静电涂覆高分子复合ptc粉体制备锂电池集流体的方法

文档序号:7041141阅读:666来源:国知局
静电涂覆高分子复合ptc粉体制备锂电池集流体的方法
【专利摘要】本发明公开了一种静电涂覆高分子复合PTC粉体制备锂电池集流体的方法,包括以下步骤:(1)制备高分子复合PTC粉体;(2)通过加热装置将锂电池集流体加热至100-300℃,利用静电涂覆设备在锂电池集流体上涂覆步骤(1)制得的高分子复合PTC粉体,在锂电池集流体上形成高分子复合PTC粉体涂层;(3)烘烤步骤(2)涂覆过高分子复合PTC粉体涂层的锂电池集流体,经过再结晶工艺得到带有高分子复合PTC粉体涂层的锂电池集流体。本发明能够解决因锂电池升温引起的破坏、爆炸的问题,从而解决锂电池内部过热引起集流体电流过大而急剧升温以及连锁反应引起燃烧和爆炸的问题。
【专利说明】静电涂覆高分子复合PTc粉体制备锂电池集流体的方法
【技术领域】
[0001]本发明涉及锂电池集流体的制备领域,尤其涉及一种静电涂覆高分子复合PTC粉体制备锂电池集流体的方法。
【背景技术】
[0002]锂电池应用过程中,当电池内部发生短路如针刺、剧烈碰撞等情况时,瞬间电流急剧增大,造成电池发热,由此引起一系列的连锁反应,最终引起锂电池起火爆炸,为应对这一现象,有人用PTC传感器在电池的连接电路或电池的壳体黏贴进行预防,由于这些装置及部件是在锂电池的外部,并不能及时获得锂电池内部升温信息并及时作出反应,造成预防滞后,不能满足锂电池安全防护的目的。
[0003]随着科学技术的飞速发展,社会各行业特别是复合材料、电子材料,装饰性材料等对功能性锂电池集流体的需求量日益增加。功能性锂电池集流体目前已经成为在功能性能源及电子整机产品中起到支撑、互连元器件作用的PCB的关键材料,它被喻为电子产品信号与电力传输、沟通的“神经网络”。锂电池集流体作为电子工业的基础材料,其发展一直追随着PCB技术的发展,而PCB技术则随着电子产品的日新月异不断提高。IT产品技术的发展促进了 PCB朝着多层化、薄型化、高密度化、高速化、高可靠化、功能化方向发展,因此开发更加具有高性能、高质量、高可靠性、功能化的锂电池集流体市场前景非常广阔。
[0004]自1950年荷兰菲力浦公司的海曼等人发现BaTi03系陶瓷半导化后可获得正温度系数(PTC)特性以来,人们对它的了解越来越深刻。与此同时,在其应用方面也正日益广泛,渗透到日常生活、工农业技术、军事科学、通讯、宇航等各个领域。PTC热敏电阻发热元件是现代以至将来高科技尖端之产品。它被广泛应用于轻工、住宅、交通、航天、农业、医疗、环保、采矿、民用器械等,它与镍、铬丝或远红外等发热元件相比,具有卓越的优点。当在PTC元件施加交流或直流电压升温时,在居里点温度以下,电阻率很低;当一旦超越居里点温度,电阻率突然增大,使其电流下降至稳定值,达到自动控制温度、恒温目的。PTC元件发热时不发红,无明火(电阻丝发红且有明火),不易燃烧。PTC元件周围温度超越限值时,其功率自动下降至平衡值,不会产生燃烧危险。PTC元件的能量输入采用比例式,有限流作用,比镍铬丝等发热元件的开关式能量输入还节省电力。PTC材料有高分子材料类与陶瓷类两种,陶瓷类PTC元件本身为氧化物,无镍铬丝之高温氧化弊端,也没有红外线管易碎现象,寿命长。并且多孔型比无孔型寿命更长。PTC元件本身自动控温,不需另加自动控制温度线路装置。多孔型PTC更不需要其他散热装置,也不需用导电胶。PTC元件在低压(6-36伏)和高压(110-240伏)下都能正常使用。低压PTC元件适用于各类低电压加热器,仪器低温补偿,汽车上和电脑周边设备上的加热器。高压PTC元件适用于下列电气设备的加热:电热保温碟、烘鞋器、热熔胶枪、电饭煲、电热靴、电热驱蚊器、静脉注射加热、轻便塑料封口机、蒸气发梳、蒸气发生器、加湿器、卷发器、录象机、复印机、自动售货机、热风帘、暖手器、茶叶烘干机、水管加热器、旅行干衣机、汽车烤漆房、液化气瓶加热器、沐浴器、美容器、电热餐桌、奶瓶恒温器、电热炙疗器、电热水瓶、电热毯等。[0005]PTC材料的出现,可以解决传统开关的速度不够快和容量不够大这两方面的问题。随着科学技术的发展和工艺的不断改进,PTC元件的特性将越来越完善,其常态可通电流将得到进一步的提高,在交、直流领域可能导致传统开关的一场技术革命,对于二次控制设备也有着广泛的应用前景,它将大大降低电子设备的制造成本,提高电子系统运行的经济性、
可靠性。
[0006]PTC材料加工由于钛酸钡陶瓷材料的特点,传统加工均一性控制较难,限制了 PTC材料的应用。
[0007]传统制备PTC元器件由于工艺的限制,PTC元器件与电极分别加工,然后与极板焊接或胶结成器件,以小型元器件为主,未见有巨幅超薄功能锂电池集流体加工的报道。

【发明内容】

[0008]针对现有技术中存在的问题,本发明提供一种静电涂覆高分子复合PTC粉体制备锂电池集流体的方法,该方法加工过程简便,可提高生产效率及优良品率。
[0009]为实现上述发明目的,本发明采用以下技术方案:
一种静电涂覆高分子复合PTC粉体制备锂电池集流体的方法,包括以下步骤:(I)制备高分子复合PTC粉体;(2)通过加热装置将锂电池集流体加热至100-300°c,利用静电涂覆设备在锂电池集流体上涂覆步骤(I)制得的高分子复合PTC粉体,在锂电池集流体上形成高分子复合PTC粉体涂层;(3)烘烤步骤(2)涂覆过高分子复合PTC粉体涂层的锂电池集流体,经过再结晶工艺得到带有高分子复合PTC粉体涂层的锂电池集流体。
[0010]所述锂电池集流体为铜箔或铝箔。
[0011]所述步骤(I)高分子为聚丙烯、聚乙烯、聚氯乙烯、聚酯、聚偏氟乙烯、聚酰亚胺、聚酰胺、环氧树脂、聚氨酯、聚醚或丙烯酸酯。
[0012]所述步骤(I) PTC粉体为炭黑、碳纤维、石墨片、银、铜片、银包铜纳米颗粒、钛酸钡微粉、含铅质量百分数为0.3-1.5%的钛酸钡微粉或含锶质量百分数为0.5-2.2%的钛酸钡微粉。
[0013]所述步骤(I)中高分子与PTC粉体以1:10-10:1的比例进行复合,采用螺杆机或球磨机进行共混复合。
[0014]所述步骤(2)中锂电池集流体的厚度为3-60 μ m。
[0015]所述步骤(2)中锂电池集流体上形成的高分子复合PTC粉体涂层的厚度为
1-20 u ITio
[0016]所述步骤(3)中再结晶工艺过程为将步骤(2)制得的锂电池集流体在龙窑中依据不同的高分子材料的结晶温度进行再结晶,各温度区加热时间为10-20分钟。
[0017]如聚乙烯类依次经80°C,130°C , 90°C, 30°C温度区进行加热;聚丙烯类依次经历80°C,150°C,90°C,30°C温度区进行加热;聚酰亚胺类依次经历180°C,290°C, 190°C,130°C进行加热;聚酯类依次经历180°C,250°C, 190°C, 130°C进行加热,完成再结晶过程。
[0018]所述步骤(3)制得的锂电池集流体的厚度为5-100 μ m。
[0019]与现有技术相比,本发明的加工过程简便,可提高生产效率及优良品率,产品厚度一致性强,制得带有高分子复合PTC粉体涂层的锂电池集流体的品质可靠性高,热敏反应速度快、准确和容量调整方便;本发明以超薄锂电池集流体为基材,利用静电涂覆技术,在锂电池集流体两面分别加工出一层PTC材料,形成带有高分子复合PTC粉体涂层的锂电池集流体功能性材料,满足日常生活、工农业技术、军事科学、通讯、宇航等各个领域的应用需求;而且本发明能够解决因锂电池升温引起的破坏、爆炸的问题,当电池内部温度超过70°C时,锂电池集流体与锂电池正负极材料间的PTC层电阻急剧升高,集流体上通过的电流减小,直至断路状态,从而解决锂电池内部过热引起集流体电流过大而急剧升温以及连锁反应引起燃烧和爆炸的问题。
【专利附图】

【附图说明】
[0020]图1为本发明喷涂工艺流程图。
[0021]图2为本发明再结晶工艺流程图。
【具体实施方式】
[0022]实施例1
如图1和图2所示,本实施例静电涂覆高分子复合PTC粉体制备锂电池集流体的方法,包括以下步骤:(1)取IOOg聚乙烯与IOOg炭黑,在氮气保护下放入球磨机中,球磨混合5小时,制得高分子复合PTC粉体;(2)将厚度为5μπι的铜箔经放卷装置I放出,通过加热装置2将放出的铜箔加热至100° C,在幅宽1.3米,长5米的静电涂布机3上,以50米/分钟的速度连续涂覆600米,通过静电涂布机上设有的流量控制阀4控制高分子复合PTC粉体涂布厚度为2.5 μ m,经冷却装置5冷却结晶,然后进入收卷装置6,完成高分子复合PTC粉体在铜箔的双面静电涂覆;(3)将收卷装置中的铜箔卷取出装在10米长的龙窑中,依次经历80°C, 130°C,90°C,30°C进行加热,每个温度区各烘烤10分钟,冷却,完成再结晶加工,制得卷装600米长,幅宽1.3米,厚度为10 μ m的带有高分子复合PTC粉体涂层的铜箔。
[0023]实施例2
本实施例静电涂覆高分子复合PTC粉体制备锂电池集流体的方法,包括以下步骤:(I)取IOg聚丙烯与IOOg钛酸钡微粉,在氮气保护下放入三螺杆共混反应器中,混合4小时,制得高分子复合PTC粉体;(2)将厚度为3 μ m的铝箔经放卷装置放出,通过加热装置将放出的铝箔加热至150° C,在幅宽1.3米,长5米的静电涂布机上,以50米/分钟的速度连续涂覆600米,通过静电涂布机上设有的流量控制阀控制高分子复合PTC粉体涂布厚度为I μ m,经冷却装置冷却结晶,然后进入收卷装置,完成高分子复合PTC粉体在铝箔上的静电喷涂;
(3)将收卷装置中的铝箔卷取出装在10米长的龙窑中,依次经历80°C,150°C,90°C,30°C进行加热,每个温度区各烘烤15分钟,冷却,完成再结晶加工,制得卷装600米长,幅宽1.3米,厚度为5 μ m的带有高分子复合PTC粉体涂层的铝箔。
[0024]实施例3
本实施例静电涂覆高分子复合PTC粉体制备锂电池集流体的方法,包括以下步骤:(I)取50g聚酰亚胺与IOOg含铅质量百分数为0.3%的钛酸钡微粉,在氮气保护下放入三螺杆共混反应器中,混合5小时,制得高分子复合PTC粉体;(2)将厚度为15 μ m的铜箔经放卷装置放出,通过加热装置将放出的铜箔加热至180° C,在幅宽1.3米,长5米的静电涂布机上,以50米/分钟的速度连续涂覆600米,通过静电涂布机上设有的流量控制阀控制高分子复合PTC粉体涂布厚度为2.5μπι,经冷却装置冷却结晶,然后进入收卷装置,完成高分子复合PTC粉体在铜箔上的双面静电涂覆;(3)将收卷装置中的铜箔卷取出装在10米长的龙窑中,依次经历180°C,290 °C, 190 °C, 130°C进行加热,每个温度区各烘烤15分钟,冷却,完成再结晶加工,制得卷装600米长,幅宽1.3米,厚度为20 μ m的带有高分子复合PTC粉体涂层的铜箔。
[0025]实施例4
本实施例静电涂覆高分子复合PTC粉体制备锂电池集流体的方法,包括以下步骤:(I)取IOOg聚酰亚胺与IOg含铅质量百分数为1.0%的钛酸钡微粉,在氮气保护下放入三螺杆共混反应器中,混合5小时,制得高分子复合PTC粉体;(2)将厚度为60 μ m的铜箔经放卷装置放出,通过加热装置将放出的铜箔加热至220° C,在幅宽1.3米,长5米的静电涂布机上,以50米/分钟的速度连续涂覆600米,通过静电涂布机上设有的流量控制阀控制高分子复合PTC粉体涂布厚度为20 μ m,经冷却装置冷却结晶,然后进入收卷装置,完成高分子复合PTC粉体在铜箔上的双面静电涂覆;(3)将收卷装置中的铜箔卷取出装在10米长的龙窑中,依次经历180°C,290 °C, 190 °C, 130°C进行加热,每个温度区各烘烤18分钟,冷却,完成再结晶加工,制得卷装600米长,幅宽1.3米,厚度为100 μ m的带有高分子复合PTC粉体涂层的铜箔。
[0026]实施例5
本实施例静电涂覆高分子复合PTC粉体制备锂电池集流体的方法,包括以下步骤:(I)取IOOg聚酯与IOOg碳纤维,在氮气保护下放入三螺杆共混反应器中,混合5小时,制得高分子复合PTC粉体;(2)将厚度为30 μ m的铝箔经放卷装置放出,通过加热装置将放出的铝箔加热至300° C,在幅宽1.3米,长5米的静电涂布机上,以50米/分钟的速度连续涂覆600米,通过静电涂布机上设置的流量控制阀控制高分子复合PTC粉体涂布厚度为15 μ m,经冷却装置冷却结晶,然后进入收卷装置,完成高分子复合PTC粉体在铝箔上的真空涂覆;
(3)将收卷装置中的铝箔卷取出装在10米长的龙窑中,依次经历180°C,250°C, 190°C,130°C进行加热,每个温度区各烘烤20分钟,冷却,完成再结晶加工,制得卷装600米长,幅宽1.3米,厚度为60 μ m的带有高分子复合PTC粉体涂层的铝箔。
【权利要求】
1.一种静电涂覆高分子复合PTC粉体制备锂电池集流体的方法,其特征在于包括以下步骤:(I)制备高分子复合PTC粉体;(2)通过加热装置将锂电池集流体加热至100-300°c,利用静电涂覆设备在锂电池集流体上涂覆步骤(I)制得的高分子复合PTC粉体,在锂电池集流体上形成高分子复合PTC粉体涂层;(3)烘烤步骤(2)涂覆过高分子复合PTC粉体涂层的锂电池集流体,经过再结晶工艺得到带有高分子复合PTC粉体涂层的锂电池集流体。
2.根据权利要求1所述的静电涂覆高分子复合PTC粉体制备锂电池集流体的方法:其特征在于:所述锂电池集流体为铜箔或铝箔。
3.根据权利要求1所述的静电涂覆高分子复合PTC粉体制备锂电池集流体的方法,其特征在于:所述步骤(I)高分子为聚丙烯、聚乙烯、聚氯乙烯、聚酯、聚偏氟乙烯、聚酰亚胺、聚酰胺、环氧树脂、聚氨酯、聚醚或丙烯酸酯。
4.根据权利要求1所述的静电涂覆高分子复合PTC粉体制备锂电池集流体的方法,其特征在于:所述步骤(I) PTC粉体为炭黑、碳纤维、石墨片、银、铜片、银包铜纳米颗粒、钛酸钡微粉、含铅质量百分数为0.3-1.5%的钛酸钡微粉或含锶质量百分数为0.5-2.2%的钛酸锁微粉。
5.根据权利要求1所述的静电涂覆高分子复合PTC粉体制备锂电池集流体的方法,其特征在于:所述步骤(I)中高分子与PTC粉体以1:10-10:1的比例进行复合,采用螺杆机或球磨机进行共混复合。
6.根据权利要求1所述的静电涂覆高分子复合PTC粉体制备锂电池集流体的方法,其特征在于:所述步骤(2)中锂电池集流体的厚度为3-60 μ m。
7.根据权利要求1所述的静电涂覆高分子复合PTC粉体制备锂电池集流体的方法,其特征在于:所述步骤(2)中锂电池集流体上形成的高分子复合PTC粉体涂层的厚度为1-20 u rtio
8.根据权利要求1所述的静电涂覆高分子复合PTC粉体制备锂电池集流体的方法,其特征在于:所述步骤(3)中再结晶工艺过程为将步骤(2)制得的锂电池集流体在龙窑中依据不同的高分子材料的结晶温度进行再结晶,各温度区加热时间为10-20分钟。
9.根据权利要求1-8任一所述的静电涂覆高分子复合PTC粉体制备锂电池集流体的方法,其特征在于:所述步骤(3)制得的锂电池集流体的厚度为5-100 μ m。
【文档编号】H01M4/04GK103794802SQ201410039273
【公开日】2014年5月14日 申请日期:2014年1月27日 优先权日:2014年1月27日
【发明者】张迎晨, 吴红艳 申请人:中原工学院
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1