一种低温烧结制备固体氧化物燃料电池复合阴极的方法

文档序号:7248448阅读:194来源:国知局
一种低温烧结制备固体氧化物燃料电池复合阴极的方法
【专利摘要】本发明提供一种低温烧结制备固体氧化物燃料电池复合阴极的方法。该方法采用柠檬酸铵法共合成的复合阴极材料初粉配制浆料,涂敷到阳极电解质二合一组件上,低温900~1000℃烧结成电池阴极。该复合阴极同时具有钙钛矿和立方萤石相,是混合离子电子导体,颗粒大小均匀,比表面积大,其作为电化学活性位的三相界面多且均匀分布于整个阴极体相,电池性能高于传统机械混合阴极,并且电池能够稳定运行。
【专利说明】一种低温烧结制备固体氧化物燃料电池复合阴极的方法
【技术领域】
[0001]本发明涉及固体氧化物燃料电池复合阴极,具体地说是一种低温烧结制备固体氧化物燃料电池复合阴极的发法。
【背景技术】
[0002]固体氧化物燃料电池是一种将燃料中的化学能直接转化为电能的能源转化装置。一个典型的固体氧化物燃料电池包括阳极、电解质和阴极三部分。对于现今主要采用的阳极支撑薄膜电池来说,阴极极化损失是制约电池性能的主要因素。在阴极,主要是氧的电化学还原过程,包括气相中的氧通过间隙孔扩散到阴极表面,在其上发生吸附、解离,并接受电子导电相传输来的电子转化成氧离子进入电解质晶格几个过程。而上述过程除气体扩散外,都需要很高反应活化,反应速率慢(X.J.Chen et al./Journal of PowerSourcesl23(2003) 17 - 25),产生的极化损失高,因而成为制约固体氧化物燃料电池性能的主要因素。因此研究高性能和长期稳定性的阴极,开发新的阴极材料或新的烧结阴极的方法就显得尤为重要。
[0003]而传统复合阴极的获得是通过机械混合的方法,存在混合不均的问题,并且材料要经过粉体和电极两次高温烧结O 1100° C),使得颗粒长大较为严重,比表面及三相界面损失严重。因此本专利提出一种简单有效的制备固体氧化物燃料电池复合阴极的方法,所制得的阴极同时具有钙钛矿相和立方萤石相,并且只需要一次< 1000° C的低温烧结,颗粒大小均均,与电解质界面接触良好,电池性能较高。

【发明内容】

[0004]本发明提出一种低温烧结制备固体氧化物燃料电池复合阴极的方法。
[0005]一种低温烧结制备固体氧化物燃料电池复合阴极的方法,具体包括以下步骤,
[0006]I)首先制备所需 要的粉体:称取化学计量比的硝酸盐,加适量去离子水,搅拌使其完全溶解;向其中加入反应试剂,反应试剂与溶液中金属离子的摩尔比> 0.5,调节体系pH使反应试剂完全溶解,加热蒸发水分得透明溶胶后,移至加热炉上加热使其发生自蔓延燃烧,收集所得的初粉;
[0007]2)将所得初粉在玛瑙研钵中加无水乙醇研磨至体系呈油墨状;
[0008]3)将研磨后的粉体干燥后,加入711胶搅拌混合均匀得阴极浆料;
[0009]4)将所得阴极浆料涂敷到阳极二合一基底上,低温90(T1000° C烧结2飞h,即得复合阴极。该复合阴极同时具有钙钛矿相和立方萤石相,无其它杂相;是混合离子电子导体,颗粒细且均匀,比表面积大,三相界面多且均匀分布于整个复合阴极体相,有利于提高电池性能。
[0010]该方法适用于制备钙钛矿相和立方萤石相的锆基材料或铈基材料的复合阴极,其中钙钛矿相的通式为(LahZ丄(MpyNy) O3id,其中Z为掺杂占据钙钛矿A位的Ca或Sr元素,皿4为占据钙钛矿8位并选自(:1^11、?6、(:0、咐、(:11的元素中的一种或二种以上,并且&的值为0.8~1,优选0.9~0.95 ;x的值为0~0.5,优选0.1~0.2 ;y的值为0~0.4,0 ^ 0.1764 ;
[0011]萤石相为YSZ(Y203 稳定的 ZrO2)、⑶C (Gd2O3 稳定的 CeO2)、LDC (La2O3 稳定的 CeO2)、SDC(Sm2C)3稳定的CeO2)中的一种或二种以上。
[0012]合成复合阴极所需的原料包括合成钙钛矿相和萤石相所用的原材料,钙钛矿相所用的原材料为钙钛矿中金属元素中的二种以上的硝酸盐,萤石相所用的原材料为Y、La、Zr、Gd、Sm、Ce的硝酸盐中的二种以上;
[0013]所述钙钛矿的通式为(LahZx) a (MpyNy) O3id,其中Z为掺杂占据钙钛矿A的Ca或Sr元素,M、N为占据钙钛矿B位并选自Cr、Mn、Fe、Co、N1、Cu的元素中的一种或二种以上,并且a的值为0.8~I ;x的值为0~0.5 ;y的值为0~0.4 ;0 ^ d ^ 0.1764 ;
[0014]所述萤石相为YSZ (氧化钇稳定的氧化锆);OTC (氧化钆掺杂的氧化铈)、LDC (氧化镧掺杂的氧化铈)、SDC (氧化钐掺杂的氧化铈)中的一种或二种以上。
[0015]钙钛矿与萤石相的质量比为40%:60%~70%:30%,优选50%: 50%,55%: 45%,60%: 40%,65%:35%,70%:30%。
[0016]反应试剂为柠檬酸三铵、EDTA+柠檬酸、甘氨酸、尿素中的一种,优选柠檬酸三铵或甘氨酸,反应试剂与合成复合阴极所需原料中的金属离子总数的摩尔比通常为1.2^1.5。
[0017]烧结温度为900~1000° C,优选950° C,低温≤400° C的升温速度小于1° C/min0
[0018]本发明的有益效果:
[0019]本发明采用一次低温烧结即得钙钛矿萤石复合阴极,避免了传统阴极制备时粉体和电池阴极两次高温烧结造成的颗粒长大和三相界面电化学活性位的减少。且制备的复合阴极平均粒径只有几十个纳米;具有不同尺寸孔隙,有利于气体的扩散;比表面积大,达12.833m2/g ;两相界面接触良好,三相界面遍布于整个阴极体相,氧还原活性位大大增加,性能提高至传统机械混合阴极的1.957~2.194倍。
【专利附图】

【附图说明】
[0020]图1是采用柠檬酸铵法一起合成的(Laa8Sra2) 0 9Mn03±d/YSZ=60:40wt%的复合阴极材料初粉以及950° C焙烧3h之后的XRD图谱。
[0021]图2是采用甘氨酸法合成的(Laa8Sra2) 0.9Mn03±d/YSZ=60:40wt%的复合阴极材料初粉的SEM照片。
[0022]图3是采用甘氨酸法合成的(Laa8Sra2) 0.9Mn03±d/YSZ=60:40wt%的复合阴极材料初粉以与电极相同焙烧温度950° C焙烧3h之后,粉体的SEM照片
[0023]图4是采用柠檬酸铵法合成的(Laa8Sra2) 0.9Mn03±d/YSZ初粉配成浆料,低温烧结成电池阴极后,Au集流,800° C测试的电池1-V曲线与传统机械混合复合阴极LSM集流电池的比较。其中(La0.8Sr0.2) ο.9Mn03±d/YSZ=55:45,60:40,65:35,70:30wt%。
[0024]具体实施实式
[0025]实施例1
[0026]采用柠檬酸三铵法合成(Laa8Sra2)a9MnO3id - YSZ=60:40wt%,复合阴极材料,其中(1^。.851'。.2)。.9]?1103+(1为0.0211101,称取 6.23618 La (NO3) 3.6H20 (分析纯),0.7657g Sr (NO3)2(分析纯),7.158g 皿11(勵3)2(分析纯5(^丨%溶液),8.7686gZr (NO3) 4.5Η20(分析纯),1.3560gY(NO3)3.6Η20(分析纯),完全溶解于100mL去离子水中,后按照柠檬酸三铵:金属离子总摩尔数=1:1.2 (摩尔比)的比例加入19.0406g柠檬酸三铵(分析纯),并用硝酸调解混合液的PH值为I使其完全溶解,然后加热使溶液体系中发生反应,并蒸发水分,溶液逐渐变粘稠,呈透明溶胶后移至加热炉上加热,使其发生自蔓延燃烧,收集所得的的初粉,并取部分初粉采用与电极相同的升温程序焙烧(同实施例3中的烧结程序),采用XRD表征这两种粉体,图1为所得的XRD谱图。
[0027]实施例2
[0028]采用甘氨酸法一起合成(La。.8SrQ.2) Q.9Mn03±d _ YSZ=60:40wt%复合材料,其中(Laa8Srci 2)tl 9MnCVd 为?.0lmol,称取 3.1181g La(NO3) 3.6Η20(分析纯),0.3828gSr (NO3)2(分析纯),3.579g Mn (NO3) 2 (分析纯 50wt% 溶液),4.3804gZr (NO3) 4.5H20 (分析纯),0.6797gY(NO3)3.6H20(分析纯),完全溶解于100mL去离子水中,按照甘氨酸:金属离子总摩尔数=1:2.31 (摩尔比)的比例加入3.8267g甘氨酸(分析纯),完全溶解后加热络合并蒸发水分,溶液逐渐变粘稠后移至加热炉上加热,使其燃烧,收集所得的的初粉,并取部分初粉采用与电极相同的升温程序焙烧(同实施例3中的烧结程序),其SEM照片如图2和图3所示。
[0029]实施例3
[0030]如实施例1 中制备(Laci 8Srci 2)ci 9MnO3id-YSZ (质量比)=55:45%,60:40%,65:35%,70:30%的初粉,研磨均匀后加入711胶配成阴极浆料,涂覆0.01OOg到阳极电解质二合一
上,程序升温烧结。
[0031]烧结程序为:室温到400° C,按1° C/min升温;大于400° 0-800° C,按5° C/min 升温;大于 800~950° C,按 2° C/min 升温,950° C 保温 180min ;按 2° C/min 降至400° C ;后随炉冷却。
[0032]电池评价在自组装的装置上进行。800° C极化16h后测试1-V曲线。结果如图4所示。
【权利要求】
1.一种低温烧结制备固体氧化物燃料电池复合阴极的方法,其特征在于:具体包括以下步骤, 1)首先制备所需要的粉体:按照化学计量比称取所需钙钛矿型和萤石型氧化物中金属元素的硝酸盐,加去离子水,搅拌使其完全溶解;向其中加入反应试剂,反应试剂与溶液中金属离子的摩尔比> 0.5,调节体系pH使反应试剂完全溶解,加热蒸发水分得透明溶胶后,移至加热炉上加热使其发生自蔓延燃烧,收集所得的初粉; 2)将所得初粉在玛瑙研钵中加无水乙醇研磨至体系呈油墨状; 3)将研磨后的粉体干燥后,加入711胶搅拌混合均匀得阴极浆料; 4)将所得阴极浆料涂敷到阳极电解质二合一基底或电解质膜基底上,从室温程序升温到900~1000° C,并于900~1000° C保温烧结2~5h,得复合阴极。
2.根据权利要求1所述的方法,其特征在于: 所制备的复合阴极为钙钛矿/萤石相复合阴极; 其中钙钛矿的通式为(LahZx)a(MpyNy)O3id,其中Z为掺杂占据钙钛矿A位的Ca或Sr元素,M、N为占据钙钛矿B位并选自Cr、Mn、Fe、Co、N1、Cu的元素中的一种或二种以上,并且a的值为0.8~I ;x的值为0~0.5 ;y的值为0~0.4 ;0 ^ d ^ 0.1764 ;萤石相为YSZ、GDC、LDC、SDC中的一种或二种以上。
3.根据权利要求1或2所述的方法,其特征在于:合成复合阴极材料所需的原料包括合成钙钛矿相和萤石相所用的原材料,钙钛矿相所用的原材料为钙钛矿中金属元素中的二种以上的硝酸盐,萤石相所用的原材料为Y、La、Zr、Gd、Sm、Ce的硝酸盐中的二种以上。
4.根据权利要求2所述的方法,其特征在于:所述a值优选0.9、.95 ;X值优选0.1~0.2。
5.根据权利要求1所述的方法,其特征在于:复合阴极中钙钛矿氧化物与萤石相氧化物的质量比为40%:60%~70%:30%。
6.根据权利要求1所述的方法,其特征在于:反应试剂为柠檬酸三铵、EDTA+柠檬酸、甘氨酸、尿素中的一种。
7.根据权利要求1所述的方法,其特征在于:反应试剂与合成复合阴极材料所需原料中的金属离子总数的摩尔比优选1.2^1.5。
8.根据权利要求1所述的方法,其特征在于:烧结温度优选为950°C ; 复合阴极中钙钛矿氧化物与萤石相氧化物的质量比优选为50%: 50%, 55%: 45%,,60%: 40%, 65%: 35%,或 70%: 30% ; 反应试剂优选为柠檬酸三铵或甘氨酸。
9.根据权利要求1所述的方法,其特征在于:从室温程序升温到<400° C的低温阶段的升温速率小于等于1° C/min。
10.根据权利要求1所述的方法,其特征在于: 步骤I)中调节体系pH为小于等于2或pH为6-7 ; 步骤I)中711胶用量为粉体 质量的40-100%。
【文档编号】H01M4/88GK103887520SQ201210566367
【公开日】2014年6月25日 申请日期:2012年12月21日 优先权日:2012年12月21日
【发明者】程谟杰, 张小敏, 涂宝峰, 崔大安, 区定容 申请人:中国科学院大连化学物理研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1