一种制备R‑Fe‑B类烧结磁体的方法与流程

文档序号:11547725阅读:188来源:国知局

本发明涉及一种制备R-Fe-B类烧结磁体的方法,属于稀土永磁材料领域。



背景技术:

Nd-Fe-B系磁体因其优越的性能被广泛应用,由于汽车和电子应用领域对节能电动机的需求,烧结钕铁硼的市场应用会进一步扩大。钕铁硼材料剩磁和矫顽力的提高有利于其在电动机市场的快速增长,但是传统工艺矫顽力的提高总是以牺牲剩磁为代价,且为提高矫顽力必须使用较大比重的重稀土元素Dy/Tb,造成磁体成本的剧增,所以降低重稀土元素使用量成为稀土永磁领域的研究热点。通过对磁体微观组织的分析,确认了晶界扩散重稀土元素的方式,可以有效地减少晶粒边界散射场,减弱磁交换耦合作用,使晶粒边界磁硬化,在磁体剩磁基本不降低的前提下,矫顽力得到大幅度提高,通过这种方式提高磁体性能可以有效控制磁体成本。

晶界扩散法是为了提高Nd-Fe-B系烧结磁体的矫顽力,主要从磁体表面将Dy或Tb元素沿晶界扩散至磁体内部。已开发了多种方式实现晶界扩散,大体上可归为两类:一类为蒸发法,其通过加热的方式使重稀土元素形成蒸汽,然后缓慢扩散至磁体内部(参照专利CN101651038B 2007.3.01、CN101375352A 2007.1.12);另一类为接触法,其通过在磁体表面布置重稀土元素,后通过长时间低温烧结使重稀土元素沿晶界渗入以实现晶界扩散(参照专利CN100565719C 2006.2.28、CN101404195B 2007.11.16)。上述两种方法均可达到晶界扩散的效果,其中蒸发法利用支架等部件将磁体与重稀土元素隔离,通过加热使重稀土元素形成蒸汽,蒸汽扩散至磁体周围并缓慢扩散至磁体内部,采用此种方式,炉体内需采用在高温下不易蒸发材料形成支撑架以防止磁体与重稀土元素的直接接触,在实际操作过程中支撑架的布置较为复杂,大大增加摆料时难度,且料架等配件占据很大空间导致装料量大幅度降低,而且为保证蒸发环境洁净,料架等配件一般由饱和蒸汽压低的材料做成,其大幅度增加处理设备的成本。此外,蒸发法的蒸汽浓度较难控制,若温度过低,重稀土蒸汽难于从磁体表面扩散至磁体内部,处理时间大幅度延长。而温度过高时,形成高浓度重稀土蒸汽的速度会超过蒸汽扩散进入磁体的速度,从而在磁体表面形成重稀土元素层,达不到晶界扩散的效果。接触法在实际生产过程中采用重稀土元素与磁体直接接触的方式,常用的一种方式为掩埋法,其通过把磁体掩埋在含有重稀土元素的颗粒中,在热处理装置中加热处理使重稀土元素从磁体表面扩散至磁体内部。这种方式由于过量的重稀土颗粒与磁体接触,一方面破坏磁体表面状态,另外在磁体表面形成较厚重稀土层,后续需通过机加工的方式磨掉大量表皮,才能保证磁体性能、平行度、粗糙度等指标,另一种方式通过溅射、蒸镀等方式在磁体表面布置一层重稀土金属膜,后在热处理装置中加热处理,使重稀土扩散至磁体内部,这种方式处理量小,处理成本高,不利于批量生产。



技术实现要素:

为解决上述技术问题,本发明提供了一种R-Fe-B类烧结磁体的制造方法,包括:

一种制备R-Fe-B类烧结磁体的方法,包括:

1)制备R1-Fe-B-M烧结磁体,其中,R1选自稀土元素Nd、Pr、Tb、Dy、Gd、Ho中任意一种或几种,R1含量为27~34wt%;B含量为0.8~1.3wt%;M选自Ti、V、Cr、Mn、Co、Ga、Cu、Si、Al、Zr、Nb、W、Mo中的任意一种或几种,含量0~5wt%;余量为Fe;

2)将所述烧结磁体依次采用酸溶液、去离子水洗涤,干燥处理,得到受处理磁体;

3)采用重稀土元素的粉末RX、有机固体粉末EP、有机溶剂ET配置RXE浆液,将RXE浆液布置在受处理磁体表面,经烘干处理后形成RXE层,带有RXE层的受处理磁体称为受处理单元,其中RX为含有金属镝、金属铽、氢化镝、氢化铽、氟化镝、氟化铽的至少一种重稀土粉末,EP为松香改性醇酸树脂、酚醛树脂、脲醛树脂、聚乙烯醇缩丁醛的至少一种,ET为乙醇、乙醚、苯、甘油、乙二醇中的至少一种;

4)将3)中表面布置RXE层的磁体进行加热处理,热处理温度在850~970℃范围内,处理时间0.5~48h;在最高温度保温段结束后急冷,然后对磁体进行时效处理,时效温度为430~650℃范围内,时效时间为2~10小时。

本发明创新之处在于采用重稀土元素粉末RX、有机固体EP、有机溶剂ET配置成RXE浆液,搅拌均匀后布置在受处理磁体表面,经烘干处理后在磁体表面形成RXE层,实现了在磁体表面布置重稀土元素的效果。RXE层可通过刷涂、浸蘸、辊涂、喷涂等方式布置在磁体表面,RXE层厚度、均匀性可控性高,不易脱落、易于批量化生产,布置在磁体表面的RXE层经烘干处理后由于RX粉末被EP包裹不易氧化,所以可以长时间在空气中稳定放置,热处理过程中EP、ET脱离磁体,不会造成磁体碳元素含量的明显提升。

优选的,在所述步骤3)中,RXE浆液在使用过程中需进行搅拌处理。由于RX粉末密度远远大于EP、ET,虽然浆液中所用的有机固体EP明显阻止了RX粉末的沉淀,RXE浆液仍不能保持长时间稳定、均一,所以在使用过程中RXE浆液优选同时搅拌处理。

优选的,在所述步骤3)中,RXE浆液中RX所占重量百分比在30wt%~90wt%范围内。当RXE浆液中RX所占重量百分比过低时,由于RX粉末密度较大,即使进行搅拌处理,RX在RXE浆液中分布均匀性会劣化,导致布置在受处理磁体表面RX分布不均;而当RXE浆液中RX所占重量百分比过高时,浆液流动性变差、黏度变大,不易在受处理磁体表面布置厚度均匀的RXE层。

优选的,在所述步骤3)中,对于形状规则的方片形磁体RXE浆液优选通过刷涂、辊涂布置于磁体表面,对于形状不规则的异形磁体RXE浆液优选通过浸蘸、喷涂布置于磁体表面。

对于形状规则的方片形磁体,RXE浆液采用刷涂、辊涂、浸蘸、喷涂可在磁体表面形成厚度均一的RXE层,磁体表面重稀土元素粉末RX均匀的分布在磁体表面,而对于形状不规则的异形磁体采用浸蘸、喷涂的方式更容易实现RXE层的均匀布置。

优选的,在所述步骤3)中,重稀土元素粉末RX粒度控制在小于30μm,RXE层厚度在10~200μm范围内。当RX粒度大于30μm时,RX易沉淀而不易形成均匀性高的RXE浆液,增加在磁体表面布置RXE层难度,且当涂层厚度控制的比较小时容易在在涂层表面形成颗粒状凸起,最终影响磁体扩散均匀性。RXE层厚度控制在一定范围内是基于当RXE层厚度过小时,RXE层中RX颗粒粒度接近于涂布层厚度,较难实现RX颗粒分布均匀,导致整片磁体上扩散进磁体的重稀土元素量分布不均,最终导致磁体均一性差;而RXE层厚度过高时,一方面为其包含的RX过量,过量的RX在热处理过程中不能完全扩散进磁体内部,将在磁体表面形成团聚,侵蚀磁体表面,影响磁体的表面状态,另一方面为其所包含的有机物质EP、ET过量,这就会导致在热处理过程中,大量的有机物质脱出,若不能及时排出将影响热处理装置的气氛,造成磁体碳、氧元素的升高,最终影响磁体性能。

在所述步骤3)中,ET为乙醇、苯、甘油、乙二醇中的至少一种,优选乙醇。苯、甘油、乙二醇相对于乙醇对人体的危害更大,而在固化、热处理过程中会有大量的ET在高温下脱掉,若果采用苯、甘油、乙二醇作为有机溶剂ET,其对设备的密闭、排气能力、安全等要求更高,增加设备成本。

优选的,在所述步骤3)中,所述受处理磁体至少有一个方向厚度小于10mm。

由于在热处理过程中,重稀土元素RX通过呈液相的晶界扩散至磁体,扩散过程主要以浓度差为驱动力,浓度差较低导致驱动力不大,导致扩散缓慢。当磁体厚度大于10mm时很难实现扩散完全,导致磁体方形度等磁性能变差,最终影响磁体的耐温性。

本发明通过采用在磁体表面布置重稀土元素粉末RX、有机固体粉末EP、有机溶剂ET配置成RXE浆液,经烘干处理后在磁体表面形成RXE层,实现了在磁体表面布置重稀土元素,且可以在空气中长时间稳定存放,在热处理过程中EP、ET脱离磁体,不会造成磁体碳含量的明显提升,RX中重稀土元素扩撒进磁体内部,实现晶界扩散,达到提升磁体性能的效果。在批量化生产过程中RXE浆液可采用刷涂、浸蘸、辊涂、喷涂等方式布置在受处理磁体表面,RXE层厚度可控,易于实现自动化生产,且受磁体形状影响小。

具体实施方式

以下对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。

实施例1:

采用真空熔炼炉在惰性气体保护下对所配置原材料进行熔炼,形成厚度在0.1~0.5mm范围内的R-Fe-B合金鳞片,鳞片金相晶界清晰。合金鳞片经机械粉碎,氢化处理后采用氮气气流磨破碎至SMD为3.2μm。采用15KOe的磁场取向压制成型,制成压坯,压坯密度为3.95g/cm3。压坯在烧结炉中进行真空烧结,最高温度1080℃烧结330min得到生坯,生坯经多线切割成最终产品尺寸的磁片,磁片尺寸:40mm*30mm*2.1mm,尺寸公差:±0.03mm,磁片经酸溶液、去离子水洗涤表面,干燥处理,得到受处理磁体M1,M1的成分见下表。

采用重稀土元素粉末TbH、松改性醇酸树脂、乙醇配置成RXE浆液,其重量百分比分别为60wt%、5wt%、35wt%,将上述浆液搅拌约60min后,将受处理磁体M1浸蘸其中约3秒后取出,置于烘干箱内70℃烘干约15min,得到表面布置RXE层的受处理磁体。

将表面布置RXE层的受处理磁体置于料盒中在热处理装置中加热处理,升温至920℃后,在920℃下保温18h后急冷,急冷结束后升温至500℃时效处理(时效处理是指合金工件经固溶处理、冷塑性变形或铸造、锻造后,在较高的温度放置或室温保持其性能、形状、尺寸随时间而变化的热处理工艺),保温4小时后急冷至常温,得到磁体M2。

表1磁体M2与扩散处理前受处理磁体M1性能对比

表2磁体M2与扩散处理前受处理磁体M1主要成分对比

表1与表2显示采用此种方式M2相对于M1,剩磁Br降低约190Gs,Hcj增加约9.33KOe,通过成分测试M2比M1增加约0.48wt%的Tb。

表3磁体M2与扩散处理前受处理磁体M1 CSON元素含量分析对比

表3显示磁体扩散前后CSON元素含量对比分析,C、O含量均未出现明显上升,说明扩散过程中大部分松改性醇酸树脂没有扩散进入磁体。

实施例2

采用真空熔炼炉在惰性气体保护下对所配置原材料进行熔炼,形成厚度在0.1~0.5mm范围内的R-Fe-B合金鳞片,鳞片金相晶界清晰。合金鳞片经机械粉碎,氢化处理后采用氮气气流磨破碎至SMD为3.1μm。采用15KOe的磁场取向压制成型,制成压坯,压坯密度为3.95g/cm3。压坯在烧结炉中进行真空烧结,最高温度1085℃烧结330min得到生坯,生坯经多线切割成最终产品尺寸的磁片,磁片尺寸:40mm*30mm*3mm,尺寸公差:±0.03mm,磁片经酸溶液、去离子水洗涤表面,干燥处理,得到受处理磁体M3,M3的成分见下表。

采用重稀土元素粉末TbF、聚乙烯醇缩丁醛、酒精配置成RXE浆液,其重量百分比分别为65wt%、6wt%、29wt%,将上述浆液搅拌约60min后,将受处理磁体M3置于其中浸蘸约3秒后取出,置于烘干箱内70℃烘干约15min,得到表面布置RXE层的受处理磁体。

将表面布置RXE层的受处理磁体置于料盒中在热处理装置中加热处理,升温至930℃后,在930℃下保温20h后急冷,急冷结束后升温至520℃时效处理,保温4小时后急冷至常温,得到磁体M4。

表4磁体M4与扩散处理前受处理磁体M3性能对比

表5磁体M4与扩散处理前受处理磁体M3主要成分对比

表4与表5显示采用此种方式M4相对于M3,剩磁Br降低约170Gs,Hcj增加约9.86KOe,通过成分测试M3比M4增加约0.42wt%的Tb。

表6磁体M4与扩散处理前受处理磁体M3 CSON元素含量分析对比

表6显示磁体扩散前后CSON元素含量对比分析,C、O含量均未出现明显上升,说明扩散过程中大部分聚乙烯醇缩丁醛没有扩散进入磁体。

实施例3

采用真空熔炼炉在惰性气体保护下对所配置原材料进行熔炼,形成厚度0.1~0.5mm的鳞片,所得R-Fe-B合金鳞片金相晶界清晰。合金鳞片经HD、气流磨后,所得气流磨粉粒度SMD=3.2μm。气流磨粉混料后采用15KOe的磁场取向压制成型,制成压坯,压坯密度为3.95g/cm3。压坯在烧结炉中进行真空烧结,1085℃烧结300min得到生坯。生坯经多线切割成最终产品尺寸的磁片。磁片尺寸:40mm*25mm*4.5mm,公差:±0.3mm。磁片经酸溶液、去离子水洗涤表面,干燥处理,得到受处理磁体M5,M5的成分见表6。

采用TbF与Tb混合重稀土元素粉末、聚乙烯醇缩丁醛、酒精配置成RXE浆液,其重量百分比分别为60wt%、6wt%、34wt%,TbF与Tb混合重稀土元素粉末最大粉末粒径小于18μm,将上述浆液搅拌约60min后,将受处理磁体M5采用喷涂装置喷涂一层RXE浆液,置于烘干箱内90℃烘干约15min,得到表面布置RXE层的受处理磁体。其中M5相对于喷涂前增重1.02wt%。

将烘干后受处理磁体料置于热处理装置中,升温至930℃后,在930℃下保温25h后急冷,急冷结束后升温至540℃时效处理,时效处理4小时后急冷至常温,得到磁体M6。

表7磁体M6与扩散处理前受处理磁体M5性能对比

表8磁体M6与扩散处理前受处理磁体M5主要成分对比

表7与表8显示采用此种方式M6相对于M5,剩磁Br降低约150Gs,Hcj增加约9.8KOe,通过成分测试M6比M5增加约0.41wt%的Tb。由于磁体较厚,本次热处理930℃保温时间25h明显长于实施例1与实施例2。

表9磁体M6与扩散处理前受处理磁体M5 CSON元素含量分析对比

表9显示磁体扩散前后CSON元素含量对比分析,C、O含量均未出现明显上升,说明扩散过程中大部分聚乙烯醇缩丁醛没有扩散进入磁体。

以上所述仅为本发明的较佳实施方式,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1