一种镍锌铁氧体基氮化钽薄膜微波负载及其制备方法与流程

文档序号:17046349发布日期:2019-03-05 19:38阅读:468来源:国知局
一种镍锌铁氧体基氮化钽薄膜微波负载及其制备方法与流程

本发明涉及一种微波通信工程领域的微波负载,尤其是能够在常用旋磁材料上制备的,应用于高频段、高功率场合的氮化钽薄膜微波负载。



背景技术:

目前,通过直流反应磁控溅射等工艺,可以在镍锌铁氧体基片上制备得到氮化钽薄膜微波负载。相比与传统的氧化铝和氧化铍基片,镍锌铁氧体基片上制备的氮化钽薄膜微波负载有很好的频率特性,可以应用于高频段(DC~40GHz)通信系统。

现有镍锌铁氧体基片上制备的氮化钽薄膜微波负载包括以下几个部分:

第一部分:镍锌铁氧体基片,电阻率极大,近乎绝缘的旋磁介电材料、介电系数高。

第二部分:氮化钽电阻薄膜层,即电路结构中的电阻材料,制备于镍锌铁氧体基片上,用于吸收微波电路中传递来的微波信号的能量,转化为自身的热能再散发到外界环境,通常采用直流反应磁控溅射的方法制备。

第三部分:匹配电极,为优良的导电材料包括前端匹配电极和后端匹配电极;前端匹配电极的一端实现与氮化钽电阻薄膜层和铁氧体基片的良好接触,另一端完成与外界微波电路的匹配连接。后端匹配电极既要与氮化钽电阻薄膜层和铁氧体基片形成良好的接触,又要与接地电极实现导通。匹配电极通常采用光刻、直流磁控溅射等方法制备。

第四部分:接地电极,为导电性能优良的材料,使传递至电阻薄膜层中的微波信号能经过后端匹配电极再经由此接地电极与地有良好的导通。接地电极通常采用丝网印刷工艺制备。

然而其缺点在于:受到镍锌铁氧体基片表面粗糙度大,内部多孔洞结构疏松且导热系数低的影响,功率很难做高,往往只能达到3瓦,难以工作于功率要求高的场合。



技术实现要素:

针对上述存在的问题与不足,为了解决现有镍锌铁氧体基上氮化钽薄膜微波负载的功率很难做高的瓶颈,本发明提供了一种镍锌铁氧体基氮化钽薄膜微波负载,不仅具有良好的频率特性,其额定功率在10瓦到30瓦之间,满足微波通信领域对微波负载的高功率要求。应用于高频段的微波通信系统。

本发明提供的镍锌铁氧体基氮化钽薄膜微波负载,包括镍锌铁氧体基片、氮化钽电阻薄膜层、前端匹配电极、后端匹配电极和接地电极,其特点在于:

还包括制备于镍锌铁氧体基片上的氮化铝薄膜缓冲层,该氮化铝薄膜缓冲层位于镍锌铁氧体基片和氮化钽电阻薄膜层之间,并隔断镍锌铁氧体基片和氮化钽电阻薄膜层,其厚度在2微米到100微米。

前端匹配电极一端实现与氮化钽电阻薄膜层和氮化铝薄膜缓冲层的良好接触,另一端完成与外界微波电路的匹配连接。

后端匹配电极与氮化钽电阻薄膜层和氮化铝薄膜缓冲层形成良好的接触,又要与接地电极实现导通。

其制备方法是:在现有的镍锌铁氧体基氮化钽薄膜微波负载制作工艺中,首先对镍锌铁氧体基片进行表面处理,即利用中频磁控溅射的方法在基片表面镀上一层2-100微米厚的氮化铝薄膜缓冲层后,再进行其余工艺操作完成整个镍锌铁氧体基氮化钽薄膜微波负载的制备。

本发明利用由于在中频磁控溅射镀氮化铝薄膜缓冲层时,镍锌铁氧体基片温度被加热到400℃,再加上溅射时拥有的初始能量,成膜粒子拥有很高的自由能。在薄膜生长的过程中,很容易被镍锌铁氧体表面的缺陷能量陷阱捕获,成膜粒子的自由能越高被捕获的几率和速率越大。当捕获速率大于薄膜的层状或岛状生长速率时,便可以实现对其表面缺陷的弥补,改善铁氧体基片的表面特性。再由于氮化铝薄膜缓冲层内部结构致密且拥有很高的导热系数λ=380w/(m·K)充分弥补了镍锌铁氧体基片内部疏松多孔,导热系数低的不足。氮化铝薄膜缓冲层不仅有效的改善了镍锌铁氧体基片的表面特性,提高了基片的散热能力,并且能够使得在其上生长的氮化钽电阻薄膜层更为平整均匀,从而有效地提高了其上制备的氮化钽薄膜微波负载的功率。

综上所述,本发明的有益效果是:在拥有良好的频率特性的同时,其额定功率在10瓦到30瓦之间。并且氮化铝薄膜缓冲层的制备工艺成熟简单且与之前氮化钽薄膜微波负载的制备工艺可以很好的兼容。

附图说明

图1是本发明实施例结构示意图;

附图标记:1.镍锌铁氧体基片;2.氮化铝薄膜缓冲层;3-1、3-2、3-3、3-4、3-5为匹配电极,其中3-1、3-2为前端匹配电极,3-3、3-4、3-5为后端匹配电极,其中3-2、3-4为与氮化钽薄膜现实良好接触的匹配电极部分;4.氮化钽电阻薄膜层;5.接地电极。

具体实施方式

以工作于20~40GHz频段,额定工作功率12瓦,镍锌铁氧体基氮化钽薄膜微波负载为例。

图1中,镍锌铁氧体基片(1)结构尺寸为2mm×2mm×0.5mm,单面抛光。氮化铝薄膜缓冲层(2)结构尺寸为2mm×2mm×2μm。采用中频磁控溅射制备氮化铝薄膜缓冲层,实验设备采用TG-1型MF磁控溅射系统。背底真空度为1×10-4Pa,靶材使用纯度为99.99%的孪生Al靶(310mm×100mm),基片采用单面抛光的镍锌铁氧体基片(10mm×10mm×0.5mm),溅射气氛为高纯氮气和高纯氩气。中频磁控溅射具体工艺参数如下:溅射功率2400w,Ar气流量70sccm,N2气流量30sccm,溅射气压0.96Pa,靶基距离7cm,基片温度400℃,预溅射10min,溅射时间120min。

图1中,氮化钽电阻薄膜层(4)结构尺寸为1.4493mm×1.2mm×350nm。采用直流反应磁控溅射制备氮化钽电阻薄膜层,实验设备采用BMS560B型超高真空磁控溅射镀膜设备。背底真空度为3.8×10-5Pa,靶材使用纯度为99.99%的Ta靶,直径为基片采用带氮化铝薄膜缓冲层且单面抛光的镍锌铁氧体基片,溅射气氛为高纯氮气和高纯氩气,电源采用Advanced Energy公司的MDX_500直流电源,光刻采用BG401A型光刻机。氮化钽电阻薄膜层制备流程:光刻完薄膜图形,直流反应磁控溅射镀氮化钽电阻薄膜层。直流反应磁控溅射具体工艺参数如下:Ar气流量50sccm,N2气流量4sccm,溅射气压0.62Pa,溅射功率45w,靶基距离7.5cm,预溅射时间5min,溅射时间15min。

图1中前端匹配电极(3-1、3-2)组合尺寸为0.8476mm×0.533mm×350nm,其中前端匹配电极(3-2)部分是与氮化钽薄膜接触部分,其尺寸为0.0476mm×0.533mm×350nm。后端匹配电极(3-3、3-4、3-5)组合尺寸为2mm×0.28mm×350nm,其中后端匹配电极(3-4)部分是与氮化钽薄膜接触部分,其尺寸为1.4493mm×0.28mm×350nm。采用直流磁控溅射制备铜电极,实验设备采用BMS560B型超高真空磁控溅射镀膜设备。背底真空度为3.8×10-5Pa,靶材使用纯度为99.99%的Cu靶,直径为溅射气氛为高纯氩气,电源采用Advanced Energy公司的MDX_500直流电源,光刻采用BG401A型光刻机。Cu电极制作流程:光刻完电极图形,直流磁控溅射镀Cu电极。直流磁控溅射具体工艺参数如下:Ar气流量50sccm,溅射气压0.56Pa,溅射功率45w,靶基距离7.5cm,预溅射时间5min,溅射时间20min。

图1中接地银电极(5)由丝网印刷获得,厚度1微米。

最后经由划片处理制备出如图1中所示的带氮化铝薄膜缓冲层的镍锌铁氧体基高功率氮化钽薄膜微波负载。

通过二探针系统和数字源表(吉时利2400)对制备氮化钽薄膜微波负载作功率测试,具体过程如下:

1)将二探针系统的两个探针压在氮化钽薄膜微波负载的两端匹配电极处,并将数字源表与二探针系统进行相应的连接。

2)将数字源表设置为恒流源输出模式加载功率,测试氮化钽薄膜微波负载的电阻阻值和实际输出功率,通电30分钟,若阻值变化在正负百分之五以内则认为负载可以正常工作。

3)逐步加大输出电流提高功率,直至负载烧毁,记录负载最终能够承受的最大功率测量值,多次测量同批次的产品取最终平均值。

电流平均最大值:0.49安培电阻实际测量值:51欧姆最大功率平均值:12.005瓦。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1