面的由所述腔体外部的外壳构成的部分具有与所述封装的光形成对比的颜色。
6.根据权利要求5所述的LED封装,其中,所述对比区域是黑色的。
7.根据权利要求5所述的LED封装,其中,所述对比区域在所述反射区域周围。
8.根据权利要求5所述的LED封装,其中,所述对比区域位于所述LED芯片上方的水平高度处。
9.根据权利要求1所述的LED封装,进一步包括至少部分地位于所述外壳中的引线框,所述LED芯片电耦合至所述引线框。
10.根据权利要求1所述的LED封装,其中,所述腔体形成围绕所述LED芯片的反射杯。
11.根据权利要求1所述的LED封装,包括表面安装器件(SMD)。
12.根据权利要求5所述的LED封装,其中,所述对比区域和所述LED芯片布置成使得所述LED光从所述封装发射,而没有在所述对比区域上直接发射。
13.根据权利要求1所述的LED封装,其中,所述面对观看者的外表面的外壳部分的至少一部分在所述外壳的成形过程中通过从一成形模具的转印而被消光化。
14.根据权利要求1所述的LED封装,其中,所述面对观看者的外表面的填充材料部分的至少一部分通过蚀刻而被消光化。
15.根据权利要求1所述的LED封装,其中,所述面对观看者的外表面的填充材料部分的至少一部分通过冲压而被消光化。
16.根据权利要求1所述的LED封装,其中,所述面对观看者的外表面的填充材料部分的至少一部分通过研磨而被消光化。
17.根据权利要求1所述的LED封装,其中,所述填充材料的至少一部分包括消光剂,从而使得所述面对观看者的外表面的一部分被消光化。
18.一种发光二极管(LED)显示器,包括:多个LED封装,所述多个LED封装相对于彼此安装成以便产生消息或图像,其中所述多个LED封装中的至少一个包括:外壳,所述外壳的至少一部分包括面对观看者的外表面的一部分;LED芯片,安装在所述外壳的腔体中;填充材料,设置在所述腔体中并位于所述LED芯片的上方,其中所述填充材料的至少一部分包括所述面对观看者的外表面的一部分;以及所述封装的所述面对观看者的外表面的至少一部分包括消光表面。
19.根据权利要求18所述的LED显示器,其中,所述LED封装进一步包括被布置为用于转换从所述LED芯片发射的至少一些光的转换材料,所述封装发射来自所述转换材料的光或者来自所述转换材料与所述LED芯片的光的组合。
20.根据权利要求18所述的LED显示器,其中,所述LED封装进一步包括位于所述腔体内的围绕所述LED芯片的反射区域,所述反射区域基本反射从所述LED芯片发射的光。
21.根据权利要求20所述的LED显示器,其中,所述反射区域包括反射杯。
22.根据权利要求18所述的LED显示器,其中,所述面对观看者的外表面的由所述腔体外部的外壳构成的部分具有与所述封装的光形成对比的颜色。
23.根据权利要求22所述的LED显示器,其中,所述对比区域是黑色的。
24.根据权利要求22所述的LED显示器,其中,所述对比区域在所述反射区域周围。
25.根据权利要求22所述的LED显示器,其中,所述对比区域位于所述LED芯片上方的水平高度处。
26.根据权利要求18所述的LED显示器,其中,所述LED封装进一步包括具有引线框的外壳,所述LED芯片电耦合至所述引线框。
27.根据权利要求18所 述的LED显示器,其中,所述腔体形成围绕所述LED芯片的反射杯。
28.根据权利要求18所述的LED显示器,其中,至少一个LED封装包括表面安装器件(SMD)0
29.根据权利要求22所述的LED显示器,其中,所述对比区域和所述LED芯片布置成使得所述LED光从所述封装发射,而没有在所述对比区域上直接发射。
30.根据权利要求18所述的LED显示器,其中,所述面对观看者的外表面的外壳部分的至少一部分在所述外壳的成形过程中通过从一成形模具的转印而被消光化。
31.根据权利要求18所述的LED显示器,其中,所述面对观看者的外表面的填充材料部分的至少一部分通过蚀刻而被消光化。
32.根据权利要求18所述的LED显示器,其中,所述面对观看者的外表面的填充材料部分的至少一部分通过冲压而被消光化。
33.根据权利要求18所述的LED显示器,其中,所述面对观看者的外表面的填充材料部分的至少一部分通过研磨而被消光化。
34.根据权利要求18所述的LED显示器,其中,所述填充材料的至少一部分包括消光剂,所述消光剂使得所述面对观看者的外表面的一部分被消光化。
35.根据权利要求18所述的LED显示器,其中,所述LED显示器相比于具有无对比区域的LED封装的同样的LED显示器而言包括更高的像素对比度。
36.根据权利要求18所述的LED显示器,其中,所述至少一个LED封装发射白光。
37.一种用于制造具有降低的外部反射的发光二极管(LED)封装的方法,所述方法包括以下步骤:提供具有能够容纳LED芯片的腔体的外壳,其中所述外壳的表面的一部分包括面对观看者的表面的一部分;在所述腔体中提供填充材料,其中所述填充材料的表面的至少一部分包括所述面对观看者的表面的一部分;以及其中,所述面对观看者的表面的至少一部分是消光的。
38.根据权利要求37所述的方法,进一步包括在具有带纹理表面的模具上形成所述外壳,以使得所述纹理被转印至外壳表面的至少一部分。
39.根据权利要求37所述的方法,进一步包括以下步骤:蚀刻所述填充材料的、包括所述面对观看者的表面的一部分的表面的至少一部分,以形成消光表面。
40.根据权利要求37所述的方法,进一步包括以下步骤:冲压所述填充材料的、包括所述面对观看者的表面的一部分的表面的至少一部分,以形成消光表面。
41.根据权利要求37所述的方法,进一步包括以下步骤:研磨所述填充材料的、包括所述面对观看者的表面的一部分的表面的至少一部分,以形成消光表面。
42.根据权利要求37所述的方法,进一步包括以下步骤:研磨所述外壳的、包括所述面对观看者的表面的一部分的表面的至少一部分,以形成消光表面。
43.根据权利要求37所述的方法,其中,所述填充材料包括消光剂和聚合物材料。
44.根据权利要求43所述的方法,其中,在固化之后所述消光剂的一部分保留在所述填充材料的表面上,从而形成消光表面。
45.根据权利要求37所述的方法,进一步包括:布置转换材料,以使得所述转换材料能够转换从所述LED芯片发射的`至少一些光;以及发射来自所述转换材料的光或者来自所述转换材料与所述LED芯片的光的组合。
46.根据权利要求37所述的方法,进一步包括提供位于所述腔体内的围绕所述LED芯片的反射区域,所述反射区域基本反射从所述LED芯片发射的光。
47.根据权利要求46所述的方法,其中,所述反射区域包括反射杯。
48.根据权利要求45所述的方法,其中,所述面对观看者的表面的由所述腔体外部的外壳构成的部分具有与所述发射的光形成对比的颜色。
49.根据权利要求48所述的方法,其中,所述对比区域是黑色的。
50.根据权利要求48所述的方法,其中,所述对比区域在所述反射区域周围。
51.根据权利要求37所述的方法,进一步包括:在所述外壳内提供引线框,并将所述LED芯片电耦合至所述引线框。
52.根据权利要求37所述的方法,其中,所述LED封装包括表面安装器件(SMD)。
53.根据权利要求48所述的方法,其中,所述对比区域和所述LED芯片布置成使得所述LED的光从所述封装发射,而没有在所述对比区域上直接发射。
【文档编号】H01L33/58GK103456726SQ201210178051
【公开日】2013年12月18日 申请日期:2012年5月31日 优先权日:2012年5月31日
【发明者】陈志强, 费翔, 钟振宇 申请人:惠州科锐半导体照明有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1