半导体装置和半导体制造工艺的制作方法

文档序号:14155520阅读:201来源:国知局

本发明涉及半导体装置和用于制造其的半导体制造工艺,且更确切地说涉及包含多个支撐结构以防止翘曲的半导体装置和用于制造其的方法。



背景技术:

半导体装置可包含母管芯(motherdie)和安置于母管芯上且电连接到母管芯的子管芯(daughterdie)(例如,存储器管芯)。对于子管芯,主动表面上的电路层的金属材料的热膨胀系数(cte)可不同于主动表面上的钝化层(passivationlayer)的聚合物材料的热膨胀系数(cte)和子管芯的主体的半导体材料的热膨胀系数(cte)。因此,在半导体装置的回焊工艺期间,会发生子管芯的翘曲(warpage),其可导致子管芯的凸块(bump)与母管芯的凸块之间的未对准(misalignment)和无接合(non-jointformation),此会不利地影响半导体装置的可靠度(reliability)。



技术实现要素:

在根据一些实施例的方面中,半导体装置包含第一半导体管芯(semiconductordie)、第二半导体管芯和多个支撐结构。第一半导体管芯包含第一主动表面和邻近于所述第一主动表面安置的多个第一凸块。第二半导体管芯包含第二主动表面和邻近于第二主动表面安置的多个第二凸块,其中第二凸块接合到第一凸块中的相应者。支撐结构安置于所述第一半导体管芯的所述第一主动表面与所述第二半导体管芯的所述第二主动表面之间。所述支撐结构与所述第二半导体管芯的所述第二主动表面的外围区(peripheralregion)电隔离(electricallyisolated)且邻近于所述第二半导体管芯的所述第二主动表面的外围区安置。

在根据一些实施例的方面中,半导体装置包含第一半导体管芯、第二半导体管芯、多个连接结构和多个支撐结构。第一半导体管芯包含第一主动表面和邻近于所述第一主动表面安置的多个第一凸块。第二半导体管芯包含第二主动表面和邻近于所述第二主动表面安置的多个第二凸块。连接结构连接第一凸块和第二凸块中的相应者。支撐结构安置于所述第一半导体管芯的所述第一主动表面与所述第二半导体管芯的所述第二主动表面之间。支撐结构由支撐材料固化而成,且支撐材料的胶凝点温度(gel-pointtemperature)大于连接结构的材料的熔融温度。

在根据一些实施例的方面中,半导体制造工艺包含:(a)提供第一半导体管芯,其包含第一主动表面和邻近于第一主动表面安置的第一凸块;(b)将支撐材料安置于第一半导体管芯的第一主动表面上;(c)将第二半导体管芯附接到第一半导体管芯,其中第二半导体管芯具有第二主动表面、第二凸块和连接结构,第二凸块邻近于第二主动表面安置且连接结构安置于第二凸块与第一凸块之间;以及(d)进行回焊工艺,其中支撐材料在连接结构经熔融时处于半固化状态(b-stagestate)中。

附图说明

图1说明根据本发明的一些实施例的半导体装置的俯视图。

图2说明沿着图1的线2-2获取的图1中所展示的半导体装置的横截面图。

图3说明根据本发明的一些实施例的图2中所展示的半导体装置的区a的放大视图。

图4说明根据本发明的一些实施例的图2中所展示的半导体装置的区b的放大视图。

图5说明根据本发明的一些实施例的半导体装置的俯视图。

图6说明沿着图5的线6-6获取的图5中所展示的半导体装置的横截面图。

图7说明根据本发明的一些实施例的图6中所展示的半导体装置的区c的放大视图。

图8说明根据本发明的一些实施例的支撐材料的粘度与温度之间的关系。

图9说明根据本发明的比较实施例的不具有支撐结构的半导体装置的第二半导体管芯的最大翘曲与温度之间的关系。

图10说明根据本发明的一些实施例的半导体装置的俯视图。

图11说明根据本发明的一些实施例的半导体装置的横截面图。

图12、图13和图14说明根据本发明的一些实施例的半导体制造工艺。

具体实施方式

本发明的一些实施例提供改进型半导体装置,其包含多个虚设支撐结构(dummysupportingstructure)以支撑子管芯从而用于减小子管芯的翘曲。

子管芯的凸块可通过焊料接合到母管芯的凸块以便提供母管芯与子管芯之间的电连接而且提供对子管芯的支撑。然而,子管芯可为薄管芯(例如,其厚度可小于约75μm),子管芯的凸块之间的间距(pitch)可为细间距(例如,间距可小于约40μm)且子管芯的凸块可经安置以便集中在子管芯的中心区域或中心范围中(即,子管芯的凸块在子管芯的整个主动表面上可不均匀分布)。举例来说,凸块区域可为约子管芯的总面积的15%或小于15%。因此,子管芯存在相对较大的外围区域或范围,其未经子管芯的凸块和母管芯的凸块支撑,且呈悬置而无支撑,导致子管芯归因于重力而发生凸出翘曲(convexwarpage)。

另外,归因于电路层的金属材料、钝化层的聚合物材料以及子管芯的主体的半导体材料之间的热膨胀系数(cte)不匹配,子管芯的翘曲在温度升高期间可在大约210℃时从凸出翘曲转变成凹入翘曲(concavewarpage)。另外,子管芯的翘曲在温度降低期间可在大约230℃时从凹入翘曲转变回到凸出翘曲。子管芯的翘曲的此类变化可导致子管芯的凸块与母管芯的凸块之间的未对准和无接合,此会不利地影响半导体装置的可靠度。另外,当凸出翘曲出现时,子管芯的拐角(corner)与母管芯的主动表面之间的间隙可极小或甚至为零(即,子管芯的拐角与母管芯的主动表面接触),此可使得底胶(underfill)难以进入母管芯与子管芯之间的空间以覆盖和保护子管芯的凸块和母管芯的凸块。

为了解决上述问题,一种改进型结构被提出以提供虚设支撐结构以支撑子管芯的外围区。所描述技术可有助于减小在回焊工艺期间子管芯的翘曲。在一些实施例中,支撐结构可为接合到母管芯的额外虚设凸块的子管芯的额外虚设凸块。在一些实施例中,支撐结构可由粘附材料形成,所述粘附材料在连接子管芯的凸块和母管芯的凸块的焊料的熔融温度下呈半固化(半熔融或半软)状态。因此,所述粘附材料在回焊温度下可粘附到子管芯和母管芯两者。子管芯的翘曲可由于在子管芯的外围区处提供机械支撑和物理支撑而减小;因此,可避免子管芯的拐角与母管芯的主动表面之间的窄间隙,且可改进子管芯的凸块与母管芯的凸块之间的对准(alignment)和接合(jointformation)。

图1说明根据本发明的一些实施例的半导体装置1的俯视图。图2说明沿着图1的线2-2获取的半导体装置1的横截面图。半导体装置1包含第一半导体管芯2、第二半导体管芯3、多个支撐结构12、多个连接结构16和底胶14。第一半导体管芯2可为母管芯,且包含第一主动表面21和邻近于第一主动表面21安置的多个第一凸块22。在一些实施例中,第一半导体管芯2的厚度可小于约75μm。第二半导体管芯3可为子管芯,且包含第二主动表面31和邻近于第二主动表面31安置的多个第二凸块32。在一些实施例中,第二半导体管芯3的厚度可小于约75μm。第二半导体管芯3的第二主动表面31面向第一半导体管芯2的第一主动表面21,且第二凸块32通过连接结构16(其可包含焊料)接合到相应第一凸块22。即,第二半导体管芯3通过倒装芯片接合(flipchipbonding)附接到第一半导体管芯2。

支撐结构12安置于第一半导体管芯2的第一主动表面21与第二半导体管芯3的第二主动表面31之间。如图1和图2中所示,支撐结构12并不执行电功能且安置于第二半导体管芯3的第二主动表面31的外围区上;例如,支撐结构12可与第二半导体管芯3的电路层电隔离;可与第一半导体管芯2的电路层电隔离或可由电绝缘材料形成。在一些实施例中,支撐结构12安置在第二半导体管芯3的四个拐角处。然而,支撐结构12可安置在第二半导体管芯3的外围区中的其它位置处。为了提供良好的支撑,支撐结构12的位置可彼此对称。

如图1和图2中所示,支撐结构12安置在第二半导体管芯3投影到第一半导体管芯2上的区域内。即,支撐结构12安置于第二半导体管芯3之下。另外,在一些实施例中,支撐结构12中的每一者包含第一虚设凸块(dummybump)23和通过对应连接结构16(其可包含焊料)接合到对应第一虚设凸块23的第二虚设凸块33。应注意,第一虚设凸块23和第二虚设凸块33并不执行电功能,而第一凸块22和第二凸块32执行电功能。因此,第一虚设凸块23为第一半导体管芯2的额外虚设凸块,第二虚设凸块33为第二半导体管芯3的额外虚设凸块,且第一虚设凸块23和第二虚设凸块33并不影响第一凸块22和第二凸块32的原始布局。第一虚设凸块23或第二虚设凸块33的大小(例如,宽度或直径)可与第一凸块22或第二凸块32的大小相同或不同。

如图1和图2中所示,第二凸块32中的每一者安置在凸块区域34内。第二半导体管芯3的第二凸块32之间的间距可为细间距(例如,所述间距可小于约40μm)且第二半导体管芯3的第二凸块32可经安置以便集中在第二半导体管芯3的中心区域中(即,第二半导体管芯3的第二凸块32并不在第二半导体管芯3的整个第二主动表面31上均匀分布)。举例来说,凸块区域34的大小小于第二半导体管芯3的第二主动表面31的总面积约80%、约70%、约60%、约20%、约15%或甚至更小。在一些实施例中,第二半导体管芯3的第二主动表面31的总面积大约为7毫米(mm)*7mm,且凸块区域34的大小大约为6mm*1mm。因此,最外第二凸块32与第二半导体管芯3的侧表面37之间的最大距离l1大于第二半导体管芯3的最大宽度w的约四分之一或大于第二半导体管芯3的最大宽度w的约三分之一。因此,第二半导体管芯3具有较大外围区,其并不由第二半导体管芯3的第二凸块32支撑,且如果没有支撐结构12的情况下将会悬置,且将导致第二半导体管芯3归因于重力而发生凸出翘曲。

如图1和图2中所示,支撐结构12(各自包含第一虚设凸块23和第二虚设凸块33)在第二半导体管芯3的外围区处提供机械支撑和物理支撑以便减小第二半导体管芯3的翘曲;因此,可避免第二半导体管芯3的拐角与第一半导体管芯2的第一主动表面21之间的窄间隙。即,支撐结构12可在第二半导体管芯3的第二主动表面31与第一半导体管芯2的第一主动表面21之间提供一致的间距(standoff),且在各种位置处第二半导体管芯3的第二主动表面31与第一半导体管芯2的第一主动表面21之间的间隙(gap)基本上彼此相等。另外,支撐结构12彼此电隔离。即,支撐结构12可根据俯视图表示为点(dots)或离散区(discreteregions),而不是长连续条带或环形壁,以便促进底胶14的流动。另外,由于第二半导体管芯3的翘曲的变化减小,在回焊工艺之后,可改进第二半导体管芯3的第二凸块32与第一半导体管芯2的第一凸块22之间的对准和接合。

底胶14填充第二半导体管芯3的第二主动表面31与第一半导体管芯2的第一主动表面21之间的空间以覆盖和保护第一凸块22、第二凸块32以及支撐结构12。在一些实施例中,半导体装置1进一步包含邻近于第一半导体管芯2的第一主动表面21安置的至少一个互连结构(interconnectionstructure)18(例如,焊球或凸块)以供外部连接。互连结构18可电连接到第一凸块22。

图3说明根据本发明的一些实施例的图2中所展示的半导体装置1的区a的放大视图。第一半导体管芯2包含管芯主体20、钝化层24、图案化电路层(patternedcircuitlayer)25、多个导电通孔(conductivevia)251、保护层26和第一凸块22。管芯主体20包含半导体材料,例如硅。钝化层24安置于管芯主体20上,且钝化层24的材料可例如为聚酰亚胺(pi)或另一聚合物。图案化电路层25安置于钝化层24上。保护层26覆盖图案化电路层25和钝化层24,且界定多个穿通孔261。保护层26的顶部表面对应于第一主动表面21。保护层26的材料可与钝化层24的材料相同或不同。导电通孔251安置在保护层26的穿通孔261中以便以物理连接且电连接图案化电路层25和第一凸块22。第一凸块22中的每一者包含主要部分221、势垒层(barrierlayer)222和润湿层(wettinglayer)223。主要部分221、势垒层222和润湿层223的材料可例如分别为铜、镍和金。在一些实施例中,主要部分221和导电通孔251同时且整体地形成。

第二半导体管芯3包含管芯主体30、钝化层34、图案化电路层35、多个导电通孔351、保护层36和第二凸块32。管芯主体30包含半导体材料,例如硅。钝化层34安置于管芯主体30上,且钝化层34的材料可例如为pi或另一聚合物。图案化电路层35安置于钝化层34上。保护层36覆盖图案化电路层35和钝化层34,且界定多个穿通孔361。保护层36的顶部表面对应于第二主动表面31。保护层36的材料可与钝化层34的材料相同或不同。导电通孔351安置在保护层36的穿通孔361中以便以物理连接且电连接图案化电路层35和第二凸块32。第二凸块32中的每一者包含主要部分321和势垒层322。主要部分321和势垒层322的材料可例如分别为铜和镍。在一些实施例中,主要部分321和导电通孔351同时且整体地形成。第一凸块22的大小可与第二凸块32的大小相同或不同。

连接结构16(其可包含焊料)连接第一凸块22的润湿层223和第二凸块32的势垒层322。连接结构16的材料可例如为锡(sn)或锡/银(sn/ag)合金,金属间化合物(imc)(例如,cu,ni)6sn5和(ni,cu)3sn4)可形成在连接结构16与第一凸块22的润湿层223之间的边界处(boundary)和连接结构16与第二凸块32的势垒层322之间的边界处。在一些实施例中,在图3的所说明位置(例如,中心位置)处第二半导体管芯3的第二主动表面31与第一半导体管芯2的第一主动表面21之间的间隙g1例如为约35μm。

图4说明根据本发明的一些实施例的图2中所展示的半导体装置1的区b的放大视图。如图4中所展示,第一虚设凸块23的结构相同于或类似于第一凸块22的结构,且包含主要部分221、势垒层222和润湿层223。然而,在其它实施例中,第一虚设凸块23的结构可不同于第一凸块22的结构。第一虚设凸块23的大小可与第一凸块22的大小相同或不同。第一虚设凸块23安置于钝化层24上的虚设垫252上。第二虚设凸块33的结构相同于或类似于第二凸块32的结构,且包含主要部分321和势垒层322。然而,在其它实施例中,第二虚设凸块33的结构可不同于第二凸块32的结构。第二虚设凸块33的大小可与第二凸块32的大小相同或不同。第二虚设凸块33安置于钝化层34上的虚设垫352上。在一些实施例中,在图4所说明的位置(例如,外围位置)处第二半导体管芯3的第二主动表面31与第一半导体管芯2的第一主动表面21之间的间隙g2例如为约35μm。即,在各种位置处第二半导体管芯3的第二主动表面31与第一半导体管芯2的第一主动表面21之间的间隙(例如,g1和g2)基本上彼此相等以便促进底胶14的流动。换句话说,每一支撑结构12的高度基本上等于第一凸块22、连接结构16和第二凸块32的高度的总和;因此,第二半导体管芯3的翘曲可小于约3μm。因此,第二半导体管芯3的第二主动表面31的平坦度(degreeofflatness)(例如,总指示器读数(totalindicatorreading,tir)值)可小于约3μm。

如图4中所展示,第二半导体管芯3的侧表面37与支撑结构12的侧壁之间的最小距离l2约为0.05mm或更大、约0.1mm或更大、或约0.15mm或更大。因此,从俯视图中无法清楚看见支撐结构12。在一些实施例中,底胶14覆盖第二半导体管芯3的厚度的至少约二分之一。如图4中所展示,底胶14基本上覆盖第二半导体管芯3的整个厚度;因此,第二半导体管芯3的完整侧表面37由底胶14覆盖,且并不从底胶14暴露。

图5说明根据本发明的一些实施例的半导体装置5的俯视图。图6说明沿着图5的线6-6获取的半导体装置5的横截面图。图5和图6的半导体装置5类似于图1和图2中所说明的半导体装置1,其中差异涉及支撐结构12a的结构和材料。半导体装置5包含第一半导体管芯2、第二半导体管芯3、支撐结构12a、连接结构16和底胶14。图5和图6的第一半导体管芯2、第二半导体管芯3、连接结构16和底胶14可经配置为类似图1和图2的第一半导体管芯2、第二半导体管芯3、连接结构16和底胶14。支撐结构12a由支撐材料固化而成(参见图12)而不是包含虚设凸块23、33的组合(如图1和图2所示)。即,支撑结构12a为单体结构(monolithicstructure),且由粘附性热固性组合物形成。

在一些实施例中,支撐材料的胶凝点温度(固化温度)高于连接结构16的材料的熔融温度。即,支撐材料在连接结构16的熔融温度下处于半固化状态(半熔融状态)下。因此,回焊工艺描述如下。首先,支撐材料可在室温下支撑第二半导体管芯3的第二主动表面31的外围区以便减小第二半导体管芯3的凸出翘曲。接着,将半导体装置5加热到回焊温度,连接结构16的材料经熔融且支撐材料处于半固化状态(半熔融状态)下以便粘附到第二半导体管芯3的第二主动表面31和第一半导体管芯2的第一主动表面21两者,由此减小第二半导体管芯3的凹入翘曲。即,支撐材料在第二半导体管芯3的翘曲约为零时粘附到第二半导体管芯3的第二主动表面31和第一半导体管芯2的第一主动表面21两者。接着,随着温度进一步上升达到支撐材料的胶凝点温度(固化温度),支撐材料经固化且变成固态(c阶段状态)以便形成支撐结构12a。接着,温度下降到室温,连接结构16固体化,且支撐结构12a保持处于固态;因此,在各种位置处第二半导体管芯3的第二主动表面31与第一半导体管芯2的第一主动表面21之间的间隙基本上彼此相等。

相比之下,如果热固性组合物的胶凝点温度(固化温度)低于连接结构16的材料的熔融温度,那么热固性组合物在温度达到连接结构16的熔融温度之前处于c阶段状态(固态)。因此,热固性组合物可在第二半导体管芯3具有凸出翘曲时粘附到第二半导体管芯3的第二主动表面31和第一半导体管芯2的第一主动表面21两者。因此,第二半导体管芯3可在回焊过程中保持处于凸出翘曲的状态。

如图5和图6中所展示,支撐结构12a安置于第一半导体管芯2的第一主动表面21与第二半导体管芯3的第二主动表面31之间。支撐结构12a并不执行电功能且安置于第二半导体管芯3的第二主动表面31的外围区上。在一些实施例中,支撐结构12a安置在第二半导体管芯3的四个拐角处。然而,支撐结构12a可安置在第二半导体管芯3的外围区中的其它位置处。为了提供良好的支撑,支撐结构12a的位置可彼此对称。

如图5和图6中所展示,支撐结构12a安置在第二半导体管芯3投影到第一半导体管芯2上的区域内。即,支撐结构12a安置于第二半导体管芯3之下。另外,支撐结构12a为第一半导体管芯2与第二半导体管芯3之间的额外虚设结构;因此,支撐结构12a并不影响第一凸块22和第二凸块32的原始布局。

如图5和6中所展示,支撐结构12a在第二半导体管芯3的外围区处提供机械支撑和物理支撑以便减小第二半导体管芯3的翘曲;因此,可避免第二半导体管芯3的拐角与第一半导体管芯2的第一主动表面21之间的窄间隙。即,支撐结构12a可在第二半导体管芯3的第二主动表面31与第一半导体管芯2的第一主动表面21之间提供一致的间距(standoff),且在各种位置处第二半导体管芯3的第二主动表面31与第一半导体管芯2的第一主动表面21之间的间隙基本上彼此相等。另外,支撐结构12a彼此电隔离。即,支撐结构12a可根据俯视图表示为点或离散区,而不是长连续条带或环形壁,以便促进底胶14的流动。另外,由于第二半导体管芯3的翘曲的变化减小,在回焊工艺之后,可改进第二半导体管芯3的第二凸块32与第一半导体管芯2的第一凸块22之间的对准和接合。

图7说明根据本发明的一些实施例的图6中所展示的半导体装置5的区c的放大视图。如图7中所展示,每一支撑结构12a粘附到第二半导体管芯3的保护层36和第一半导体管芯2的保护层26,具有向内弯曲或凹入的侧向轮廓,以及包含上部部分121、下部部分122和颈部部分123。上部部分121与第二半导体管芯3的第二主动表面31接触,且具有第一宽度w1。下部部分122与第一半导体管芯2的第一主动表面21接触,且具有第二宽度w2。颈部部分123基本上作为支撑结构12a的中间部分,且具有第三宽度w3。第一宽度w1基本上等于第二宽度w2,且第三宽度w3小于第一宽度w1或第二宽度w2。在一些实施例中,第一宽度w1或第二宽度w2可为约0.5mm到约1.5mm,且第一宽度w1或第二宽度w2可为第三宽度w3的至少约1.15倍。

在一些实施例中,在图7说明的位置处第二半导体管芯3的第二主动表面31与第一半导体管芯2的第一主动表面21之间的间隙g3为例如约35μm。即,在各种位置处第二半导体管芯3的第二主动表面31与第一半导体管芯2的第一主动表面21之间的间隙基本上彼此相等以便促进底胶14的流动。换句话说,支撑结构12a的高度基本上等于第一凸块22、连接结构16和第二凸块32的高度的总和;因此,第二半导体管芯3的翘曲可小于约3μm。因此,第二半导体管芯3的第二主动表面31的平坦度(例如,tir值)可小于约3μm。

如图7中所展示,第二半导体管芯3的侧表面37与支撑结构12a的侧壁之间的最小距离l3为约0.05mm或更大、约0.1mm或更大、或约0.15mm或更大。因此,从俯视图中无法清楚看见支撐结构12a。如图7中所展示,底胶14基本上覆盖第二半导体管芯3的整个厚度;因此,第二半导体管芯3的完整侧表面37由底胶14覆盖,且并不从底胶14暴露。

支撐结构12a中的每一者包含多个第一填料124,例如无机(例如,二氧化硅或sio2)填料,且底胶14包含多个第二填料141,例如无机(例如,sio2)填料。如可从扫描电子显微镜检查(sem)图像测量,底胶14的每单位截面积的第二填料141的面积百分比为支撑结构12a的每单位截面积的第一填料124的面积百分比的至少约五倍、至少约七倍或至少约十倍。即,如果第一填料124的粒子大小基本上等于第二填料141的粒子大小,那么底胶14的每单位截面积的第二填料141的量(例如,浓度)为支撑结构12a的每单位截面积的第一填料124的量的至少约五倍、至少约七倍或至少约十倍。在一些实施例中,底胶14的每单位面积的第二填料141的面积百分比为约60%/mm2,且支撑结构12a的每单位面积的第一填料124的面积百分比为约6%/mm2

在经固化之前,一些实施例的支撐材料包含按支撐材料的总重量计呈约60重量%到约85重量%的量的环氧树脂,和按支撐材料的总重量计呈约5重量%到约10重量%的量的第一填料124。应注意,在固化之前,支撐材料的组合物在一些方面上可类似于底胶14的组合物。在一些实施例中,支撐材料为来自松下(panasonic)公司的ade480d,且包含双酚a类型环氧树脂(bisphenolatypeepoxyresin)、双酚f类型环氧树脂(bisphenolftypeepoxyresin)、无机sio2填料(例如,作为第一填料124)、胺类硬化剂(aminetypehardener)和碳黑(carbonblack),其中双酚a类型环氧树脂按支撐材料的总重量计为约45重量%到约50重量%,双酚f类型环氧树脂按支撐材料的总重量计为约15重量%到约35重量%,无机sio2填料按支撐材料的总重量计为约6重量%,胺类硬化剂按支撐材料的总重量计为约10重量%到约15重量%,以及碳黑按支撐材料的总重量计为约0.2重量%。相比之下,在固化之前,底胶14可包含p-(2,3-环氧丙氧基)-n,n-双(2,3-环氧丙基)苯胺(p-(2,3-epoxypropoxy)-n,n-bis(2,3-epoxypropyl)aniline)、双酚f类型环氧树脂、无机sio2填料(例如,作为第二填料141)、胺类硬化剂、碳黑和添加剂,其中p-(2,3-环氧丙氧基)-n,n-双(2,3-环氧丙基)苯胺按底胶14的总重量计为约10重量%到约20重量%,双酚f类型环氧树脂按底胶14的总重量计为约10重量%到约20重量%,无机sio2填料按底胶14的总重量计为约50重量%到约60重量%,胺类硬化剂按底胶14的总重量计为约10重量%到约20重量%,碳黑按底胶14的总重量计大于约1重量%,以及添加剂按底胶14的总重量计大于约5重量%。因此,底胶14的第二填料141的重量%大于支撐材料的第一填料124的重量%至少约五倍、至少约七倍或至少约十倍。

图8说明根据本发明的一些实施例的支撐材料的粘度与温度之间的关系。举例来说,图8说明为如上所述来自松下公司的ade480d的支撐材料的材料特性。如图8中所展示,当温度小于约200℃时,支撐材料处于a阶段状态(a-stagestate)下,具有约800帕·秒到900帕·秒的粘度。当温度处于约200℃到约250℃范围内时,支撐材料处于半固化状态(b-stagestate)(半熔融状态)下,具有约900帕·秒到约500,000帕·秒的粘度。支撐材料的粘度在第一温度t1(例如,约200℃)下急剧上升,所述第一温度为支撐材料从a阶段状态转变成半固化状态时的温度。当温度超出约250℃时,支撐材料处于c阶段状态(c-stagestate)(固化状态或固态)下,具有大于约500,000帕·秒的粘度。支撐材料在第二温度t2(例如,约250℃)下经固化或固体化,所述第二温度为支撐材料从半固化状态转变成c阶段状态时的温度。第二温度t2被称作胶凝点温度或固化温度。应注意,在一些实施例中,连接结构(例如,连接结构16)的熔融温度为约220℃;因此,支撐材料的胶凝点温度(固化温度)t2大于连接结构16的熔融温度,且支撐材料在连接结构16的熔融温度下处于半固化状态(半熔融状态)。另外,支撐材料的粘度在连接结构16的熔融温度下为约1,000帕·秒到约100,000帕·秒。

图9说明根据本发明的比较实施例的不具有支撐结构的半导体装置的第二半导体管芯的最大翘曲与温度之间的关系。最大翘曲的值为第二半导体管芯的第二主动表面的最高点的高度与第二半导体管芯的第二主动表面的最低点的高度之间的差。最大翘曲的绝对值指代翘曲程度。最大翘曲的正值指示凸出翘曲,且最大翘曲的负值指示凹入翘曲。如果半导体装置省略支撑第二半导体管芯的外围区的支撐结构,那么第二半导体管芯的外围区可自由翘曲。第二半导体管芯在回焊过程期间的翘曲行为描述如下。在第三温度t3(例如,约210℃)下,第二半导体管芯的翘曲为凸出翘曲。随着温度上升,第二半导体管芯的翘曲减小。在第三温度t3(例如,约210℃)下,第二半导体管芯的翘曲从凸出翘曲转变成凹入翘曲。即,第二半导体管芯的翘曲在第三温度t3下为约零。接着,随着温度上升到回焊工艺的最大温度,第二半导体管芯的翘曲增大到其最大负值。接着,随着温度下降,第二半导体管芯的翘曲减小。在第四温度t4(例如,约230℃)下,第二半导体管芯的翘曲从凹入翘曲转变回到凸出翘曲。即,第二半导体管芯的翘曲在第四温度t4(例如,约230℃)下为约零。

第二半导体管芯的翘曲的此类变化可导致第一半导体管芯的第一凸块与第二半导体管芯的第二凸块之间的未对准和接合失败,此会不利地影响半导体装置的可靠度。另外,当在室温下出现第二半导体管芯的凸出翘曲时,第二半导体管芯的拐角与第一半导体管芯的第一主动表面之间的间隙极小或甚至为零,此使得底胶难以进入第一半导体管芯与第二半导体管芯之间的空间以覆盖和保护第一凸块和第二凸块。

为了解决上述问题,在半导体装置1、5中提供支撐结构12、12a。在半导体装置1(参见图1到图4)中,支撐结构12包含虚设凸块,其在室温下在第二半导体管芯3的外围区处提供机械支撑和物理支撑,以便减小第二半导体管芯3的凸出翘曲。另外,第一虚设凸块23与第二虚设凸块33之间的连接结构16与第一凸块22与第二凸块32之间的连接结构16基本上同时熔融和固体化;因此,连接结构16可在温度超出第三温度t3(例如,约210℃)时固持第一虚设凸块23和第二虚设凸块33,以便减小凹入翘曲。另外,在半导体装置5(参见图5到图7)中,半导体装置5的支撐结构12a由热固性支撐材料固化。因此,回焊工艺描述如下。首先,由于处于a阶段状态的支撐材料具有约800帕·秒到约900帕·秒的粘度,支撐材料可在室温下支撑第二半导体管芯3的第二主动表面31的外围区以便减小第二半导体管芯3的凸出翘曲。接着,当将半导体装置5加热到第三温度t3(例如,约210℃(t1≦t3≦t2))时,连接结构16熔融且支撐材料转变成半固化状态(半熔融状态),以便粘附到第二半导体管芯3的第二主动表面31和第一半导体管芯2的第一主动表面21两者。即,支撐材料在第二半导体管芯3的翘曲为约零时粘附到第二半导体管芯3的第二主动表面31和第一半导体管芯2的第一主动表面21两者。接着,随着温度进一步上升达到支撐材料的胶凝点温度(固化温度)t2,支撐材料经固化且变为固态(c阶段状态),以便形成支撐结构12a且防止第二半导体管芯3的凹入翘曲。接着,温度下降到室温,连接结构16经固体化,且支撐结构12a保持处于固态;因此,在各种位置处第二半导体管芯3的第二主动表面31与第一半导体管芯2的第一主动表面21之间的间隙基本上彼此相等。

图10说明根据本发明的一些实施例的半导体装置5a的俯视图。图10的半导体装置5a类似于图5中所说明的半导体装置5,其中差异涉及支撐结构12a的位置。在图5中所说明的半导体装置5中,支撐结构12a安置在第二半导体管芯3的相应拐角处。在图10中所说明的半导体装置5a中,支撐结构12a中的每一者安置在第二半导体管芯3的两个拐角之间的约中间部分处。

图11说明根据本发明的一些实施例的半导体装置6的横截面图。图11的半导体装置6类似于图5中所说明的半导体装置5,除母板7(例如,印刷电路板(pcb))附接到图5的半导体装置5以外,其中互连结构18连接母板7和第一半导体管芯2的第一主动表面21。

图12到图14说明根据本发明的一些实施例的半导体制造工艺。在所说明的实施例中,半导体制造工艺用于制造如图5中所展示的半导体装置5。参考图12,提供第一晶片2a。第一晶片2a包含由切割线27界定的多个第一半导体管芯2。第一半导体管芯2中的每一者包含第一主动表面21和邻近于第一主动表面21安置的多个第一凸块22。接着,邻近于第一主动表面21形成互连结构18。接着,支撐材料11安置于第一半导体管芯2的第一主动表面21上,其中支撐材料11具有胶凝点温度(固化温度)。同时,支撐材料11中的每一者基本上为半球形状。

接着,提供第二半导体管芯3。第二半导体管芯3包含第二主动表面31、第二凸块32和连接结构16。第二凸块32邻近于第二主动表面31安置,且连接结构16中的每一者安置于对应第二凸块32的尖端上。

参考图13,第二半导体管芯3通过倒装芯片接合附接到第一晶片2a的第一半导体管芯2,其中连接结构16中的每一者接触对应第一凸块22。接着,进行回焊工艺。支撐材料11在连接结构16熔融时处于半固化状态,且接着支撐材料11在回焊工艺的最大温度下固化以形成支撐结构12a。

参看图14,施加底胶14以填充第二半导体管芯3的第二主动表面31与第一半导体管芯2的第一主动表面21之间的空间以覆盖和保护第一凸块22、第二凸块32和支撐结构12a。由于在各种位置处第二半导体管芯3的第二主动表面31与第一半导体管芯2的第一主动表面21之间的间隙归因于支撐结构12a基本上彼此相等,因此底胶14可易于进入所述空间。接着,沿着切割线27切割第一晶片2a以获得图5中所展示的半导体装置5。

接着,半导体装置5可通过接合到互连结构18而附接到母板7以获得图11中所展示的半导体装置6。

除非另外规定,否则例如“上方”、“下方”、“向上”、“左侧”、“右侧”、“向下”、“顶部”、“底部”、“垂直”、“水平”、“侧部”、“较高”、“较低”、“上部”、“之上”、“之下”等空间描述相对于图式中所展示的取向加以指示。应理解,本文中所使用的空间描述仅是出于说明的目的,且本文中所描述的结构的实际实施方案可以任何取向或方式在空间上布置,其限制条件为本发明的实施例的优点是不因此布置而有偏差。

除非上下文另外明确规定,否则如本文所用,单数术语“一(a/an)”和“所述”可包含多个指示物。

如本文中所使用,术语“大致”、“基本上”、“实质”和“约”用以描述和解释小的变化。当与事件或情形结合使用时,所述术语可指代事件或情形精确发生的例子以及事件或情形极近似地发生的例子。举例来说,当结合数值使用时,术语可指代小于或等于所述数值的±10%的变化范围,例如小于或等于±5%、小于或等于±4%、小于或等于±3%、小于或等于±2%、小于或等于±1%、小于或等于±0.5%、小于或等于±0.1%、或小于或等于±0.05%。对于另一实例,如果两个数值之间的差小于或等于所述值的平均值的±10%(例如小于或等于±5%、小于或等于±4%、小于或等于±3%、小于或等于±2%、小于或等于±1%、小于或等于±0.5%、小于或等于±0.1%、或小于或等于±0.05%),那么可认为所述两个数值“基本上”相同或相等。

另外,有时在本文中按范围格式呈现量、比率以及其它数值。应理解,此类范围格式是用于便利和简洁起见,且应灵活地理解,不仅包含明确地指定为范围限制的数值,且还包含涵盖于所述范围内的所有个别数值或子范围,如同明确地指定每一数值和子范围一般。

在一些实施例的描述中,提供在另一组件“上”或“之上”的组件可涵盖前一组件直接在后一组件上(例如,呈物理或直接接触)的状况以及一或多个介入组件定位前一组件与后一组件之间的状况。

尽管已参考本发明的特定实施例描述并说明本发明,但这些描述和说明并不限制本发明。所属领域的技术人员应理解,在不脱离如由所附权利要求书界定的本发明的真实精神和范围的情况下,可做出各种改变且可取代等效物。说明可能未必按比例绘制。归因于制造工艺和容限,本发明中的艺术再现与实际设备之间可能存在区别。可存在并未经确切说明的本发明的其它实施例。本说明书和图式被视为说明性而非限制性的。可做出修改,以使特定情况、材料、物质组成、方法或工艺适应于本发明的目标、精神以及范围。所有此类修改是既定在所附权利要求书的范围内。尽管本文中揭示的方法已参考按特定次序执行的特定操作加以描述,但应理解,可在不脱离本发明的教示的情况下组合、细分或重新排序这些操作以形成等效方法。因此,除非本文中特别指示,否则操作的次序和分组不是对本发明的限制。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1